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Abstract: Gate and yard congestion is a typical type of container port congestion, which prevents
trucks from traveling freely and has become the bottleneck that constrains the port productivity. In
addition, urban traffic increases the uncertainty of the truck arrival time and additional congestion
costs. More and more container terminals are adopting a truck appointment system (TAS), which
tries to manage the truck arrivals evenly all day long. Extending the existing research, this work
considers morning and evening peak congestion and proposes a novel approach for multi-constraint
TAS intended to serve both truck companies and container terminals. A Mixed Integer Nonlinear
Programming (MINLP) based multi-constraint TAS model is formulated, which explicitly considers
the appointment change cost, queuing cost, and morning and evening peak congestion cost. The aim
of the proposed multi-constraint TAS model is to minimize the overall operation cost. The Lingo
commercial software is used to solve the exact solutions for small and medium scale problems, and a
hybrid genetic algorithm and simulated annealing (HGA-SA) is proposed to obtain the solutions for
large-scale problems. Experimental results indicate that the proposed TAS can not only better serve
truck companies and container terminals but also more effectively reduce their overall operation cost
compared with the traditional TASs.

Keywords: multi-constraint truck appointment system; morning and evening peak congestion;
hybrid genetic algorithm and simulated annealing; gate and yard congestion; mixed integer nonlin-
ear programming

1. Introduction

Over 90% of international trade is transported by ship. Container shipping is one
of the dominant transportation modes. In 2018, the top 20 container ports in the word
completed a container throughput of 340 million TEU (Twenty feet Equivalent Units) and
reached an increase of 3.8% over the last year. Thus, container ports are a distribution
center for container cargoes and an important support for international trade. In the
era of globalization, high-quality container port logistics can promote countries’ stability
and development.

However, congestion is ubiquitous in container ports. The impact of port congestion is
multifaceted. (a) Port congestion directly affects the economic benefits of participants in the
port supply chain (Namboothiri and Erera, 2008) [1], resulting in longer ship docking time,
higher transportation and operation costs, more difficult port production management, and
larger backlogs of goods. (b) If there are not proper governance measures implemented,
congestion may spread to surrounding ports as time goes by. For example, the congestion
in Shanghai Port in April 2017 spread to Qingdao Port and Ningbo Zhoushan Port [2].
(c) Increased emissions [3]) of congested ports affect city image and residents’ quality of
life [4,5]. Congestion has become the bottleneck that constrains port productivity and
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restricts ports’ sustainable development. Therefore, it is crucial and urgent to solve port
congestion problems.

To alleviate port congestion, many studies have proposed solutions. Regan and
Golob [6] found that the efficiency of maritime transport depended on the smooth operation
of inland transport. Truck companies can use information technology to reduce delays
inside and outside the port. Knowing the time when a truck arrives at the port can improve
the efficiency of port operations. Ozbay et al. [7] found that the Port Authority of New York
and New Jersey charging plan successfully made the arrival time of trucks more uniform.
Dekker et al. [8] introduced the concept of the Chassis Exchange Terminal at the Container
Terminal in Rotterdam. The main idea was to provide an off-dock terminal. The truck
would leave the outbound container on the trailer and take the trailer with the inbound
container when the harbor terminal was not congested. Van et al. [9] evaluated the impact
of the arrival time of the truck on reducing the inefficient movement of the yard crane.
Grubisic et al. [10] studied ports located near the city center to determine the key traffic
parameters, the queue length on the road to the container terminal, and the parking delay
on the main city corridor, which had negative organizational and environmental impacts
on current and future traffic demand. However, the overall costs of the truck companies
and container terminals were not considered. The port needs to process many orders every
day, which is also a cause of congestion. Pandian [11] proposed a procedure for managing
large-scale orders to develop a flexible plan to meet customer requirements.

To reduce gate and yard congestion, more and more container terminals (such as
Los Angeles Port and Long Beach Port in the United States, Vancouver Port in Canada,
and Tianjin Port in China) use a Truck Appointment System (TAS) as it is called in the
U.S., or vehicle booking system (VBS) in other parts of the world [12]. Giuliano and
O’Brian [13] mentioned, for the first time, the implementation of a TAS in the ports of Los
Angeles and Long Beach. The main idea of TAS is that the truck company pre-arranges
the working hours of the truck, giving each truck a designated time [14]); the port will
pre-determine the allocation of yard equipment and goods [15,16]. TAS is one of the
best and most common communication methods between truck companies and container
terminals [17,18]. Ramírez-Nafarrate et al. [19] proposed a discrete event simulation model
and a heuristic process to analyze the potential configuration of TAS and evaluate its
impact on yard operations, especially in terms of reducing container heavy handling
and truck turn time. However, this research is limited to the impact of TAS on the port,
especially the internal port, and does not consider the cost impact of the program on trucks.
To this end, many studies have attempted to determine the best design for TAS. Phan
et al. [20] considered the impact of the truck on changing the arrival time and established a
multi-constraint TAS model combining mathematical formulas and decentralized decision-
making to support the negotiation between the truck company and the terminal company,
making the time of the arrival of the trucks more uniform. However, it did not consider
the impact of urban traffic on the arrival time of trucks nor did it consider the minimum
costs of truck companies and port companies. Chen et al. [21] proposed a method called
“ship-related time-window” to control the arrival of the trucks. However, it only considered
the congestion of the truck at the gate and the corresponding cost and did not consider
the overall cost of the truck companies and the container terminals. Mohammad et al. [22]
established a mixed integer nonlinear model, which can serve both the truck company and
the terminal company and can alleviate the congestion of the truck at the gate on the basis
of effectively reducing transportation costs. However, the environment is idealized, and
the impact of urban traffic on the time of truck arrival at the port is not considered. Urban
traffic increases the uncertainty of the truck arrival time and additional congestion costs.
However, it seems that there are few studies to include urban traffic in the scope of TAS.
Kot [23] discussed the determination of road transport costs and related issues based on
the transport services of road transport in Poland and certain EU countries and quantified
the specific costs of road transport.
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In summary, previous studies on TAS mainly considered the queue length of trucks
at the gate, and few studies considered the interests of both truck companies and port
companies, and the impact of morning and evening peak traffic on the time of truck arrival
at the port. In an attempt to fill these research gaps, this study serves as a starting point in
explicitly considering both the impact of urban traffic on TAS and the overall operation
costs of the truck companies and the container terminals. Therefore, the aim of the study is
to develop a higher-quality TAS with improved rationality and effectiveness. Specifically,
such a TAS can better determine the truck’s appointment time-window, lessen the impact
of adjustment on the truck company’s expected appointment plans, mitigate the queue
time of the truck at gates, and meet the order demand of the container terminals. In
order to meet these aims, we proposed a multi-constraint TAS model based on mixed
integer nonlinear programming (MINLP) to determine the best appointment plan for each
truck. Lingo software is used to solve small and medium-sized problems, a hybrid genetic
algorithm and simulated annealing method is proposed to solve large-scale problems.
Experimental results successfully demonstrate that the multi-constraint TAS proposed
in this work outperforms traditional TASs. The proposed model and method not only
minimize its overall operation cost but also improve the operation efficiency.

The rest of the study is organized as follows: the problem definition and a multi-
constraint TAS model are provided in Section 2. A hybrid genetic algorithm and simulated
annealing method is presented in Section 3. The computational results and discussions are
shown in Section 4. Finally, Section 5 concludes the work.

2. Problem Definition and a Multi-Constraint TAS Model

The problem may be formally defined as follows. The truck company submits the
appointment request for the next day before 5 p.m. every day; at the same time, the
terminal company submits the quota for each time-window for the next day before 5 p.m.
every day. The truck ID and the corresponding container number are required for each
truck appointments. The TAS will determine the respective expected time-gap between
the consecutive appointments of the truck. The time-gap is assumed to be constant. Once
all the input data (appointment requests and quotas) are completed, the TAS finalizes
the appointment time-window for each truck, with the aim of minimizing the combined
operation costs of the truck and terminal companies. Finally, the TAS sends the best
appointment time-window for each truck to the truck company. If the last specified
appointment time-window is different from the appointment time-window submitted by
the truck company, the truck company will reschedule the truck collection.

The decision process of the truck appointment scheduling from the perspective of the
port supply chain is shown in Figure 1. The truck companies and the container companies
submit their own appointments and order details to the TAS. The TAS aims to minimize the
overall operation cost for both truck companies and port companies. The TAS optimizes the
plan, which is finally sent to the truck companies and the container companies respectively.
The ultimate objective of the port supply chain is to meet the freight transportation demands
of customers.

The main factors affecting the truck appointment are the terminal’s acceptable share
of appointments, the duration of each time-window, and the time rule of the truck arriving
at the port. Considering the impact of the peak period and the arrival volume of the next
day, the terminal’s acceptable share of appointments is unevenly distributed. The duration
of each time-window will affect the arrival distribution of the truck. If it is short, it could be
beneficial to terminal operators because they can have a higher control of the truck arrivals
in every hour. However, it will reduce the probability that the truck will arrive on time
within the scheduled time. Therefore, extending the existing research, this work divides
the period from 8:00 a.m. to 6:00 p.m. every day into 10 time-windows. The terminal
time-window duration is 1 h. The arrival rule of the truck has a law of changing with time,
so the queuing model of non-stationary arrival is used to describe it.
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2.1. Indices, Parameters and Sets for a Multi-Constrained TAS
2.1.1. Indices

wt Every time-window of the port
it Every time-interval of the time-window
h The ID of each truck
f The number of appointments for a truck

tn
A number corresponding to the number of appointments for the next day for each

truck
z Truck company’s unique number
g Urban road grades

2.1.2. Sets
Wt All terminal time-windows
It All time-intervals contained in each terminal time-window

F
The number of appointments for the next day for each truck (the number of

appointments ranged from 1 to 5)
G f A truck with all the appointments for the next day
Z All the truck companies
Hz All trucks belonging to truck company z
G All urban road congestion grades

2.1.3. Parameters
Nwt The maximum quota for each terminal time-window

Dh f tn The truck company submits the truck arrival time-window
ϕwt The maximum service efficiency for each terminal time-window
a The number of time-intervals in a terminal time-window
ξ Coefficient of variance of gate service time

Wl

The penalty value when the difference between the actual arrival
time-window of the truck and the adjacent time-window is larger than the

expected

Ws

The penalty value when the difference between the actual arrival
time-window of the truck and the adjacent time-window is smaller than

the expected
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Wd The penalty weight for early arrival trucks
Wn The penalty weight for late arrival trucks
Wq The penalty value of the queue length of a truck queuing at a gate
Ndz The number of truck appointment by truck company z
Sz The initial cost threshold of truck company z

dtdh f tn

Time-gap between two adjacent appointments of truck h with f
appointments for the expected appointment schemes provided by the truck

company
σ Loss coefficient of economic cost when suffering traffic jam

Cg Length of g grade road
Hg The number of trucks on roads with different levels of congestion
Vg Critical speeds of trucks on roads with different levels of congestion
V′g Trucks traveling at normal speed on different classes of roads

2.1.4. Decision Variables
Rit The average truck arrival rate at it
Lit The average queue length of trucks at the gate at it
Vit The average departure rate from terminal gate to the terminal yard at it

dth f tn

Time-gap between two adjacent appointments of truck h with f
appointments for the actual appointment schemes confirmed by port

company
Zh f tn dtdh f tn –dth f tn

Z′h f tn
dth f tn –dtdh f tn

Yh f tn

The difference between the actual and expected time-windows of the truck
arrivals

Y′h f tn

The difference between the expected and actual time-windows of the truck
arrivals

Cz The appointment change cost of truck company z

2.2. A Multi-Constraint TAS Model

Considering the discreteness of terminal time-window, relevant decision variables are
defined in the multi-constraint TAS model. The decision variable explains the arrival of a
specific truck at a certain time-window at the terminal (Phan and Kim, 2016).

Mh f tnwt = {
1
0

I f truck h with f appointment (s) has its tn
thappointment at time− window wt

Otherwise
(1)

min ∑
z∈Z

Cz + Wq ∑
it∈It

(Lit +
Rit −Vit

2
) + σ ∑

L∈{1,2.3}
CL · (

1
VL
− 1

V′L
) ·ML (2)

Subject to:

Cz = Wl ∑
h∈Hz

∑
f∈F

∑
tn∈G f

Zh f tn + Ws ∑
h∈Hz

∑
f∈F

∑
tn∈G f

Z′h f tn

+Wd ∑
h∈Hz

∑
f∈F

∑
tn∈G f

Yh f tn + Wn ∑
h∈Hz

∑
f∈F

∑
tn∈G f

Y′h f tn
∀z ∈ Z

(3)

Zh f tn ≥ 0 ∀z ∈ Z, ∀h ∈ Hz, ∀ f ∈ F\{1}, ∀tn ∈ G f \{ f } (4)

Zh f tn ≥ dth f tn − dtdh f tn ∀z ∈ Z, ∀h ∈ Hz, ∀ f ∈ F\{1}, ∀tn ∈ G f \{ f } (5)

Z′h f tn
≥ 0 ∀z ∈ Z, ∀h ∈ Hz, ∀ f ∈ F\{1}, ∀tn ∈ G f \{ f } (6)

Z′h f tn
≥ dtdh f tn − dth f tn ∀z ∈ Z, ∀h ∈ Hz, ∀ f ∈ F\{1}, ∀tn ∈ G f \{ f } (7)

Yh f tn ≥ 0 ∀z ∈ Z, ∀h ∈ Hz, ∀ f ∈ F\{1}, ∀tn ∈ G f \{ f } (8)

Yh f tn ≥ ∑
wt∈Wt

(wt ·Mh f tnwt)− Dh f tn ∀z ∈ Z, ∀h ∈ Hz, ∀ f ∈ F\{1}, ∀tn ∈ G f \{ f } (9)
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Y′h f tn
≥ 0 ∀z ∈ Z, ∀h ∈ Hz, ∀ f ∈ F\{1}, ∀tn ∈ G f \{ f } (10)

Y′h f tn
≥ Dh f tn − ∑

wt∈Wt

(wt ·Mh f tnwt) ∀z ∈ Z, ∀h ∈ Hz, ∀ f ∈ F\{1}, ∀tn ∈ G f \{ f } (11)

Cz/Ndz ≤ Sz ∀z ∈ Z (12)

Sz = ε + γ · b
1

Ndz ∀z ∈ Z (13)

dth f tn = ∑
wt∈Wt

(wt ·Mh f (tn+1)wt
)− ∑

wt∈Wt

(wt ·Mh f tnwt) ∀z ∈ Z, ∀h ∈ Hz, ∀ f ∈ F\{1}, ∀tn ∈ G f \{ f } (14)

dtdh f tn = Dh f (tn+1) − Dh f tn ∀z ∈ Z, ∀h ∈ Hz, ∀ f ∈ F\{1}, ∀tn ∈ G f \{ f } (15)

∑
wt∈Wt

Mh f tnwt = 1 ∀z ∈ Z, ∀h ∈ Hz, ∀ f ∈ F\{1}, ∀tn ∈ G f \{ f } (16)

∑
h∈Hz

∑
f∈F

∑
tn∈G f

Mh f tnwt ≤Nwt ∀wt ∈Wt (17)

wt · ∑
wt∈Wt

Mh f tnwt ≤ wt · ∑
wt∈Wt

Mh f (tn+1)wt
∀wt ∈Wt (18)

Rit = ∑
h∈Hz

∑
f∈F

∑
tn∈G f

Mh f tnwt ∀it ∈ It, ∀wt ∈Wt (19)

Vit ≤ ϕwt ·
Lit + 1−

√
L2

ti
+ 2ξ2 · Lit + 1

1− ξ2 ∀it ∈ It, ∀wt ∈Wt (20)

Vit ≤ Lit + Rit ∀it ∈ It, ∀wt ∈Wt (21)

Lit+1 = Lit + Rit −Vit ∀it ∈ It, ∀wt ∈Wt (22)

Mh f tnwt = {0 or 1} ∀z ∈ Z, ∀h ∈ Hz, ∀ f ∈ F\{1}, ∀tn ∈ G f \{ f }, wt ∈Wt (23)

Ql = ∑
l∈L

Hl ·Vl ∀L ∈ {1, 2, 3} (24)

Equation (2), which minimizes the overall operation cost of truck companies and port
companies, is the objective function of this work. The first term of the objective function
represents the total cost for the truck companies to change the appointment schemes. Equa-
tions (3) represents the cost consumed by each truck company to change the appointment
scheme. The first item of Equation (3) represents the cost loss when the difference between
the modified time-window and the adjacent time-window becomes larger after the sched-
uled time-window of the truck is changed (X1).The second item represents the cost loss
when the difference between the modified time-window and the adjacent time-window be-
comes smaller after the scheduled time-window of the truck is changed (X2).The third item
represents the cost of delaying the actual scheduled time-window of the truck (X3). The
third represents the cost of the actual appointment time-window of the truck being earlier
than expected (X4). Equations (4)–(7) are the linearized form of the maximum difference
between the actual time interval and the expected time interval. Equations (8)–(11) are the
linearized form of the maximum difference between the actual retention time-window and
the expected retention time-window. Equation (12) represents that the corresponding cost
increase of each truck company shall not exceed its corresponding threshold. Equation (13)
represents the threshold for each truck company (Mohammad et al., 2018), where parameter
ε represents the lowest threshold that the terminal operator wants to apply for all truck
companies. Parameter γ represents the starting threshold for those truck companies that
have relatively few appointments. Parameter b represents the rate of decreasing threshold.
This means that the truck company that applies for modification of appointment scheme
more often has a smaller threshold, which can reasonably control the modification times
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and cost of the truck company. Equation (14) represents the number of time-window differ-
ences between two adjacent appointment time-windows in the actual appointment scheme
of a truck. Equation (15) represents the number of time-window differences between
two adjacent appointment time-windows in the expected appointment scheme of a truck.
Equation (16) represents the premise that the appointment scheme satisfies. Equation (17)
represents the number of appointments for each time-window should not be greater than
the number of orders for changing the time-window. The pre-defined quota is calculated
as Equations (25) and (26), where AQP is the average quota per time-window. Except for
the final sensitivity analysis, the default time-window is 10 per day. Equation (26) is the
quota setting for each time-window. Equation (18) represents that the order of original
appointments for the same truck cannot be changed, that is, the first appointment is still
ranked first after the change.

AQP = 2 ∑
z∈Z

Ndz/10 (25)

wt = [0.9AQP, 0.9AQP, 1.1AQP, 1.1AQP, 1.1AQP, 1.1AQP, 1.1AQP, 1.1AQP, 0.9AQP, 0.9AQP] (26)

The second term of the objective function represents the waiting cost of the truck at
the gate (X5). Equation (19) represents dividing the number of all the trucks arriving in a
time-window by the number of time-intervals in the time-window, obtaining the average
number of arrivals of the truck in each time-interval. The term time-interval is used only
for queue length estimation. The use of time-interval is needed because the Pointwise
Stationary Fluid Flow approximation (PSFFA) method used in Equations (19)–(22) requires
a shorter duration than time-windows [20,24]. Figure 2 shows the application principle of

the PSFFA method, such as that the average queue length of the interval is Li4 +
Ri4
−Vi4
2 .

The gate truck queue is regarded as M/G/1 queue and is represented by the corresponding
queuing function, as in Equation (20). Equations (18) and (19) are used to set the deviation
rate from the gate to the container yard at each time interval to the minimum sum of

ϕwt ·
Lit+1−

√
L2

ti
+2ξ2·Lit+1

1−ξ2 and Lit + Rit . Equation (22) is used to calculate the queue length
for each time-interval. Equation (23) is a representation of the value of the decision variable.
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Figure 2. The description of the Pointwise Stationary Fluid Flow approximation (PSFFA) method.

The third term of the objective function is the time cost of the morning and evening
rush hours encountered by trucks on urban traffic roads (X6), where σ is about 2. Urban
roads are divided into three levels: highways, trunk roads and secondary trunk roads.
According to the actual traffic highway network, the time costs of trucks with different
road levels under different congestion intensity are calculated respectively. The critical
speeds of congested trucks in different time states refer to the classification standard of
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traffic status of different types of roads in the city. Equation (24) calculates the number of
trucks at different levels of road congestion.

3. A Hybrid Genetic Algorithm and Simulated Annealing Method

The truck appointment scheduling problem is an NP-hard (NP means non-deterministic
polynomial) problem, which belongs to the extension of the multiple Traveling Salesman
Problem with Time-Windows (m-TSPTW) [25,26]. The increased waiting time of the peak
time increase the difficulty of solving the problem, making the multi-constrained schedul-
ing problem of the truck appointment system more complicated.

Lingo software is used to solve mixed integer nonlinear programming problem, and
solutions to the small and medium scale problems are obtained. The lingo software is
prone to being “out of memory” in solving large-scale problems.

Genetic algorithms [27] are well close to the best in a short span of generations,
but many functions may be required to achieve convergence. The simulated annealing
algorithm [28] requires a long calculation time to get close to the best, but for local searches,
the algorithm is faster and more efficient. To make full use of the global search ability of
the genetic algorithm and the local search ability of the simulated annealing algorithm,
this work proposes a hybrid genetic algorithm and simulated annealing (HGA-SA), as
shown in Figure 3a. A new iterative method is proposed, and the mutation probability is
autonomously adjusted according to the evolutionary algebra, which reduces the solution
time of the algorithm. The steps of the HGA-SA are as follows:

Step 1: Encoding and initialization. The population individuals are randomly initial-
ized under constraints (16), (17), and (25), and the population number is N (its value is
100). The initial parameter of the threshold Equation (13) is set to ε = 8, γ = 4ε, b = 1.35.
The representation of each individual is shown in Figure 3b. For each individual, there
are 10 random numbers (one working day is divided into 10 time-windows), and the
sum of 10 random numbers is certain, both are 2AQP. Each random number represents
the maximum quota for a time-window, and each individual represents a solution for an
appointment allocation.

Step 2: Calculation of the fitness value. The cost of each individual according to the
objective function is calculated, and 1000 times its reciprocal is taken as the fitness value of
the individual:

A = 1000/ ∑
z∈Z

Cz + Wq ∑
it∈It

(Lit +
Rit −Vit

2
) + σ ∑

L∈{1,2.3}
CL · (

1
VL
− 1

V′L
) ·ML (27)

Step 3: Genetic selection. The best individuals of the previous generation are put
directly into the mating pool, and other children are selected from the parent by roulette.

Step 4: Genetic crossover. A sub-population of the population is produced by the
intersection of genes. Since the multi-constraint TAS model needs to ensure that the
genetics of each individual and the constant (the total quota is unchanged), this work
uses a two-point crossover operator, as shown in Figure 3c. First, a random number is
generated in the range [0, 1]. If the random number is less than the predefined crossover
rate (its value is 0.6), the crossover operator is run. Two intersections, a and b, are randomly
generated. The first p gene of the sub-individual 1 are composed of the first p gene of the
parent individual 1, the genes at the q-p positions are composed of the q-p positions’ genes
of the parent individual 2, and the 10-q genes are composed of the 10-q genes of the parent
individual 1. Sub-individual 2 consists of the remaining genes.
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Step 5: Genetic mutation. This work uses non-uniform mutation, as shown in
Figure 3d. The appointment quota in each time-window is mutated. The change amount
is set to a random integer between [−0.2AQP, 0.2AQP] and opposite to each other. The
generated new individual satisfies the constraint condition in the multi-constraint TAS
model. The probability of mutation Pm is as in Equation (28), where Pmax is the maximum
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mutation probability, Pmin is the minimum mutation probability, and iter is the number of
current iterations.

pm = pmax −
(pmax − pmin)iter

2000
(28)

Step 6: Partial optimization of the solution using a simulated annealing algorithm. In
each iteration, an adjacent solution is generated from the current solution as the initial value
of the SA (simulated annealing). The target value function value is calculated separately.
If the adjacent solution value is smaller, the current solution is replaced by the adjacent
solution; otherwise, the adjacent solution is accepted with a certain probability.

Step 7: Determine if the termination condition is met. If the multi-constraint TAS
model has no feasible solution, output the current optimal solution; otherwise, decrease
the value of parameter ε (ε = ε − 0.1) and return to step 3.

4. Computational Results and Discussions

In order to demonstrate the feasibility of the multi-constraint TAS model and HGA-SA
method, they are applied on a square network, which represents a container port with an
annual throughput of 5 million TEUs. A terminal, an empty container depot and two truck
depots are contained. Figure 4 is a schematic diagram. It can be seen from Figure 4 that
the selected square network is large enough, and the time for trucks to travel along the
edge of the network is 160 min. In addition, every experiment will provide the size of the
network and the location of the container port. For different transportation companies, the
locations of truck depts and the empty container dept are all randomly selected. Customer
locations are also randomly determined in the network. The customer’s pick-up and
delivery time-window is from 4:00 a.m. to 10:00 p.m., while the terminal is open from
8:00 a.m. to 6:00 p.m., which includes 10 time-windows with a duration of one hour. All
experiments were performed on a computer equipped with an Intel Core i7, 1.8 GHz CPU
and 8 GB RAM.
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The basic data used in this work is as follows: the turn time of the truck at the terminal
is 43.2 min; the daily working time of the terminal is 10 h, and the number of time-windows
is 10 [25]; the terminal average queuing time is 10 min [20,25]; and the time to load/unload
the container is 5 min [29].

Each of the five penalty values ranges from 1 to 10 integers, and they are arranged
and combined to calculate the objective function value of the unconstrained set of a multi-
constraint TAS model under each set of penalty values. The difference between the objective
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function values of the constrained set of a multi-constraint TAS model, and the penalty
value corresponding to the minimum difference is the optimal penalty value. Finally, the
optimal penalty values are determined as Wl= 1, Ws = 3, Wp= 1, Wn = 3, and Wq= 1.

4.1. Computational Experiments and Results

Table 1 shows the experimental results of the designated truck company and the
best solution supplied by the proposed TAS. The internal working principle of the multi-
constraint TAS model is explained by a few simple experiments. X1~X6 in Table 1 indicate
the unit cost of the factual time-gap is greater than the appointment, the actual time-gap is
smaller than the appointment, the actual arrival time-window is later than the appointment,
the actual arrival time-window is earlier than the appointment, the average waiting time at
the gate, and the congestion time of the morning and evening peak periods, respectively.
Experiment 1 involves one truck company making an appointment for a truck. The required
arrival time to the terminal is within the time-windows 1, 3, 6, and 8. The best appointment
time is during the following time-windows: 1, 4, 6, and 8. The main reason is that the
allocation of the time-window 3 is 0, and the appointment of the time-window 3 is extended
to the time-window 4. Experiment 2 and Experiment 3 are the scheduling of two trucks.
Experiment 3 provides the required time-window. The total target value is the sum of the
unit time cost of trucks waiting at the gate and the unit time cost of truck congestion in the
morning and evening rush hours.

Table 1. The time-window of a truck company and the optimal solution provided by the truck appointment system (TAS).
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Table 2 shows the parameter settings of 28 experiments. According to the experimen-
tal parameters in Table 3, the TAS for considering only the gate congestion problem [21],
the TAS considering the appointment change cost and the gate congestion problem [22],
and the proposed TAS of this study are respectively simulated. Table 3 shows the ex-
perimental results. Experiments 4–18 are small-scale problems, experiments 19–25 are
medium-scale problems, and experiments 26–31 are large-scale problems (the average
amount of containers handled by each truck company exceeds 10 jobs).
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Table 2. Experimental parameters.

Sustainability 2021, 13, x FOR PEER REVIEW 14 of 21 
 

Exp. Num. Problem Size Size (jobs) Quota Per Time-Window Num. of Truck Companies Terminal Coordinates (min)Drayage Area(min × min)
  

The small scale 

      X Y   
4 4 (1,1,1,1,1,1,1,1,1,1) 1 0 80 160 × 160 
5 8 (2,2,2,2,2,2,2,2,2,2) 1 0 80 160 × 160 
6 11 (2,2,3,3,3,3,3,3,2,2) 2 0 80 160 × 160 
7 15 (3,3,4,4,4,4,4,4,3,3) 2 0 80 160 × 160 
8 18 (4,4,4,4,4,4,4,4,4,4) 3 0 80 160 × 160 
9 22 (4,4,5,5,5,5,5,5,4,4) 3 0 80 160 × 160 
10 26 (5,5,6,6,6,6,6,6,5,5) 4 0 80 160 × 160 
11 32 (6,6,8,8,8,8,8,8,6,6) 4 0 80 160 × 160 
12 36 (7,7,8,8,8,8,8,8,7,7) 5 0 80 160 × 160 
13 37 (7,7,9,9,9,9,9,9,7,7) 5 0 80 160 × 160 
14 50 (9,9,11,11,11,11,11,11,9,9) 6 0 80 160 × 160 
15 55 (10,10,13,13,13,13,13,13,10,10) 7 0 80 160 × 160 
16 100 (18,18,22,22,22,22,22,22,18,18) 13 0 80 160 × 160 
17 157 (29,29,35,35,35,35,35,35,29,29) 21 0 80 160 × 160 
18 209 (38,38,46,46,46,46,46,46,38,38) 27 0 80 160 × 160 
19 

The medium scale

257 (47,47,57,57,57,57,57,57,47,47) 32 0 80 160 × 160 
20 324 (59,59,72,72,72,72,72,72,59,59) 38 0 80 160 × 160 
21 417 (76,76,92,92,92,92,92,92,76,76) 47 0 80 160 × 160 
22 492 (89,89,109,109,109,109,109,109,89,89) 60 0 80 160 × 160 
23 569 (103,103,126,126,126,126,126,126,103,103) 67 0 80 160 × 160 
24 602 (109,109,133,133,133,133,133,133,109,109) 71 0 80 160 × 160 
25 663 (120,120,146,146,146,146,146,146,120,120) 74 0 80 160 × 160 
26 

The large scale 

701 (131,131,160,160,160,160,160,160,131,131) 62 0 80 160 × 160 
27 754 (136,136,166,166,166,166,166,166,136,136) 70 0 80 160 × 160 
28 827 (149,149,182,182,182,182,182,182,149,149) 75 0 80 160 × 160 
29 1032 (186,186,228,228,228,228,228,228,186,186) 82 0 80 160 × 160 
30 1782 (321,321,393,393,393,393,393,393,321,321) 90 0 80 160 × 160 
31 2438 (439,439,537,537,537,537,537,537,439,439) 157 0 80 160 × 160 

 

 
| 
 

Table 3. Experimental result. 

The small and medium scale problems are solved by lingo software, and the large-scale
problem is solved by a hybrid genetic algorithm and simulated annealing. The specific
experimental results are shown in Table 3. The truck company hopes to reduce the number
of trucks as much as possible to reduce the cost. Through the comparison of the three
TASs experiments, it can be seen that the proposed TAS has the least requirements on the
number of trucks, which can meet the needs of the truck companies. For the restricted
drayage problem, the TAS target value of this study is the smallest, which means that
the drayage time is the least. This shows that the TAS makes full use of the time of each
truck, which improves the efficiency of the whole port supply chain. Thus, the overall
operation cost can be reduced as much as possible to better serve the truck and terminal
companies. Considering the impact of the city’s morning and evening peak hours on the
truck traveling time, a reasonable allocation of the appointment time-windows can reduce
the overall operation cost.

4.2. Comparison and Analysis of Algorithm Performance

By selecting the benchmark instances of four large-scale truck appointment system
schedules as an example, the performances of the HGA-SA and genetic algorithm [25]
and reactive Tabu search algorithm [22] are compared. The four examples, which are N1,
N2, N3, and N4, are from [22]). The specific performance comparison results are shown
in Table 4. It is found that the proposed HGA-SA is superior to the other two algorithms
in solving large-scale problems. At the same time, the final target value of the optimal
solution obtained by the proposed algorithm is obviously better than the target value
obtained by the other two algorithms, which is more in line with the goal of reducing the
overall operation cost of the truck companies and the container terminals.
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Table 3. Experimental result.
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Table 4. Algorithm performance comparison.
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Figure 5 shows that the optimization results and optimization speed of the proposed
method are better than the other two algorithms. This is because the HGA-SA algorithm
aims at the proposed multi-constraint TAS model and makes full use of the Equation (13)
threshold concept to set a special iterative method, which can reduce unnecessary steps.
At the same time, by combining the advantages of the simulated annealing algorithm
and genetic algorithm, the search intensity is increased and the accuracy of the solution
is enhanced.

4.3. Comparison and Analysis of Operation Cost
4.3.1. Impact of Customer Time-Windows on Operation Cost

In order to test the influence of customer time-windows on the overall operation cost,
five experiments with different time-windows are performed, and the multi-constraint
TAS in this work is compared with the TASs of Chen et al. [21] and Mohammad et al. [22].
Figure 6 shows the comparative experimental results of the three TASs. As shown in
Figure 6, the customer time-window is longer and the operation cost is lower. If the
customer time-window is shortened, the port workload will increase with the requirement
of more devices and better productivity. The multi-constraint TAS in this work considered
the impact of the morning and evening rush hours on the arrival time of trucks, and
allocated the reserved trucks more reasonably; the overall operation cost was lower than
that of the other two TASs. For the port company, reasonable planning of the customer
time-window can effectively reduce the overall operation cost.
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4.3.2. Impact of Terminal Time-Window Duration on Operation Cost

The number of the terminal time-windows is 10, and the time-window duration is
1 h. To analyze the influence of different terminal time-window durations on the operation
costs, three experiments are implemented. Figure 7 shows the results. For three TASs,
extending the terminal time-window duration results in lower operation costs. For the
terminal companies, the shorter the duration of each time-window, the smaller the order
quantity assigned by the freight forwarder and the smaller the truck appointment quantity
will be. For the truck companies, the long time-window duration reduces operation costs.
However, considering the uncertainties, such as changes in the transportation path, longer
duration is more advantageous for the TASs. Compared with the TAS operation cost of
Chen et al. [21], the operation costs of the multi-constraint TAS and Mohammad et al. [22]
are small. This is because the duration of the time-window is large enough, the operation
cost considered by the TAS of Mohammad et al. [22] is for the entire time-window. And the
multi-constraint TAS in this work considers the impact on the truck travel time in morning
and evening peak congestion and is aimed at the time-window close to the morning and
evening peak hours. When the time-window duration is greater than 120 min, the operation
costs of Mohammad et al. [22] and the multi-constraint TAS are hardly changed. Owing to
the adequate terminal time-window duration, the impact of morning and evening peak on
the arrival time of container trucks will be smaller. Moreover, the possibility of trucks not
arriving at the port on time will be reduced, and the cost of changing the appointment plan
will also be reduced, which benefits both the truck companies and the terminal companies.
For different terminal time-windows duration, the overall operation cost of multi-constraint
TAS is the lowest.
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4.3.3. Impact of Terminal Turn Time on Operation Cost

To analyze the effect of the terminal turn time on the overall operation cost, 5 different
experiments are implemented and compared by dividing the terminal turn time into five
groups (20 min, 30 min, 40 min, 50 min, 60 min). The result is shown in Figure 8. The
operation cost increases with the increase of the terminal turn time. However, when the
terminal turn time is close to 60 min, the operation costs of each TAS are almost the same.
Therefore, when the terminal turn time continues to increase, the impact of the terminal
turn time on the operation cost decreases. For each TAS, the longer the terminal turn time,
the higher the operation cost, the lower the operation efficiency of the port. For TASs, in
different studies, the multi-constraint TAS also considers the congestion in the morning and
evening rush hours. Under the condition of same terminal turn time, the multi-constraint
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TAS has the lowest operation cost. Therefore, the morning and evening peaks have a non-
negligible impact on the decision-making of TAS. For the terminal company, reasonable
setting turn time can effectively reduce operation cost and serve the customer better.
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5. Conclusions

Aiming at eliminating the port congestion at gates and yards, this research proposes
a multi-constraint TAS model and a hybrid genetic algorithm and simulated annealing
(HGA-SA) method considering morning and evening peak congestion. The most remark-
able feature of our multi-constraint TAS model is that we use mixed integer nonlinear
programming to determine the best appointment plan for each truck with the target of
minimizing the overall operation cost. A new iterative method is proposed, and the muta-
tion probability is autonomously adjusted according to the evolutionary algebra, which
significantly reduces the computation time of the HGA-SA. The results obtained on bench-
mark instances from the literature show the good performance of our HGA-SA method.
Our multi-constraint TAS model can even provide lower operation costs than the TASs of
Chen et al. [21] and Mohammad et al. [22] for different customer time-windows, terminal
time-window duration, and terminal turn time instances. The tests on benchmark instances
show that our multi-constraint TAS model and HGA-SA method provide better solutions,
which benefit both the truck companies and the terminal companies.

From a management perspective, our research is of great significance. The use of
the proposed multi-constraint TAS allows the terminal company to formulate reasonable
treatments for each truck company based on its amount and completion, which results in a
higher satisfaction for the customers. At the same time, the terminal company can allocate
the quantity of containers more reasonably and have a stronger grasp of the arrival time of
the truck. The most important thing is that the implementation of a multi-constraint TAS
can make the truck reach the terminal more evenly, thus effectively controlling congestion in
consideration of the sustainable development of ports. The model and method developed
in the work can be used by different stakeholders of port supply chains, such as projecting
organizations and port authorities, to justify the decisions for increasing the performance
of container terminals, lowering the operation cost, and servicing customers better.

As a future study, a natural extension of this work would develop acceleration tech-
niques, such as sophisticated heuristic algorithms, for obtaining higher quality solutions
than the HGA-SA method in a shorter computation time. Another interesting extension of
our current work would be to enhance the proposed multi-constraint TAS model with the
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consideration of uncertainties (such as severe weather, traffic accident, late or early arrival
of truck), multi-objectives (such as operation time, facility utilization, freight demand
satisfaction rate, energy consumption) and so on. We believe that our multi-constraint
TAS model can be a used as a general framework since it is feasible to incorporate other
constraints and objectives into it.
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