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Abstract: In this study, we present a novel method of detecting hard hat use on construction sites
using a modified version of an off-the-shelf wearable device. The data-transmitting node of the
device contained two sensors, a photoplethysmogram (PPG) and accelerometers (Acc), along with
two modules, a global positioning system (GPS) and a low-power wide-area (LoRa) network module.
All the components were embedded into a microcontroller unit (MCU) in addition to the power
supply. The receiving node included a server that displayed the results via both the Internet of Things
(IoT) and smartphones. The LoRa network connected two nodes so that it could function in larger
areas such as construction sites at a relatively low cost. The proposed method analyzes the data
from a PPG sensor located on the hard hat chin strap and automatically notifies a manager when a
worker is not wearing the required hard hat at the site. In addition, by utilizing the PPG sensor data,
a heart rate abnormality-detecting feature was added based on an age-adjusted maximum heart rate
formula. In validation tests, various PPG sensor locations and shapes were studied, and the results
demonstrated the smallest error in the circular shaped sensor located at the upper neck (0.56%).
Finally, an IoT monitoring page was created to monitor heart rate abnormalities while identifying
hard hat use violations via both PCs and smart phones.
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1. Introduction

As the quality of life improves, the expectations for and interest in occupational safety
are increasing, yet the accident rate in the construction industry has remained the highest
among all industries over the past 10 years [1]. Moreover, workers in the construction
industry have incurred the largest number of occupational accidents, including injuries
and illness [2-7]. Despite global attempts to prohibit construction workers from misusing
personal protective equipment (PPE) such as hard hats on the jobsite, this still causes a
large proportion of industrial accidents [8-11]. According to the 2019 annual report from
the Korea Ministry of Employment and Labor (MOEL), among all industries, 50.1% of fatal
accidents such as falls, being struck by an object, and collisions occurred in the construction
industry [1]; of these fatal accidents, head injury was found to be the most common cause
(41.2%) [12]. Other studies have indicated a high possibility that the head will be the first
body part to be impacted from an incident including a fall or being struck by an object
on construction sites, and accidents involving head injuries often lead to fatality [12-14].
Moreover, researchers have compared the number of injuries by injury type in a sample of
1033 cases, showing increases in number of concussions by 400% and in skull fracture by
300% when the worker was not protected by a hard hat [15].

To reduce PPE violations in Korea, work safety measures and rules require workers not
wearing a hard hat to be immediately dismissed from a construction site along with being
fined and restricted from further participation to reduce PPE violations [16]. Likewise,
to reduce casualties, governments and companies around the world have established
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on-site safety policies and procedures to enhance construction site safety by educating the
workers on the effectiveness of hard hats. However, according to the U.S. Occupational
Safety and Health Administration (OSHA), non-use or inappropriate use of PPE is one
of the most frequent violations of regulations in recent years [11,17,18]. Despite more
than 90% of construction workers being aware of the importance of wearing hard hats,
questionnaires have shown that discomfort or inconvenience are the main reasons for
violations [19]. Currently, safety inspections regarding the use of hard hats are primarily
reliant on inspector in-person (visual) monitoring. However, visual inspections are limited
on construction sites, often due to the vast areas involved [20-22]. To supplement in-person
inspections with limited human resources, a considerable number of studies have been
conducted on automatic detection of hard hat use.

Vision-based methods are non-intrusive and can benefit from the broad application of
surveillance cameras or closed-circuit televisions (CCTVs) [23]. CCTVs are often installed
on modern construction sites for multiple purposes, because real-time video from CCTVs
not only records construction progress but also provides a useful tool for investigating an
accident; however, there are drawbacks of this system [24,25]. Most CCTVs or surveillance
cameras are installed at a high altitude in fixed positions and their performance is heavily
dependent on atmospheric conditions [26]. Moreover, supervisors have a high possibility
of overlooking PPE violations or incidents where constant monitoring is required since
construction sites often have more than one CCTV camera installed [27].

To overcome these limitations, researchers have applied object detection algorithms
or deep learning methods for autonomous detection. Park et al. [24] presented a hard hat
detection method based on a histogram of oriented gradients (HOG). With this method,
human bodies and hard hats were initially detected by the cameras, and then, subsequent
matching between the detected bodies and hard hats was performed based on their geo-
metric and spatial relationships. In this manner, safety alerts could be issued automatically
if the camera detected a human body without a hard hat. The field tests indicated greater
than 94% overall precision, but these methods only detected standing or walking bodies
and were unsuitable for bodies in various movement positions. Fang et al. [26] proposed
an object recognition method based on Faster regions with convolutional neural networks
(R-CNNss) for non-hard-hat use by using far-field surveillance videos on construction sites.
The authors enabled real-time monitoring by adopting the Faster R-CNN method, which
has the advantages of high precision and shorter calculation time. The results indicated that
the proposed method could be effectively used to detect non-hard-hat use; however, the
algorithm could not identify the workers involved. Moreover, the recall rate significantly
dropped when only part of the head was visible. Wu and Zhao [27] presented a new
approach for hard hat detection using a color-based hybrid descriptor. Similar to other
methods, the authors aimed to extract features such as hard hats from videos using HOGs,
which were developed to identify the colors of each hard hat by combining local binary
patterns (LBP), Hu moment invariants (HMIs), and color histograms (CHs). Then, the
authors applied a hierarchical support vector machine to classify the images based on hard
hat color, which can impart different hard hat colors with different meanings on some sites.
However, in many construction sites, hard hat colors are irrelevant, and workers often
shift tasks.

In addition to previous studies, a number of relevant studies have been conducted
recently to increase detection precision [28], to overcome construction environment com-
plexities [29], and to analyze view variance [30].

The previously proposed methods of detecting hard hats have often required a sig-
nificant amount of processing time to complete the analysis or have required close-up
videos of a worker that had to be free of shadows, reflections, occlusion, etc., to achieve
high precision [21]. As an alternative, as sensor technologies have improved, attempts
have been made to control PPE usage based on commercially available radio frequency
identification (RFID) tags. Researchers have demonstrated that RFID tags are suitable
for indoor construction conditions due to their low cost, long operational life, and small
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size but are unsuitable for outdoor environments due to the incremental signal attenu-
ation [20,31,32]. In addition, Park et al. [24] determined that even though using tags or
sensors on a construction site was cost effective, it was difficult to determine whether or
not the hard hats were being appropriately used.

Based on analysis of the existing approaches, this study assessed a novel method
to detect hard hat use with sensor technology. In this method, a commercially available
wearable smart band (PWB-300; Partron Co., Ltd., Hwaseong, Korea) [33] was modified by
changing the sensor placement from the arm to the hard hat chin strap and redesigning
the shape for user benefit. In this way, the sensor could automatically determine whether
a hard hat was being worn properly and was able to identify the current position of the
worker along with any abnormality in their heart rate.

2. Materials and Methods
2.1. Overview of the System Architecture

An overview of the proposed non-hard-hat use detection system is shown in Figure 1.
The transmitting part of the system, a modified version of the PWB-300 device, consisted
of two sensors (photoplethysmogram (PPG) and accelerometer (Acc)), two modules (low-
power wide-area (LoRa) and GPS), and a power supply. These were embedded into a
microcontroller unit (MCU). This method allowed for the installation of the PPG sensor
on the chinstrap of a hard hat. A hard hat can only offer protection when a worker wears
it properly. BS EN 397:1995 [34] specifies that all helmets/hard hats should be fitted with
a headband and chin straps with a width of not less than 10 mm. Even though most
construction workers are aware of the importance of wearing a hard hat, approximately
60% of construction workers have denied using chin straps due to discomfort, and this
often become the source of accidents [35].

| Acquired Data | | Server | | Back-end Monitoring Web Page |

PWB-300 —>| Filtering process |—>| Hardhat use detection |
LoRa

. PPG sensor
- Current location of

a worker

. Bandpass filtering . Alert feature
. Threshold filtering - Location tracking
Heartrate

—>| Abnormality detection |

monitoring

Name (id number)

12(1103)
waw oy

1000 R 12(1103)

Figure 1. Overview of the non-hard-hat use detection system.

When a hard hat is properly worn and the device is initiated, the PPG sensor attached
to the chinstrap of the hard hat transmits data with one’s location to the server via the
LoRa network. When the server receives the data, the monitoring webpage identifies the
hard hat user based on data from the PPG sensor. In this way, the manager is easily able to
verify the violation and the location of the worker by observing the webpage.

A monitoring function for an individual’s heart rate was also added. If the server fails
to receive data from the PPG sensor or the received data show a heart rate abnormality, the
system sends a notification to the manager. The definition of “abnormality” was established
based on the results from previous studies [36-38]. The lower heart rate limit was 60 bpm,
while the upper limit was established based on age-based maximum heart rate formulas.
Among the various approaches, the following equation (Equation (1)) was selected due
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to its high confidence interval bounds (£1 SD) and its suitability in a wide range of ages
(30-75 years) [36].
Maximum Heart Rate = 207—(0.7 * age) D

Accordingly, the flow diagram of the system is shown in Figure 2.

Initialization of No
sensors

End running

Turn off device?

Strat running l

Detect heart rate No Send alert message
(avg. every lmin) to a manager / HQ

l LoRa network

Filtering
algorithm

|

Yes Receiving /
analyzing data

Collecting data to
database

Assess whether it
within the range

Figure 2. Flow chart of the overall system.

No Send alert message
to a manager / HQ

2.2. Hardware Part of the System

Figure 3 illustrates the components of the PWB-300, the transmitter node including two
sensors (PPG and Acc), two modules (LoRa and GPS), and a power supply all embedded
in an MCU. The receiver node, which consisted of the server that processed the data from
the transmitter node, displayed the output on a mobile phone application or an Internet of
Things (IoT) browser. Compared to other work environments, construction sites often are
widespread and contain many environmental obstacles. Therefore, the LoRa network was
chosen to connect the two nodes to provide high accuracy and wide coverage (up to tens
of kilometers) at a low cost [39]. The technical specifications of the LoRa network module
are shown in Table 1. Moreover, a help button was added for use in an emergency.

ook (s | o |

§ _ o Ime]
E ST s v e ' ety button _.r ]

A
' ! |
Mm PWBA0 | .

i | Transmitting
| Power ' line from the ——
| Suppr 3 PPG sensor
a b

Figure 3. Hardware of the modified PWB-300: (a) component diagram of the device; (b) modified
version of the device.
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Table 1. Technical specifications of the low-power wide-area (LoRa) network.
Specification Value
Model 5X1276 (Semtech Corp, Camarillo, CA, USA)
Band 920-925 MHz
Data rate 0.18-37.5 kbps

Range 5 km (urban); 15 km (rural)

Bandwidth 7.8-500 kHz

Sensitivity —111 to —148 dBm

For the MCU, the model STM32L.476 (STMicroelectronics international, N.V., Am-
sterdam, The Netherlands) was used, containing an ARM 32-bit Cortex-M4 CPU (Arm
Limited, San Jose, CA, USA). An FPU with 512 KB flash memory and 129 KB SRAM was
included. A PPG sensor (AFE4404; Texas Instruments, Dallas, TX, USA) with a dynamic
range of 100 dB with 10 samples per second (SPS) at a 1000-SPS pulse frequency was used
while an accelerometer (LSM6DS3; STMicroelectronics International, N.V., Amsterdam, The
Netherlands) was applied. A GPS module (TD1030; Taidou Microelectronics, Shenzhen,
China) with a 3 m horizontal and 4.5 m vertical accuracy was chosen. The power supply
unit BQ24121 (Texas Instruments, Dallas, TX, USA) was selected for the power supply
because it used a 3.7 V, 350 mAh, 502035 Li-ion polymer battery and had a 500-cycle battery
life, which was greater than 80% of the initial battery capacity.

2.3. Software Part of the System
Back-End Monitoring Page

The ultimate goal of the developed monitoring page was to manage a worker’s health
and safety based on physiological data; however, only hard-hat-wearing detection was
considered in this study. Each device contained its own MCU, which directly sent the data
via the LoRa module in TCP/IP form, and an IoT gateway was not required in this system.
The transmitted information was received by a back-end monitoring page where worker
location and hard hat use were analyzed and displayed, as shown in Figure 4. A green
light next to the hard hat symbol indicated that the worker was properly wearing the hard
hat, and a red light indicated the opposite. Table 2 shows the specifications of the server.

Name (id number)

) 12(1103) X
LtO| - 55 M| Age
L = NE-XQY Work type
Hois - B o Blood type
indication —————»* @ =ot-124/92  Blood pressure
w2 01X
) 12(1103) X
L}O] : 55 A
= HE5HE
- EE R
i Q- 124/92
» 0|X|13

P

Figure 4. Hard hat use indication display.
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Table 2. Technical specification of the server.

Items Details
Lenovo SR530 (Lenovo, Beijing, China)
Server CPU: Xeon Silver 4208 8 core 85 W 2.1 GHz (Intel, Santa Clara, CA, USA)
erve RAM: 16 GB (1 x 16 GB) Single x 4 DDR4-2933 (Hewlett Packard Enterprise, San Jose, CA, USA)
HDD: 300 GB SAS 10 K 12 Gb *2 ea (Hewlett Packard Enterprise, San Jose, CA, USA)
Spectrum 10 Mbps (1 Gbps Uplink)
05 Server, OS, DB
Windows (IIS + MSSQL)

As Figure 5 shows, the main page features simple tabs and visual data, which were

designed to be accessible to the field manager. The IoT interface provides access to both
PCs and smartphones, and the main features are as follows.

1.

Weather information: Shows the current worksite’s atmospheric conditions by access-
ing the Korea Meteorological Administration (KMA) via the Internet.

Status: Shows the list of registered workers on the site along with personal information
including identification number, age, work type, blood type, normal heart rate, and
hard hat use (Figure 4).

Details: Shows the individual worker’s transmitted data along with the worker’s
current location.

Registration: A new worker can be registered by the field manager.

History: Shows the individual’s stored data from the server.

T 2%} 24 2L E{H (Worker Health Monitoring)

eather info & 221368 @

Status —— zax#m

Details

Registration

® Status

List iocatAion Search

& .
a
a®

HO|Ef 2JAE 91| X|=

1101 QP42 x
L}o|: 41 4

1107 2UZ x
L}O| : 55 A

qU:138/77

12(1104)

34

x 3 12(1106) x
Uo]:334

COPYRIGHT © 2004

0 YOUNGSHINE All Right Reserved

Figure 5. Back-end webpage interface of the system.

3. Sensor Design and Validation Test

To ensure that the proposed sensor was comfortable to wear, three different shapes

of PPG sensors were tested. Each sensor was designed such that a user could position
it for comfort, even though the three shapes and fixation mechanisms were different. In
this study, the position and the shape of the sensor were studied through field testing. As
Figure 6 illustrates, “Type A” and “Type B” were pin-shaped sensors that used a hook
mechanism and sliding mechanism, respectively. “Type C” was a circular shaped sensor
that used a sliding mechanism for positioning.
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Cable Hole

Type A

Cable Hole

-
— ! s Type C

Type B
a b

Cable Hole

Figure 6. Location options and photoplethysmogram (PPG) sensor shapes: (a) considered sensor positions; (b) three shapes
of PPG sensor.

For the performance comparison test, a large size construction site was chosen—the
Gyeongbu Expressway Straightening Project, managed by Korea Expressway Corp. and
Han-ra Corp., Korea. The test site was located in Wha-sung City, Korea and it was 4.70 km
in length, with 10 lanes in each direction. The sizes were divided based on their costs of
construction. Small construction sites involved construction costs less than USD 2 million,
medium-sized sites used USD 2 million to 12 million, and those costing more than USD
12 million were large-sized construction sites. Each day, two randomly chosen frontline
workers participated in this study for 3 h a day for a total of 15 days. One worker positioned
the sensor at location A (near the ear), while the other worker positioned it at location B
(under the chin). The two workers switched the location each day and they were asked to
wear a different type of sensor—A, B, and C—each day. The technical specifications of the
three types were identical, but the quality of the received data varied according to sensor
shape. In addition, the percentage of data loss increased when the sensor was positioned at
location B compared to when it was positioned at location A.

Table 3 shows the results of data loss from the three types of sensors and the two
positions. The Type B sensor produced the most error, followed by Type A and Type C.
Under normal thermal conditions, the shape of the sensor had a greater effect on data
quality than did its position on the chin strap. The circular shaped sensors at location A
showed the lowest error rate of 0.56%. Therefore, the Type C sensor was selected for this
study (Figure 7). As Figure 8 shows, the pin-shaped sensors showed discontinuity of data
readings due to worker movements that caused detachment from the skin or rotation of
the sensor.

Table 3. Data loss by sensor type and position.

Sensor
Type/Location

1 (Day)

2

Daily Avg in Min

3 4 5 6 7 8 9 0 11 12 13 14 15 (Error Rate)

Type A/B
Type A/A

18 (min)
13

15
17

11 17 13 18 8 22 25 19 27 8 23 22 10 17.07 (9.48%)
11 16 26 20 15 8 24 25 12 10 21 18 13 16.0 (8.89%)

Type B/B
Type B/A

22
24

26
28

24 28 16 24 20 18 14 33 24 25 23 20 17 22.27 (12.37%)
14 16 20 11 31 25 14 27 22 18 23 33 15 21.4 (11.89%)

Type C/B
Type C/A

0
0

1
0

1 0 0 0 1 0 0 0 0 0 0 0 0 0.2 (1.67%)
0 0 0 0 1 0 0 0 0 0 0 0 0 0.07 (0.56%)
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Figure 7. Type C PPG sensor: (a) the sliding design of the sensor; (b) prototype of the Type C sensor.

a C
__ 2000 __ 2000
?“ 1000 Sensor detachment ;, 1000 Sensor detachment
4 0 ‘ 2 0
e~ I &~
-1000 =1000
38 39 40 41 42 43 44 45 46 47 48 12 13 14 IS 16 17 18 19 20 21 22
Time (min) Time (min)
b d
__ 2000 __ 2000
) 3
= Sensor detachment - Sensor detachment Sensor detachment
gh 1000! Sensor detachment 5:_0 1000
4 0 — - - g 0
e A
=1000 —=1000
76 77 78 79 80 8l 82 83 84 85 86 33 34 35 36 37 38 39 40 41 42 4
Time (min) Time (min)

Figure 8. Samples of data loss: (a) PPG sensor Type A sensor detachment, (b) rotated sensor direction due to worker’s
movement, (c) PPG sensor Type B sensor detachment, and (d) rotated sensor direction due to worker’s movement.

Sensor Signal Filtering Process

Because the selected device was located on the worker’s head, the worker’s move-
ments could potentially cause an error in the readings. In addition, considering the typical
construction site environment where a large number of noises and artifacts existed, noise
removal and error correction processes were necessary. GPS data, which indicated the
position of the worker, were proven to be accurate to about 3 to 5 m during the validation
tests. Therefore, only the PPG sensor required correction. As shown in Figure 9, bandpass
filtering and threshold filtering were used, while a range of 0.5-4 Hz was applied as a band
filter to capture useful data [40].

a b
2000 1000
£) £)
8 & 500
] ]
g 1000 & 0
Q0 0 O _
£ z 500
—1000 —1000
0o 1 2 3 4 5 6 7 8 9 10 0o 1 2 3 4 5 6 7 8 9 10
Time (sec) Time (sec)

Figure 9. Signal filtering process: (a) before the filtering process; (b) after the filtering process.
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4. Discussion

Despite management efforts to reduce the number of industrial accidents caused by
PPE violations, construction workers give various excuses for not wearing hard hats prop-
erly, and they avoid detection by means of surveillance blind spots. Various approaches
using sensor technology have been used to improve construction workers” health and
safety using sensor technology [20,23,31,41,42], but previous attempts were aligned only
with the intent or main purpose for which the sensor was developed. The novel method
proposed in this study follows the conventional approach of monitoring a worker’s heart
rate through a PPG sensor and also detects hard hat non-use in a construction site without
additional complicated equipment. To address the discomfort issues found in the previous
studies [23,43] the developed method installs the sensor on the required chinstrap; three
types of sensors were studied along with their optimal positions. The results indicated
that pin-shaped sensors often cause chin straps to twist due to worker chin movements
or actions. Therefore, data from that type were not constant and had an error rate of 9%
to 12%. However, the validation tests were performed only with frontline workers, so
workers with different tasks might show different results.

Sensor location on the chin strap was considered in this study, but location (near
the ear and under the chin) did not have significant effects on the results under normal
thermal conditions. The results showed 0.59%, 0.48%, and 1.11% differences between the
two locations for Type A, B, and C sensors, respectively. According to validation tests, the
GPS module in the device showed 3- to 5-m accuracy, which was considered acceptable
since the results did not require pin-point location. Furthermore, in this test, the on-site
manager was able to locate the worker who required attention, aided by transmitted
GPS and registered worker information such as a facial photo. Moreover, the connection
between the transmitting node and the receiving node in the LoRa network was effective on
large construction sites. The quality of the data acquired from the validation tests enabled
creation of a back-end monitoring webpage that is capable of detecting both heart rate
abnormality and hard hat non-use.

5. Conclusions

This study developed an autonomous detection method based on sensor technology
for hard hat non-use in a construction site. The modified design of a commercially available
device in this study, the PWB-300 wearable smart band, overcame the major limitations of
the existing vision-based detection methods in the construction industry.

The proposed method validated that hard hat use can be confirmed through a conven-
tional sensor without extra equipment. Through field testing, optimal sensor shape and
position on the chinstrap of a hard hat were identified. The circular shaped Type C sensor
performed with the lowest error rate (0.56%), and the movements of the worker did not
hinder the continuous transmission of data. In addition, location A (near the ear) showed
an average of 0.73% better accuracy in data readings than location B (under the chin).

Moreover, using the transmitted data, a heart rate monitoring feature was added; if
the server failed to receive data from the device or the transmitted PPG sensor data fell out
of the age-adjusted heart rate range, the field manager received a notification. The current
status of registered workers in the field can be monitored through the back-end monitoring
page via the IoT or a smartphone, and a webpage was created to manage worker health and
safety by monitoring individual physiological responses through the sensor technology.
However, only the hard hat detection feature was considered in this study; the integration
aspect will be addressed in a future study.

The current method was tested under normal thermal conditions, but future studies
are needed to investigate the performance in different environmental conditions, along
with the effects of worker sweat on the sensor.
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