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Abstract: Connected and automated vehicle (CAV) technology makes it possible to track and control
the movement of vehicles, thus providing enormous potential to improve intersection operations.
In this paper, we study the traffic signal control problem at an isolated intersection in a CAV
environment, considering mixed traffic including various types of vehicles and pedestrians. Both the
vehicle delay and the pedestrian delay are incorporated into the model formulation. This introduces
some additional complexity, as any benefits to pedestrians will come at the expense of higher delays
for the vehicles. Thus, some valid questions we answer in this paper are as follows: Under which
circumstances could we provide priority to pedestrians without over penalizing the vehicles at the
intersection? How important are the connectivity and autonomy associated with CAV technology
in this context? What type of signal control algorithm could be used to minimize person delay
accounting for both vehicles and pedestrians? How could it be solved efficiently? To address
these questions, we present a model that optimizes signal control (i.e., vehicle departure sequence),
automated vehicle trajectories, and the treatment of pedestrian crossing. In each decision step, the
weighted sum of the vehicle delay and the pedestrian delay (e.g., the total person delay) is minimized
by the joint optimization on the basis of the predicted departure sequences of vehicles and pedestrians.
Moreover, a near-optimal solution of the integrated problem is obtained with an ant colony system
algorithm, which is computationally very efficient. Simulations are conducted for different demand
scenarios and different CAV penetration rates. The performance of the proposed algorithm in terms
of the average person delay is investigated. The simulation results show that the proposed algorithm
has potential to reduce the delay compared to an actuated signal control method. Moreover, in
comparison to a CAV-based signal control that does not account for the pedestrian delay, the joint
optimization proposed here can achieve improvement in the low- and moderate-vehicle-demand
scenarios.

Keywords: CAV; intersection; signal control; pedestrians; trajectory planning

1. Introduction

Traffic signal control is crucial for intersection management. As reported in [1],
annual delays at traffic signals on major roadways are estimated to be around 295 million
vehicle-hours in the United States. Traditionally, either historical data are used in fixed-
time control schemes or real-time information from loop detectors is used for actuated
or adaptive control. The recent development of connected and automated vehicle (CAV)
technology (i.e., data exchange by the means of intervehicle and vehicle–infrastructure
communications) makes it possible to track and control the movement of vehicles. Using
CAV technology, intersection control efficiency can be improved, not only with the real-
time data acquisition but also with the cooperation of intersection control and vehicle
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trajectory planning. Studies show that traffic control schemes for signalized or unsignalized
intersections under a CAV environment are far superior to the conventional traffic signal
timings [2–5].

CAV data can be useful for traffic signal optimization. The data generally include
the real-time positions and motion of vehicles. By processing the data, traffic state-related
variables such as vehicle density and queue length can be estimated [6] and then used
for adaptive signal control at intersections [7–10]. Such control can also take into ac-
count vehicle platooning [3,11]. In recent years, abundant literature has focused on the
intersection control under a CAV environment. The methods can be mainly classified
into two categories. In the first category, cooperative resource reservation systems are
proposed to schedule resources at unsignalized intersections, regarding time slots and
space tiles [2,12–14]. CAV trajectory planning is applied to avoid collisions of vehicles at
the intersections. The second category focuses on the optimization of vehicle departure
sequences [4,15–17]. In some studies, the departure sequence is also represented by the
changes in signal phases at signalized intersections, considering mixed traffic streams with
conventional vehicles and various penetration levels of CAVs [3]. Some approaches use
the joint optimization of signal timings (or vehicle departure sequence) and CAV trajec-
tory planning to improve the control efficiency [18,19]. Although the joint optimization
leads to a much better intersection performance, it normally demands high computational
costs. The problem complexities come from the large size of signal phase states (or all
possible departure sequences) and the uncertainty associated with the vehicle motion
profiles, especially when not all vehicles are automated. To solve these computational
issues, multiple alternatives have been used to find the jointly optimal or near-optimal so-
lution, including heuristic algorithms [19], dynamic programming [20], and mathematical
programming [21,22]. Other strategies to improve computational efficiency include using
simple trajectory segments to reduce control variables [23], and formulating short-term
driving plans [24]. However, most of the literature on this joint optimization only considers
the full penetration of CAVs, with only a few exceptions [19,21]. It is worth mentioning
that the joint optimization can lead to significant improvements in traffic efficiency for
low and moderate traffic demands, but it becomes less efficient in high-vehicle-demand
scenarios due to increased uncertainty [18,19].

Generally, an urban intersection manages motorized (i.e., vehicles or transit) and
nonmotorized traffic participants (i.e., pedestrians or cyclists). Although pedestrians and
other vulnerable road users have received significant attention for intersection management,
all the CAV studies mentioned above only focused on the motorized modes.

Intersection operations accounting for the interaction between pedestrians and ve-
hicles have already been modeled, although mostly without CAVs [25–28]. A tradeoff
exists between pedestrians and vehicles. Evidence shows that reduced pedestrian de-
lay and improved safety normally come at the expense of traffic efficiency, especially in
high-vehicle-demand scenarios [27–29]. This makes sense because giving any priority to
pedestrians with high vehicle demands will impose a large penalty to vehicles (those might
be delayed for multiple signal cycles) while providing very little benefit to an average
pedestrian (who will never have to wait more than one cycle—as there is no strict capacity
restriction for them to cross the street once they get the green light). That being said,
even when providing priority to pedestrians, it is still possible to optimize intersection
control systems by adjusting traffic signal timings or operation modes. Kothuri et al. [30]
argued that the traffic-volume-to-road-capacity ratios coupled with pedestrian actuation
frequency for signal phases could be used to determine the signal controller’s mode of
operation to produce the lowest system delay. To manage intersections comprehensively,
the optimization problems of traffic signal timings considering pedestrian delay have
already been studied in the context of human-driven (i.e., conventional) vehicles [31–33].
CAVs have mostly been included in pedestrians’ intention to pass the crosswalk [34,35].
However, to the best of our knowledge, there is no pedestrian delay model considered
for intersection control under a CAV environment. The control efficiency of automated
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vehicles (AVs) in the presence of pedestrians crossing is unclear. In summary, the joint
optimization of traffic signal timings, pedestrian crossing, and vehicle trajectory planning
has not been studied yet. We also found that the existing control strategies of CAVs only
focus on pedestrian safety aspects, while they fail to pay enough attention to the efficiency
aspect, i.e., pedestrian delay.

To close this research gap, our study aims to combine traffic signal control for both
vehicles and pedestrians at intersections with CAV technology. We build on the work
by Yang et al. [19] and incorporate pedestrian crossing, monitoring, and evaluation. The
contributions of this paper are threefold. First, this work proposes a pedestrian delay model
that is combined with a vehicular delay model in a joint framework, which optimizes the
traffic signal control problem. Second, we shed light on the benefits of CAVs with increases
of the penetration rates in relation to pedestrian crossing at the intersection. Third, we
develop an ant colony system (ACS) algorithm to find a near-optimal solution of the
integrated problem with high computational efficiency. In this study, we focus on the
general insights regarding the actual value of considering crossing pedestrians. To this end,
we look at a relatively simple case to understand the value of accounting for pedestrian
delay in different scenarios.

The remainder of this paper is organized as follows: Section 2 presents the integrated
optimization problem of traffic signal control with pedestrians and AV trajectory planning.
Section 3 introduces the ACS solution for the integrated problem. Section 4 introduces
the simulation environment. Section 5 analyzes the feasibility of the ACS algorithm
and the reliability of the vehicle and pedestrian delay models. Section 6 evaluates the
performance of the control algorithm and compares it with an actuated signal control
algorithm. Section 7 concludes the paper by providing some final remarks.

2. Integrated Optimization Problem

Using the information obtained from CAVs, the signal control algorithm is developed
for an isolated intersection with multiple straight traffic streams and pedestrian movements.
The studied intersection has four legs, and each leg has a crosswalk with two sidewalks to
hold pedestrians, as shown in Figure 1. There are two signal phases for the two groups of
vehicle movements at opposite approaches. They also include two groups of pedestrian
movements associated with the different vehicle movements.
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Three categories of vehicles are considered: (1) conventional vehicles, (2) automated
vehicles, and (3) connected vehicles (CVs). Conventional vehicles cannot send vehicle in-
formation to the central controller. AVs are the vehicles without a driver, whose trajectories
can be controlled by the central controller and the automated driving system. Although all
AVs provide information (i.e., are connected), we call CVs only those vehicles that send
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information to the central controller, but whose trajectories cannot be controlled/modified.
It is assumed that both CVs and AVs are equipped with vehicle-to-infrastructure (V2I)
communication systems to send and receive information in relation to the intersection via
dedicated short-range communications (DSRC). Such exchange of information happens
within a limited area, herein called the zone of interest. It is unrealistic to have the length of
the zone of interest longer than a city block, as this would require a priori information on
route choice. It is also required for the zone of interest to be within the DSRC transmission
range (normally within 100–1000 m) due to physical constraints. Thus, we assume that
the zone of interest is defined by a 100 m radius around the intersection (this choice is
rather conservative; the performance is expected to improve by increasing this length,
as there is more information provided by CAVs [23]), and that there is no delay for CVs
and AVs to send and receive information. Similarly to [19], in our study, the information
level rinfo is defined as the ratio of all equipped vehicles (i.e., CAVs = CVs + AVs) to the
total number of vehicles, and the automated level rauto is defined as the ratio of AVs to all
equipped vehicles. These two metrics reflect the penetration rate of CAVs and can be used
to represent different implementation stages of new vehicle technologies.

At a signalized pedestrian crosswalk, a pedestrian signal cycle usually consists of
three signal display intervals: “walk (W)” interval, “flashing do not walk (FDW)” interval,
and the steady “do not walk (DW)” interval. The W interval (i.e., pedestrian green signal)
indicates that it is safe for pedestrians to cross. The FDW interval implies that no additional
pedestrians should start to cross. Generally, FDW is estimated by a minimum pedestrian
crossing time, which is equal to the crossing length divided by the expected walking speed
(normally 1.2 m/s). FDW is followed by a yellow interval in some cases. The FDW in our
study is followed by an all-red interval, and the yellow interval is included in this all-red
clearance time. Hence, the pedestrian clearance (PC) interval is the sum of the FDW and
the all-red time of pedestrian signals (see Figure 3, Section 2.2.2). The DW interval (i.e.,
pedestrian red signal) is the time period during which pedestrians do not have the right of
way as assigned by the signal.

2.1. Model Framework

The model framework for cooperative traffic and pedestrian signal control is shown
in Figure 2. There are four stages within each decision step. The decision-making within
the controller is an event-based control process.
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In the first stage, we consider four triggering events: (1) a connected or automated
vehicle entering the zone of interest, (2) a connected or automated vehicle coming to a
stop, (3) a connected or automated vehicle leaving the zone of interest, and (4) a pedestrian
pressing the crosswalk signal button. The first three events are vehicle events and the last
one is a pedestrian event. We assume that, as in reality, the crosswalk signal button is
pressed at most once within each cycle, and this is done by the first pedestrian arriving
during FDW or DW for a given approach on either sidewalk.

Each of the four events described above triggers a decision process and updates the
model inputs, which include vehicle and pedestrian information. The vehicle information
includes (1) the vehicle set that consists of all CAVs in the zone of interest and the stopped
conventional vehicles ahead of some stopped CAVs (they are estimated through the loca-
tions of CAVs), (2) the arrival sequence, and (3) the observed or estimated trajectory of each
vehicle. Notice that the arrival sequence of conventional vehicles can be estimated using the
location information of connected and automated vehicles. Once a connected or automated
vehicle comes to a stop, the number of conventional vehicles stopping in front of it (i.e.,
the arrival sequence of conventional vehicles) can be estimated by kinematic wave theory
(given previous signal settings and assuming a fundamental diagram). The estimation
accuracy increases with the penetration rate of CAVs. Details on the estimation process can
be found in [6]. The pedestrian information consists of the status of waiting pedestrians
for each of the approaches (on either sidewalk): a pedestrian has just arrived triggering
the decision process, at least one pedestrian is already waiting (i.e., they have arrived in
a previous event), or there is no pedestrian at all. The event is only triggered when the
first pedestrian arrives and presses the button at a given approach. The pedestrian event
remains active until the pedestrian gets a W signal to actually cross the intersection.

In the third stage, we propose a bilevel optimization model that integrates the opti-
mization of departure sequences (accounting for vehicle and pedestrian departures) and the
trajectory design for AVs. In the upper level, the departure sequence is (nearly) optimized
(yielding the corresponding signal changes) to minimize the total delay of vehicles in the
zone of interest and pedestrians at the intersection. In the lower level, the trajectory of
each AV is optimized for a given departure sequence to maximize the speed entering the
intersection. Hence, the two levels interact with each other. In this study, the bilevel model
is solved by an ACS algorithm to gain computational efficiency.

In the final stage, AVs are given the designed trajectories from the lower-level model,
and the central controller changes signals to discharge vehicles and pedestrians, according
to the selected departure sequence from the upper-level model. New decision steps in the
algorithm are triggered every time an event occurs, and the whole optimization is revised.
The traffic signal does not operate with a constant cycle length, but with an actuated control
logic, according to the detection of vehicles and pedestrians, as well as the optimized
departure sequence.

2.2. Model Formulation

In this subsection, we introduce the joint optimization problem, where the objective
function aims to minimize the total combined vehicle and pedestrian delay, defined in
Equation (1). For the readers’ convenience, the most important notation used here is listed
in Table 1.

In the joint optimization problem, we look for the departure sequence J that minimizes
the total combined vehicle and pedestrian delay in Equation (1).

min
J
((1−ω)·Delayveh

J + ω·Delayped
J ), (1)

where ω (0 ≤ ω < 1) is the weight used between the vehicle delay Delayveh
J and the

pedestrian delay Delayped
J for a given departure sequence J. ω can be a function of average

vehicle occupancy or any specific prioritization policy (e.g., for the case where both delays
are treated the same and the average vehicle occupancy is assumed to be 1, then ω = 0.5).
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We next provide the formulations for the vehicle delay (Section 2.2.1), the pedestrian delay
(Section 2.2.2), and the AV trajectory design (Section 2.2.3).

Table 1. Notation and parameters. ACS, ant colony system; AV, automated vehicle.

Vehicle delay model

J vehicle departure sequence
N current vehicle set at each decision step, cars indexed by c (node in ACS algorithm)
sm vehicle saturation flow rate for approach m
qm vehicle flow rate for approach m (veh/h)
u f free-flow speed

uinit
c, J initial speed of vehicle c when entering the intersection within departure sequence J
Vc virtual departure time of vehicle c from the downstream end of the intersection

Dc,J
predicted departure time of vehicle c in departure sequence J from the downstream end
of the intersection

Pc,J
delay penalty, i.e., the time it takes for vehicle c in departure sequence J to cross the
intersection zone (based on vehicle’s position within a platoon)

Cc,J the start time of the signal phase that discharges vehicle c

rinfo
information level, i.e., the ratio of all equipped vehicles (including connected vehicles
and automated vehicles) to the total number of vehicles

rauto automation level, i.e., the ratio of automated vehicles to all equipped vehicles

Pedestrian delay model

W walk
DW do not walk

FDW flashing do not walk
PC pedestrian clearance
ω weights for pedestrian delay, 0 ≤ ω < 1
te time instant of vehicle or pedestrian event

D|N|, J last vehicle departure time in departure sequence J, N 6= ∅
tend

J ending time of the pedestrian delay calculation period for departure sequence J

nW
number of pedestrian signal changes to W for a reference approach during time interval[

te, D|N|, J

]
tW=k

change time of pedestrian W signal at kth (k = 0, 1, . . . , nW ) cycle for a reference

approach during time interval
[
te, D|N|, J

]
∆tFDW duration of FDW interval
∆tPC duration of pedestrian clearance interval (includes FDW and all-red time)
∆tmin

W minimum pedestrian green time (W interval)
tFDW start time of FDW interval for pedestrians on a reference approach when nW = 0

tG start time of the green signal for vehicles on a reference Aapproach when nW = 0
λm,n average pedestrian flow rate (ped/h) for approach m, sidewalk n
Rm, r r-th pedestrian waiting interval in approach m (typically includes FDW and DW)

AV trajectory design

udes
c, J design speed of vehicle c in departure sequence J

uopt
c, J optimal speed of vehicle c in departure sequence J

uinit
c,J initial speed of vehicle c in departure sequence J when entering intersection

umin minimum speed for trajectory design
uf free-flow speed

2.2.1. Vehicle Delay

For each vehicle c within a vehicle set N (c ∈ N), we consider three properties: (1) the
position index i in the arrival sequence I (i ∈ I), (2) the position index j in the departure
sequence J (j ∈ J), and (3) the incoming approach m (m ∈ M). The arrival sequence i and
the approach m are based on the initial detection or assumption of a vehicle’s location. The
optimal departure sequence is determined on the basis of the departure sequence algorithm
(introduced in Section 3).

For each departure sequence J, the total vehicle delay is calculated as the sum of all
individual vehicle delays (see Equation (2)). For each vehicle c, we estimate the vehicle
delay using the difference between the predicted departure Dc, J under sequence J and the
virtual departure time Vc. Dc, J is calculated on the basis of Newell’s car-following model
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and the trajectory design proposed in our study (if c is an automated vehicle). Vc is an
ideal departure time at which the vehicle would depart the intersection in the absence
of any queue/delay, and it is calculated by the distance from the current location to the
departure line of the intersection divided by the free-flow speed at a given approach. Note
that, in each decision step, the predicted departure time Dc, J can be changed by control
policies as long as the vehicle has not departed from the intersection. Thus, it is not really
an actual departure time but close to it. According to Equation (2), the estimation of total
vehicle delay can be changed correspondingly as the vehicle trajectories are updated by
control policies. The validation of estimated results with actual vehicle delay can be seen
in Section 5.

Delayveh
J = ∑

c∈N
(Dc, J −Vc). (2)

For a given departure sequence J and the corresponding optimal trajectories of AVs,
the predicted departure time Dc, J for vehicle c = {i, j, m}, ∀c ∈ N is calculated as the
maximum of the virtual departure time and the next possible departure time (i.e., the right
expression in the parentheses in Equation (3)). That is,

Dc, J =

{
max

{
Vc; Dc− , J +

1
sm

+ Pc, J

}
, If c and c− are in the same signal phase

max
{

Vc; Cc, J + Pc, J
}

, Otherwise
, (3)

where c− is the vehicle prior to vehicle c in this departure sequence, sm is the vehicle
saturation flow rate for the approach of interest, Pc, J is a delay penalty to account for
the effects of vehicle platooning, and Cc, J is the start time of the signal phase that allows
vehicle c to c− depart from the intersection. Notice that the first statement of Equation
(3) only considers that c and c− are in opposite flows that have the same signal phase.
Otherwise, Dc− , J + 1/sm should be replaced by Cc, J , which is determined by the maximum
of the departure time of vehicle c− on the conflict approach of vehicle c and the time
that allows pedestrians to cross through the approach that vehicle c is associated with.
Moreover, the duration of a pedestrian clearance interval is added in order to guarantee
the safety of pedestrians crossing. We define Cc, J = max

{
Dc− , J , Cc− , J + ∆tmin

W
}
+ ∆tPC,

where ∆tmin
W is the minimum pedestrian green time and ∆tPC is the duration of pedestrian

clearance interval. The delay penalty Pc, J is derived using basic kinematic laws, as shown
in Equation (4).

Pc, J = max

 l
u f

;
−uinit

c, J +
√
(uinit

c, J )
2
+ 2al

a

, (4)

where l is the length of the intersection, u f is the free-flow speed, a is the acceleration, and
uinit

c,J is the initial speed of vehicle c when entering the intersection. The initial speed uinit
c,J

is the result of the trajectory optimization for AVs (introduced in Section 2.2.3). Notice
that the farther behind a vehicle is within the platoon, the higher its initial speed when
departing from the intersection. Thus, its penalty cost is less, according to Equation (4). As
a result, even though vehicle platoons are not explicitly considered in Equation (4), this
penalty function does encourage discharging in platoons [3,19].

2.2.2. Pedestrian Delay

The pedestrian delay model presented here is based on three main assumptions: (1)
a pedestrian event occurs when the first pedestrian gets to press the button on condition
that the crosswalk signal is FDW or DW for their approach; (2) the pedestrian delay only
includes the waiting time for crossing and does not include the delay from the pedestrians’
discharge and walking time at crosswalks or across the intersection (pedestrians imme-
diately enter the crosswalk but only when a W signal provides the right of way); (3) the
predicted pedestrian arrivals follow a uniform process. Assumption (1) indicates that,
as in reality, the pedestrian signal button is pressed to be valid at most once within the
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pedestrian signal cycle of each crosswalk (the button is pressed at any of the two sidewalks
for any given crosswalk). Assumption (2) simplifies the delay model without accounting
for pedestrian start-up delay and pedestrian saturation flow rate. The observed pedestrian
queue discharge capacity (e.g., 4.2 pedestrians/s in a crosswalk of 3 m width) is much
higher than the vehicle queue discharge capacity (e.g., 0.5 vehicles/s in a similar width) [36].
That is why the pedestrian delay model can ignore the start-up impact while the vehicle
delay model cannot. Assumption (3) simplifies the calculation but does not imply that
pedestrians arrive in a uniform pattern. As a matter of fact, for the simulation, we later
assume that pedestrians arrive following a Poisson process. Notice that pedestrians who
arrive randomly do not provide any type of arrival information to the controller, except
the first arriving pedestrian who presses the button. In the pedestrian delay model, we
adopt Assumption (3) to estimate the delay of pedestrians who arrive during the planning
horizon. The pedestrian delay model used in this section builds on a simple model from
the Highway Capacity Manual (HCM) [37], which calculates the pedestrian delay on the
basis of a triangular area rule, assuming that the signal cycle is fixed. As our algorithm
aims to optimize the vehicle departure sequence, we extend the HCM model to account
for variable signal cycles. In other words, we improve the HCM model to estimate the
pedestrian delay according to different vehicle departure sequences, which change the
pedestrian delay calculation period. The estimation of the calculation period is mainly
determined by the predicted departure time of the last vehicle in the departure sequence J,
as well as the vehicle and pedestrian signal status. These factors increase the complexity of
the pedestrian delay estimation.

Once a vehicle or pedestrian event happens, the optimization process starts. To
estimate pedestrian delay, we first need to determine the estimation horizon, which goes
from the start time of a vehicle or pedestrian event te to the ending time of the pedestrian
delay calculation tend

J . The predicted discharge time of all vehicles in a given departure
sequence J is the interval starting with the vehicle or pedestrian event occurring at time te
and ending with the last vehicle departure time D|N|, J . If there are no waiting pedestrians,
we only forecast the pedestrian delay during the total discharge time of the vehicles in
J (i.e., [te, D|N|, J]). Otherwise, a longer period [te, tend

J ] might be considered, so that any
pedestrian already waiting can also discharge (assuming a minimum pedestrian crossing
time ∆tmin

W for safety purposes). te is an input, and D|N|, J is a function of the vehicle

departure sequence J (see Equation (3)). tend
J is computed below for events triggered by a

pedestrian.
In the four-legged intersection as shown in Figure 1, traffic on approach m = 1 and its

opposite approach m = 3 is a set of compatible movements, and the same applies for traffic
on approach m = 2 and its opposite approach m = 4. As opposite approaches can always get
the same signal plan, here, we only illustrate the signal plan of two conflicting approaches,
i.e., m = 1 and m = 2 related to phase 1 and phase 2, respectively. Focusing on pedestrian
signals on relevant approaches (for ease of use, the pedestrian signal of a crosswalk is
deemed as the one related to the approach that is in the same leg of the intersection),
as shown in Figure 3, the W signal appears alternatively between approach m = 1 and
approach m = 2 according to the vehicle departure sequence J. Because of symmetry,
only one approach of the two conflicting approaches is discussed here (i.e., the reference
approach). We consider the reference approach that one where a pedestrian arrives and the
pedestrian event is triggered. For the derivations below, we assume that approach m = 1 is
the reference approach. The triggering pedestrian event can then only happen in the first
ongoing FDW interval or DW interval of approach m = 1.
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tend
J is then defined as:

tend
J =


tFDW + ∆tmin

W + 2∆tPC, if nW = 0, N = ∅ ∪ te ≤ D|N|,J ≤ tFDW + ∆tFDW

max
{

D|N|,J , tG + ∆tmin
W

}
+ ∆tPC, if nW = 0, ∃ tG, D|N|,J ≥ tG

D|N|,J , if nW ≥ 1, ∃ tW=1, D|N|,J ≥ tW=1

, (5)

where nW is the number of signal changes to W for the reference approach during time
interval [te, D|N|, J], tW=k is the time associated with the kth W signal start time for the
reference approach, tFDW and tG are the start time of FDW and the green signal for vehicles
on the reference approach when nW = 0, respectively, ∆tmin

W is the minimum pedestrian
crossing time, and ∆tPC is the length of the pedestrian clearance interval. If the triggering
pedestrian event happens in approach m = 2, Equation (5) still holds. The explanation of
Equation (5) is given below.

In Figure 3a,b, where nW = 0, tend
J represents an extension of D|N|, J , except the case of

N = ∅. In the prediction, the pedestrian signal for the reference approach should change
to W in the next cycle, in order to guarantee the departure of any pedestrian that has
triggered the current event (this also explains the case of N = ∅). Such a signal change
should happen after the other approach (m = 2) safely discharges any pedestrian that might
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(have) arrive(d). The W for m = 2 (i.e., tG) will start at least after tFDW + ∆tPC, and the
minimum pedestrian crossing time is ∆tmin

W . If tG is not known yet (see Figure 3a), tend
J is

calculated with the first statement of Equation (5) where we already know tFDW; otherwise
(see Figure 3b), it is calculated with the second statement of Equation (5). In Figure 3c,
we have nW = 1 and then tend

J = D|N|, J (the third statement of Equation (5)). This is
because the pedestrians on the reference approach will have a chance to get a W signal
within the computed vehicle departure sequence J, and they can discharge immediately
(see Assumption (2)).

Notice that there might already be some pedestrians waiting by the time the new
event happens at te. We call this “active repetition”, which means that the current event
is triggered by a vehicle or a pedestrian while previous pedestrian events are still active.
There are two possible cases of active repetition. One case happens when the current event
is triggered by a vehicle while pedestrian events are still active (i.e., the pedestrians have
not discharged yet). In that case, we do not use Equation (5) and go directly to Equation (6)
below, using for this approach tend

J equal to the maximum value between D|N|, J and the

tend
J computed from the last pedestrian event. The other case happens when the current

event is triggered by a pedestrian, but their approach is different from the approach(es)
where previous pedestrian events are still active. In both cases, we need to make sure that
we use the largest tend

J obtained across all of those pedestrian events that are still active, as
shown in Equation (6).

tend
J = max

m′∈M

{
tend

J,1 , tend
J,2 , . . . , tend

J,m′

}
, (6)

where m′ (1 ≤ m′ ≤ 4) is the approach for which a pedestrian event is active by the time te.
According to the triangular area rule, the pedestrian delay is then calculated by λR2/2,

where λ is the pedestrian arrival rate and R is the effective pedestrian red time. In our
study, we consider the pedestrian delay during the term [te, tend

J ] for the vehicle departure
sequence J, which might include multiple R intervals (e.g., Figure 3d). In particular, for the
case of active repetition, the delay of the first R on an approach, where the pedestrian event
is already active, is represented by a trapezoidal area (i.e., A2 in Figure 3d) rather than
the triangular area (i.e., A1 in Figure 3d), which refers to the case of no active repetition.
The total pedestrian delay at the intersection is the sum of the expected delays on both
sidewalks (n = 1, 2) of each leg, and it is estimated with Equation (7).

Delayped
J = ∑

m=1,2,3,4
∑

n=1,2

(
nr

∑
r=1

λm,nR2
m,r

2
+ λm,n(te − fm,n)Rm,1

)
, (7)

where Rm,r is the r-th pedestrian waiting interval in approach m, and nr is the number of
Rm,r within [te, tend

J ]. Specifically, before the first signal change happens, Rm,1 is the time
interval between te and the first signal change time to W in any approach. After that, Rm,r
refers to the time interval between the signal change to FDW and either the signal change to
W or the time instant tend

J , whichever comes first. As mentioned earlier in Assumption (1),
the pedestrian event occurs only once for any given approach during the current pedestrian
signal cycle, i.e., when the first pedestrian arrives to press the button at any sidewalk of
such approach. Thus, if an active repetition exists, fm,n represents the first active time of a
pedestrian event on the sidewalk n of an approach m, and it satisfies fm,n < te; otherwise,
fm,n is set to the currently active time of either pedestrian or vehicle event, which means
fm,n = te.

2.2.3. Trajectory Design for AVs

The objective of the trajectory design is to let vehicles pass the intersection at a specific
time with the maximum possible speed and, if possible, without stopping. The trajectory
optimization for AVs was developed in our previous study [19].

The trajectories of AVs are designed on the basis of the real (from CAVs) or estimated
(from conventional vehicles) traffic information, as well as a given departure sequence
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(i.e., a possible departure combination of all vehicles in the zone of interest). For a given
vehicle departure sequence in a decision step, the “future” departure time of all vehicles
can be estimated from their “future” trajectories, and they are used by Equation (2) for the
vehicle delay calculation. The “future” trajectories of CAVs are predicted using Newell’s
car-following model [38] and the calculation of the optimal trajectories of AVs.

For the “future” trajectory design, we should first calculate the optimal trajectory
speed uopt

c,J for vehicles to pass the intersection, if possible, without stops. Two cases are
included, according to the location of the automated vehicle c within the platoon (a platoon
is defined as a group of vehicles that can travel very closely together, safely at certain
speed). In the first case, vehicle c is the platoon leader (the first vehicle in the platoon). The
optimal trajectory in this case would either let vehicle c pass the intersection exactly at
the time when the signal for this approach changes to green or pass the intersection with
the free-flow speed if the signal is already green. In the second case, vehicle c is a platoon
follower. The optimal trajectory should be tangent to the closest trajectory (according to
Newell’s car-following model) to the previous vehicle in the platoon. uopt

c,J can be calculated
in these two cases on the basis of the provided traffic information, basic kinematic laws,
and traffic flow theory.

According to each optimal AV trajectory, we decide the design speed udes
c,J , which is

adopted eventually by the AV for its actual movement. Notice that not all optimal speeds
calculated above are available for use with the trajectories. For each AV, a lower bound
of minimum speed umin (e.g., we set it to 10 km/h in our simulation) is defined to avoid
the vehicle crawling to the intersection for no-stopping purposes. Meanwhile, the design
speed cannot exceed the free-flow speed uf. Overall, the design speed might be equivalent

to the optimal speed uopt
c,J , the minimum speed umin, or the free-flow speed uf, and it needs

to satisfy umin ≤ udes
c,J ≤ u f .

The initial speed entering the intersection uinit
c,J , which is required for the penalty

formulation in Equation (4), can also be calculated from udes
c,J , according to the two cases

mentioned above. Readers who are interested in the trajectory design algorithm can find
more details in [19].

3. Solution Algorithm Based on the Ant Colony System

Recall that the objective of our study is to find the optimal vehicle departure sequence
that minimizes the total combined vehicle and pedestrian delay (see Equation (1), Section 2).
Related studies show that the combinatorial optimization of vehicle departure sequence
encounters a computational difficulty, because the solution space is extremely large when
sorting all vehicles in the zone of interest. Li and Wang [4] and Guler et al. [3] enumerated
all feasible departure sequences to find the optimal solution. The enumeration method
has too great a computational cost, especially when the number of vehicles and lanes
increases, such that it cannot reach the real-time requirement. Yang et al. [19] proposed a
branch and bound algorithm to optimize the departure sequence without enumerating
all possible solutions. However, the complexity of that method exponentially increases
with the number of lanes. Evidence shows that the ACS algorithm can efficiently address
the combinatorial optimization problems while ensuring the accuracy of the solution (see,
for example, the traveling salesman problem (TSP) [39]). Imagine that we consider the
vehicles to pass the intersection as the cities visited by a set of ants that cooperate in the
ACS algorithm to solve the TSP. Specially, the vehicles are subject to a stringent departure
order for each lane at the intersection as vehicle overtaking within the same lane is not
possible. Thus, the combinatorial optimization of vehicle departure sequence is analogous
to the TSP with the direction constraint. Therefore, we propose the ACS algorithm to solve
our joint optimization problem.

The ACS algorithm is part of the ant colony optimization (ACO) family of algorithms
and was originally proposed to solve the TSP [39]. It works as follows: a given number of
ants are initially deposited on random cities. Each ant generates a complete tour (a feasible
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solution) by selecting the cities to visit according to a probabilistic state transition rule
(Section 3.1). While building the tour, an ant modifies the amount of pheromone on visited
edges (between two cities) using the local pheromone updating rule (Section 3.2). Once all
ants have terminated their tours, the amount of pheromone on visited edges is modified
by the global pheromone updating rule (Section 3.3). Ants are guided by a heuristic value
(e.g., reciprocal of distance) and the pheromone information from each edge. They prefer to
choose the edge with a shorter distance and a higher number of pheromones to complete
the tour. The related parameters in the ACS algorithm are shown in Table 2.

Table 2. Parameters in the ACS algorithm.

Parameter Definition

τ(c−, c) pheromone deposited by ant â from the previous node c− to the current node c
η(c−, c) heuristic information used by ant â from the previous node c− to the current node c
pâ(c−, c) probability for ant â to select the next visit node c based on biased exploration
Ωâ(c−) set of nodes that remain to be visited by ant â positioned on the previous node c−

ρ pheromone decay parameter in local pheromone updating rule (0 < ρ < 1 )
α pheromone decay parameter in global pheromone updating rule (0 < α < 1 )
β parameter for heuristic information (β > 0 )
e0 parameter for the exploitation of next vehicle c (0 ≤ e0 ≤ 1 )

L0
tour length (or discharge time of all vehicles) of any feasible solution for the initialization in local pheromone
updating rule

Lglobal
tour length (or discharge time of all vehicles) of so-far best path from the beginning of the iteration in global
pheromone updating rule

nant number of ants in ACS algorithm
niter number of iterations in ACS algorithm

3.1. ACS State Transition Rule

The state transition rule of ACS provides a way to balance between exploration of
new search edges and exploitation of a priori and accumulated knowledge. Here, the
new search edge refers to the next choice of vehicle that is anticipated to depart from
the intersection, and the a priori and accumulated knowledge represents the time gap
between the departure times of two successive vehicles in the departure sequence. An ant
positioned on node c- chooses the node c to move to by applying the rule in Equation (8).

c =

arg max
c+∈Ωâ(c−)

{
τ(c−, c+)·η(c−, c+)β

}
, If e ≤ e0 (exploitation)

X, Otherwise (exploration)
, (8)

where τ(c−, c+) is the pheromone on edge (c−, c+) (that is defined in Sections 3.2 and 3.3)
and η(c−, c+) is the corresponding heuristic information if an ant â moves from c− to c+,
Ωâ(c−) is the set of nodes that remain to be visited by ant â positioned on the node c−,
β (β > 0) is a parameter which denotes the relative importance of heuristic information
versus pheromone, e is a random number uniformly distributed in [0,1], and e0 (0 ≤ e0 ≤ 1)
is a parameter that determines the relative importance of exploitation versus exploration.
e0 = 0 and e0 = 1 denote the only use of exploration and exploitation, respectively. X is a
random variable representing the vehicle selected by the following probability distribution:

pâ(c−, c) =


τ(c− ,c)·η(c− ,c)β

∑c+∈Ωâ(c
−) τ(c− ,c+)·η(c− ,c+)β , if c ∈ Ωâ(c−)

0, otherwise
. (9)

The heuristic information η(c−, c) in Equation (9) represents the inverse of the gap
of departure time between the possible chosen vehicle c and the last departed vehicle c−.
That is,

η(c−, c) = (Dc, J − Dc− , J)
−1. (10)
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3.2. Local Pheromone Updating Rule

During the process of building a solution, ants change the pheromone of the visited
edge (c−, c) with the local updating rule,

τ(c−, c) = (1− ρ)·τ(c−, c) + ρ·τ0, (11)

where ρ (0 < ρ < 1) is a pheromone decay parameter and τ0 is an initial pheromone level.
According to [39], we define the initial pheromone level τ0 = (|N| · L0)

−1, where
L0 is the tour length of any feasible (or rough) solution (e.g., a given vehicle departure
sequence), and |N| is the number of nodes (i.e., vehicles in our set). For the purpose of the
ACS efficiency, in a decision step, we define L0 by the total time associated with all vehicles
discharging in a given departure sequence J, as shown in Equation (12).

L0 =
|N|−1

∑
c=0

(Dc+1, J − Dc, J) = D|N|, J − D0, J . (12)

Thus, we have

τ0 = (|N| · L0)
−1 = (|N| · (D|N|, J − D0, J))

−1, (13)

where D|N|, J and D0, J denote the departure time of the last vehicle in the current step and
the last vehicle in the previous step, respectively, in a series of continued study cases (or
decision steps).

In the local pheromone updating process, each ant generates an available path
(also called local solution) to deposit pheromone. In the ACS algorithm, the deposited
pheromones by the local solution need to be further updated using a global solution (i.e.,
the best path visited by ants). This process is related to the global pheromone updating
rule described below.

3.3. Global Pheromone Updating Rule

After one iteration, all ants have finished a path, and a global pheromone updating rule
is applied according to Equation (14). Only the globally best ant that has the best solution
over all iterations is allowed to deposit pheromone, which results in high convergence
speed.

τ(c−, c) = (1− α)·τ(c−, c) + α·∆τ(c−, c), (14)

∆τ(c−, c) =

{
(Lglobal)

−1, if(c−, c) ∈ global best path
0, otherwise

, (15)

where α (0< α < 1) is the pheromone decay parameter, and Lglobal is the discharge time of
so-far (globally) best path from the beginning of the iteration.

In Figure 4, the flowchart of ACS algorithm gives the (quasi-)optimal solution of
vehicle departure sequence and AVs trajectories in one decision step. The algorithm can be
implemented for all decision steps as the model framework in Figure 1. Notice that this
algorithm does not guarantee the absolute optimal solution in contrast to the enumeration
method proposed in [3]. However, we will prove in Section 5 that the quasi-optimal
solution provided by ACS is reliable with high accuracy and computational efficiency.
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4. Simulation Settings

In our model framework and simulation environment, we considered practical factors
such as vehicle acceleration and pedestrian actuation to ensure the practicability of the
proposed controller for both traffic and pedestrians. A micro-simulation platform was
coded in Java to evaluate the proposed algorithm. There are two interacting layers in the
simulation framework: (1) the real layer simulates traffic dynamics using the vehicle and
pedestrian arrival information and the control policies (i.e., the optimal vehicle departure
sequence calculated with Equation (1), Section 2.2, and the designed AV trajectories in
Section 2.2.3), and (2) the control layer calculates the control policies using the real-time
traffic information. Note that we use the interval of 0.025 s for the simulation process,
whereas the decision-making within the controller is an event-based control process, in
which the optimization starts once a vehicle or pedestrian event happens (see Section 2.1).

The real layer consists of the car-following behavior, the vehicle dynamics, the pedes-
trian arrivals, and the configurations of the intersection and the signal. The car-following
behavior in the paper is designed according to the Intelligent Driver Model (IDM) [40].
The minimum pedestrian green (crossing) time ∆tmin

W is 5 s, the FDW is 5 s, and the all-red
clearance for the pedestrian signal is 4 s (thus, the PC interval is 9 s). As the interval of
a green signal for any approach is not allowed to be either too long or too short for the
purposes of fairness and safety, we set the maximum vehicular green time to be 60 s, the
minimum vehicular green time to be 10 s (i.e., ∆tmin

W + FDW), the yellow time to be 2 s,
and the all-red clearance for vehicle signal to be 2 s. The changes in signal phases are
determined by the vehicle departure sequence calculated with Equation (1) and the above
time constraints for the signal phases.
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In the control layer, the parameters for vehicle control are defined as follows: the
acceleration rate a = 1.8 m/s2; the vehicle saturation flow rate sm = 1800 veh/h (m = 1,
2, 3, 4); the free-flow speed uf = 60 km/h; the length of the zone of interest d = 100 m;
the minimum speed for trajectory design umin = 10 km/h. For the ACS algorithm, after
numerical tests (details are provided in Appendix A), we select the parameters as follows:
α = 0.1, β = 2, ρ = 0.1, e0 = 0.2, nant = 10, and niter = 30. To study the performance of the
joint optimization with the ACS algorithm, we set various weights associated to the vehicle
delay and the pedestrian delay in Equation (1). In the optimization, a conservative range
of the weight ω for pedestrian delay is set to 0 ≤ ω ≤ 0.5, and ω varies with an increment
of 0.05.

The tested traffic demands are related to the combinations of total vehicle demand
and total pedestrian demand at the intersection. As different levels of vehicle demand have
more influence on signal timings than the changes of pedestrian demand, for each test, the
total vehicle demand is chosen from 2000 veh/s to 3000 veh/s and the total pedestrian
demand is 3200 ped/h. We also define the vehicle demand ratio (VDR) as the ratio of the
vehicle demands between the two conflicting groups of approaches. VDR = 1 means that
the vehicle demands of the two groups of flows are the same; VDR 6= 1 means otherwise.
The two opposite approaches are always assigned the same demands. The pedestrian
demand ratio (PDR) has a similar definition. Additionally, we set the pedestrian flows
equally across the two sidewalks (i.e., n = 1, 2) of each leg. In the simulation, vehicles arrive
following a Poisson process, and actual pedestrian arrivals follow a Poisson process as well
(for triggering the pedestrian events). The combinations of vehicle demand and pedestrian
demand are mainly set to cover the scenarios of the low/moderate/high vehicle flows and
the balanced/unbalanced vehicle and pedestrian flows, corresponding to the two signal
phases (i.e., Phase 1 gives a green signal to the approaches m = 1, 3, and Phase 2 gives a
green signal to m = 2, 4). For CAV penetrations, we consider different CAV ratios (i.e., rinfo)
and AV ratios (i.e., rauto).

The proposed algorithm is compared to an actuated signal control algorithm, which
assumes the presence of fixed detectors near the intersection on both approaches. The
location of each loop detector is chosen at 65 m upstream of the intersection, which has
been optimized through a sensitivity analysis. As the loop detectors become farther from
the intersection, both the average number of stops and the average vehicle delay start to
decrease with the increase in CAV penetration rates in all tested scenarios, compared to
the actuated algorithm. A detailed discussion on the location of loop detectors can be seen
in [41]. The actuated control algorithm operates as such: the signal changes to red if (1)
the gap between the last detected car and the successive car for that signal phase is larger
than the passage time (the passage time is also called vehicle extension or gap time, and it
represents the amount of time that the phase will be extended for each actuation, calculated
as the distance from the stop line to the detector divided by the speed on the approach (see
https://ops.fhwa.dot.gov/publications/signal_timing/04.htm); here, the passage time is
65 m ÷ 15 m/s ≈ 3.9 s) of 3.9 s after the minimum vehicular green time, or (2) the green
time exceeds the maximum vehicular green time of 60 s.

In the simulation, we use 20 different random seeds for each scenario in order to emu-
late the stochasticity of urban networks. For each run, we generate a total of 400 vehicles.
Similarly, pedestrians are generated until the last vehicle leaves the zone of interest. We
then evaluate the average vehicle delay, the average pedestrian delay, and the average
person delay for each simulation. We assume that the average vehicle occupancy is 1.20
passengers per vehicle [42]. Thus, the average person delay is defined by

Average person delay =
1.20nveh ×Average vehicle delay + nped × Average pedestrian delay

1.20nveh + nped
, (16)

where nveh is the total number of vehicles, and nped is the total number of pedestrians.
Notice that 1.20 passengers per vehicle is a conservative setting for private cars. Increasing

https://ops.fhwa.dot.gov/publications/signal_timing/04.htm
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the occupancy of vehicles would only exacerbate the total delay penalties imposed by
pedestrians onto vehicle passengers.

5. Algorithm and Model Analysis

In Table 3, we show the ACS accuracy in comparison to an optimal solution obtained
with a full enumeration method and the computation time of both methods. The accuracy
is computed based on the average vehicle delay, and the computation time refers to the
maximum one across all experiments with 3000 veh/h and 3200 ped/h (if not stated, the
tested demands are balanced at the intersection). In order to obtain the optimal solution
with the enumeration within reasonable computation time, we set an upper limit of 20 for
the total number of vehicles at the intersection (i.e., the first 20 vehicle arrivals within the
zone of interest) whose departure sequence is optimized in each decision step. Notice that
the ACS algorithm can efficiently solve the problem with a far larger number of vehicles.
Table 3 shows the performance of the algorithm when using different settings for the
number of ants nant and the number of iterations niter. In the ACS algorithm, each ant can
find a path (i.e., solution) per iteration. Increasing the number of ants nant from 10 to 15
can improve the accuracy, as more ants can find more feasible paths (i.e., vehicle departure
sequences) and, more likely, find a better solution. Similarly, increasing the number of
iterations niter from 10 to 20 to 30 also increases the accuracy due to the increasing number
of feasible solutions. We use the notation CS = (rinfo, rauto) to represent CAV penetration
rates, and we test CS = (1.0, 1.0) and CS = (0.5, 0.5) representing the full AVs and a lower
CAV penetration rate, respectively.

Table 3. Comparison between ACS algorithm and an optimal control method (based on full enumeration) for different ACS
parameter sets.

Method Accuracy Computation Time 1 (s)

Ant colony system (ACS)

(nant , niter) CS = (1.0, 1.0) CS = (0.5, 0.5) CS = (1.0, 1.0) CS = (0.5, 0.5)

(10, 10) 86.73% 96.91% 1.9 (2.5) 1.5 (1.6)

(10, 20) 95.67% 98.75% 3.5 (4.3) 2.8 (2.3)

(10, 30) 97.97% 99.79% 4.1 (5.8) 3.2 (3.5)

(15, 10) 92.65% 98.80% 3.5 (5.0) 2.1 (3.1)

(15, 20) 96.72% 99.99% 4.3 (6.7) 2.9 (4.6)

(15, 30) 98.52% 100% 6.1 (8.1) 3.9 (6.3)

Enumeration method - 100% 100% 338.9 (-) 145.1 (-)
1 The time without parentheses refers to the case when we use an upper limit of 20 vehicles in the optimization, and the time within
parentheses refers to the case when all vehicles are considered in the optimization. The maximum time is chosen from 20 tested samples.

In Table 3, ACS performs relatively better for CS = (0.5, 0.5) than for CS = (1.0, 1.0)
when comparing it to the benchmark method, i.e., enumeration method with these two
scenarios. This happens because fewer CAVs lead to computing fewer combinations
of vehicle departure sequences, i.e., a smaller solution space, which makes it easier for
ACS to reach the optimal solution. In terms of computational time, not surprisingly,
increasing the number of ants and iterations increases the cost of ACS. Furthermore, CS
= (1.0, 1.0) is computationally more expensive than CS = (0.5, 0.5). This makes sense,
as more combinations of vehicle departure sequences are evaluated for CS = (1.0, 1.0).
Out of all tested scenarios, the longest computational time is 6.1 s, which was obtained
with 15 ants and 30 iterations in the CS = (1.0, 1.0). Notice that a better solution can
counterbalance a higher computational time due to a smaller number of vehicles simulated
in the zone of interest, even if tests are done with more ants and iterations. Compared to
the enumeration method, the ACS can reduce the computational time by a factor of 37–55
while keeping an accuracy >98.5% with nant = 15, niter = 30. Although not comparable with
the enumeration method because of the reasons explained before, here, we also investigate
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the ACS algorithm for the case that all vehicles are optimized in each decision step, rather
than just 20. In that case, the reductions in average vehicle delay can reach up to 9.4% with
CS = (1.0, 1.0) and 1.8% with CS = (0.5, 0.5), compared to the solutions of the enumeration
method with an upper limit of 20 vehicles. Such improvements only cost a maximum of
2.4 s of additional time for all the cases compared (see the total computational time within
parentheses in Table 3). Moreover, the savings in computational time for the ACS algorithm
should be expected to increase in more complicated cases, where the enumeration solution
is simply infeasible. According to these results for the analysis that follows, we chose
10 ants and 30 iterations, as well as an optimization that considers all vehicles.

In Figure 5, we show the relationship between the predicted delay in the model opti-
mization and the actual delay observed in the simulation across all tests with 2000 veh/h
and 3200 ped/h, full AV penetration rate, and ω = 0. The delay error represented by
one dot is the cumulative vehicle or pedestrian delay in one vehicle departure sequence.
Notice that we only compare the predicted delay with the actual delay for identical vehicle
departure sequences, i.e., the sequence generated by the algorithm and that observed in the
simulation need to be the same. As the graph shows, the predicted vehicle delay is close
to the observed vehicle delay (see Figure 5a). The small noises are caused by the different
car-following models in the control algorithm and in the simulation. Another reason
includes changes in the trajectories of the vehicles. The trajectory design in the model
guarantees a solution only for one decision step. In future decision steps, the trajectories
can be revised on the basis of the updated traffic information. In the case of pedestrian
delay (see Figure 5b), the variation is relatively larger. There are two reasons for this. First,
while vehicle delay is computed only for the actual vehicles that enter the zone of interest,
the pedestrian delay is calculated forecasting a pedestrian arrival rate; such a forecast also
includes an error of its own. Second, the predicted pedestrians are assumed to arrive with a
uniform process, while the real pedestrian arrivals follow a Poisson process. Although it is
also possible to implement a Poisson arrival within the pedestrian delay model (Equation
(7)), such a modification will render the problem more complicated, without significantly
improving the final solution. With the current model, the pedestrian delays are slightly
overestimated when they are short. Nevertheless, the errors are within an acceptable range.
According to the comparison with the enumeration method (see Table 3), as well as the val-
idation results (see Figure 5), the ACS algorithm can significantly improve the computation
efficiency while ensuring control performance. On this basis, in the next section, we show
the ACS control performance with different traffic and pedestrian scenarios in comparison
with the benchmark, i.e., an actuated control method.
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6. Performance of the Control Algorithm

In Figure 6, we compare the proposed algorithm with the actuated control method
for different weights of pedestrian delay. To that end, we plot the average person delay
obtained with the proposed algorithm divided by that obtained with the actuated control
method. A ratio smaller than 1 means that the proposed algorithm outperforms the
actuated control method. In the simulation, full AV penetration is tested, and both vehicle
demand and pedestrian demand are balanced at the intersection. ω = 0.15 delivers the
best solutions for low vehicle demands between 2000 veh/h and 2400 veh/h (the volume
to capacity at the intersection ranges from 0.66 to 0.98, according to the tested vehicle
demands between 2000 veh/h and 3000 veh/h). The ratios of the best solutions fall in the
range of 0.54–0.56. Correspondingly, the proposed algorithm reduces the average person
delay by 44–46% compared to the actuated control method. For the low vehicle demands,
the proposed algorithm including pedestrian delay (i.e., ω = 0.15) slightly reduces the
average person delay compared to a case not including pedestrian delay (i.e., ω = 0). Recall
that, when ω = 0, Equation (1) becomes the same optimization as in [19], although the result
is obtained with a different solution method (ACS in this paper) and an updated triggering
mechanism that also accounts for pedestrian events. For the high vehicle demands (between
2600 veh/h and 3000 veh/h), the best solutions are obtained with ω = 0. In other words,
including the pedestrian delay degrades the performance of the algorithm for such high
demands. With the optimal weight ω = 0, nevertheless, the average person delays are
reduced by 18–42% in comparison to the actuated control.
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joint optimization.

To further analyze this, in Figure 7, we illustrate the evolution of the average vehicle
delay and the average pedestrian delay with the proposed algorithm. With the increasing
weights, the average vehicle delay increases (see Figure 7a). Simultaneously, the average
pedestrian delay decreases (see Figure 7b). By introducing pedestrians into the optimiza-
tion, the proposed algorithm offers a clear benefit for pedestrians. However, this comes at
the expense of the vehicles, whose delay increases much faster than any reductions for the
pedestrians. This is exacerbated in the high-vehicle-demand scenarios. Notice that, in the
complete absence of pedestrian priority (i.e., ω = 0), pedestrians will have to wait at most
one cycle. On the other hand, giving them priority (i.e., ω 6= 0) might penalize vehicles
disproportionately as they would likely have to wait much longer with the delay lingering
for multiple cycles. In other words, while the benefits given to pedestrians are bounded (to
at most one cycle), the cost imposed to vehicles is unbounded and can increase significantly
in the case of high vehicle demands.
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Figure 7. (a) Average vehicle delay and (b) average pedestrian delay using the proposed approach with ACS.

Again, the results in Figure 7 indicate that it is better to include pedestrian delay
with small weights into the joint optimization for the low-vehicle-demand scenarios (i.e.,
2000–2400 veh/h). By introducing pedestrians into the algorithm, e.g., going from ω = 0 to
ω = 0.15, the average pedestrian delay decreases by 6.8%, while the average vehicle delay
just increases by 3.3%. Increasing the weight over 0.15 has a diminishing rate of return for
pedestrians and might cause a very high cost for vehicles.

The impacts of the unbalanced vehicle and pedestrian demands on the performance
of the controller were also investigated. We tested the simulations with the demands of
2400 veh/h and 3200 ped/h. The lowest average person delay with the optimal weight
ω = 0.15 under the balanced demands (i.e., VDR = 1, PDR = 1) was set as a reference.
As shown in Figure 8, the solutions of the unbalanced vehicle demand (i.e., VDR = 0.2,
PDR = 1) are better than the reference case when using weights between 0 and 0.25, and
the optimal one remains ω = 0.15. Regarding the unbalanced pedestrian demand (i.e.,
VDR = 1, PDR = 0.2), we focus on the results that are associated with the proper range
of weights from 0 to 0.1. With such weights, the performance is mostly the same as the
reference. More precisely, the optimal weight changes to 0.05. The above results show that
the unbalanced vehicle demand does not affect the selection of the proper weight ω, while
the unbalanced pedestrian demand does have some impact on the weight, which should
be adjusted accordingly.
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Figure 9 shows the performance of the proposed algorithm under different levels of
CAV penetration rates. The balanced demands of 2400 veh/h and 3200 ped/h are imple-
mented with the proposed algorithm using the best weight ω = 0.15. We first investigate
the information level rinfo (i.e., the ratio of the number of CAVs to the total number of
vehicles) from 0.2 to 1, using an automated level rauto = 0. The rinfo begins from 0.2 rather
than 0, as we assume that traffic information is collected only from CAVs. By raising rinfo
from 0.2 to 1 (see Figure 9a), the total person delay declines to 7250 s. This represents a 10%
improvement. We then look at the impacts on the performance from different rauto. The AV
penetration ratio is set from 0 to 1 assuming all vehicles are connected, i.e., rinfo = 1. As
a result, the average person delay decreases consecutively from 7250 s to 6450 s, an 11%
improvement (see Figure 9b). This shows the value of the AV trajectory planning. More
importantly, the new algorithm outperforms that proposed in [19] in all scenarios.
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7. Conclusions

This study proposed a control strategy for the joint optimization of vehicle departure
sequence, pedestrian crossing, and automated vehicle trajectory at an isolated intersection.
The main contributions include (1) proposing a pedestrian delay model to estimate the
pedestrian delay during a varying estimation horizon, according to the triggering events
and the vehicle departure sequences, (2) clarifying the benefits of CAVs with increases of the
penetration rates in relation to pedestrian crossing at the intersection, and (3) developing
an ant colony system algorithm to find a near optimal solution with high computational
efficiency.

We conducted multiple simulations to ensure the feasibility of the ant colony algorithm
and the reliability of the vehicle and pedestrian delay models, as well as to evaluate the
control performance of the proposed algorithm. The simulation results show that the
proposed algorithm considering pedestrians with the proper weight for pedestrian delay
(e.g., ω = 0.15) is always better than the actuated control algorithm and is superior to the
CAV algorithm without any weighted pedestrian delay (i.e., no pedestrian priority) in the
low- and moderate-vehicle-demand scenarios. Specifically, introducing pedestrians into
the signal control algorithm under a CAV environment reduces the average person delay
and has a clear benefit for pedestrian delay reduction. Moreover, the total person delay can
be reduced even further by increasing the CAV penetration rates.

Caution must be exercised, however, with the selection of the weight for pedestrian
delay. If too much weight is given to pedestrians, the algorithm deteriorates quickly and
ends up with a worse performance than the actuated traffic controller. This is mainly caused
by the unsatisfactory vehicle departure sequences and AV trajectory planning, which are
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sensitive to the interference of pedestrians with the setting of large weights for pedestrian
delay, especially for the high vehicle demands. One way to improve the robustness of the
algorithm would be to prolong the decision interval in the optimization. This could also
address the problem of computational burden due to highly frequent triggering events
when applied to a complex intersection.

Recently, connected pedestrians have attracted increasing attention in the research
community. At signalized intersections, connected pedestrians can use a smartphone
application to request a pedestrian green to cross the street [43]. Related studies mostly
evaluated the conflicts of connected pedestrians and CAVs in terms of safety, instead
of operational efficiency. Our proposed algorithm can readily take the requests from
connected pedestrians by replacing the action of pedestrians pushing the button. This
would give us even better accuracy than the estimations used for pedestrian arrivals.
However, such information would not change the insights presented here. We find that,
in terms of intersection efficiency, accounting for pedestrian crossing is only valuable
for lower traffic demands. For people who take e-bikes, e-scooters, and similar types
of micromobility vehicles to pass the crosswalk, they usually have higher speeds than
pedestrians. Therefore, their inclusion does not change the pedestrian signal settings in the
model, as the minimum pedestrian crossing time should be dictated by the slowest mode.

In this study, we look at a relatively simple case of traffic at the intersection to un-
derstand the inclusion of pedestrian crossings for intersection control. Not surprisingly,
we find that accounting for pedestrian crossing for intersection control efficiency is only
valuable for lower traffic demands even under a CAV environment. Accordingly, future
research could focus on fine-tuning the control algorithm using low vehicle demands
in more complex scenarios including intersections with turning traffic to investigate the
evolutions of related vehicle and pedestrian delays.
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Appendix A. Analysis of the Parameters in ACS Algorithm

For the parameter analysis of the ACS algorithm, two full AV scenarios were tested
with vehicle demands of 2000 veh/h and 3000 veh/h, as well as the same pedestrian
demand of 3200 ped/h. The tests were carried out using 10 random seeds of the demands
with 10 runs per seed. We calculated the average errors between the solutions obtained by
the ACS algorithm with specific parameter settings and the optimal solutions obtained by
the enumeration method. Notice that we only investigated the solution of the vehicle delay
optimization (i.e., ω = 0), and the pedestrian delay optimization was not included in the
numerical tests. Potentially, an in-depth sensitivity analysis could be conducted to better
estimate the effects of these parameters (as in [44]) including their interaction effects if any
(see [45]).
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Here, the parameters were initially set with α = 0.1, β = 2, ρ = 0.1, and nant = 10,
according to the report in [39]. In addition, we conservatively set niter = 20. The procedure
for the parameters confirmation in the ACS algorithm is introduced below.

First, we investigated the changes in errors with various e0, as shown in Figure A1.
The smaller value of e0 (between 0 and 0.2) gave better results; thus, we adopted e0 = 0.2.
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0 0.7121 0.7488 0.6797 0.7125 0.6855 0.6500 0.6789 0.6800 0.6798 0.7486
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0.8 3.1171 1.6504 1.0962 0.7501 0.7117 0.6437 0.7553 0.6799 0.7124 0.6848
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Afterward, we looked for the parameter β. Through the tests, the setting of β = 2 gave
the best results in these two scenarios, as shown in Figure A2.
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At last, we tested the number of ants nant and the number of iterations niter. Finally,
nant = 10 and niter = 30 were confirmed as the parameters that provide a satisfactory
accuracy with the proper computational time (see Table 3).

From the above tests, the parameters of the ACS algorithm implemented in the study
were as follows: α = 0.1, β = 2, ρ = 0.1, e0 = 0.2, nant = 10, and niter = 30.
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