<@ sustainability

Article

Data-Driven Analytics towards Software Sustainability: The
Case of Open-Source Multimedia Tools on Cultural Storytelling

Michail D. Papamichail *

check for

updates
Citation: Papamichail, M.D.;
Symeonidis, A.L. Data-Driven
Analytics towards Software
Sustainability: The Case of
Open-Source Multimedia Tools on
Cultural Storytelling. Sustainability
2021, 13, 1079. https://doi.org/
10.3390/5u13031079

Received: 20 December 2020
Accepted: 18 January 2021
Published: 21 January 2021

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional clai-
ms in published maps and institutio-

nal affiliations.

Copyright: ©2021 by the authors. Li-
censee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and con-
ditions of the Creative Commons At-
tribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Andreas L. Symeonidis

Electrical and Computer Engineering Department, Aristotle University of Thessaloniki, Egnatia Str.,
University Campus, 54124 Thessaloniki, Greece; symeonid@ece.auth.gr
* Correspondence: mpapamic@issel.ee.auth.gr; Tel.: +30-2310-996-349

Abstract: The continuous evolution of modern software technologies combined with the deluge of
available “ready-to-use” data has triggered revolutionary breakthroughs in several domains, preser-
vation of cultural heritage included. This breakthrough is more than obvious just by considering the
numerous multimedia tools and frameworks that actually serve as a means of providing enhanced
cultural storytelling experiences (e.g., navigation in historical sites using VR, 3D modeling of artifacts,
or even holograms), which are now readily available. In this context and inspired by the vital
importance of sustainability as a concept that expresses the need to create the necessary conditions
for future generations to use and evolve present artifacts, we target the software engineering domain
and propose a systematic way towards measuring the extent to which a software artifact developed
and applied in the cultural heritage domain is sustainable. To that end, we present a data-driven
methodology that harnesses data residing in online software repositories and involves the analysis of
various open-source multimedia tools and frameworks.

Keywords: software sustainability; multimedia tools; static analysis; evolution analytics

1. Introduction

Given the definition provided by UNESCO [1], cultural heritage encompasses two
main categories. The first is tangible cultural heritage, which refers to certain artifacts that
survive in time such as paintings, manuscripts, sculptures, monuments, as well as cities or
underwater ruins. The second is intangible cultural heritage, which refers to non-physical
artifacts such as oral traditions, performing arts, rituals, as well as social practices and
pre-existing knowledge. Preserving cultural heritage is of vital importance, since it is the
only way to constitute the necessary knowledge-base upon which we as humans can evolve.
Although preserving tangible cultural heritage artifacts is somehow “straightforward”,
preserving intangible ones requires recording, semantic annotation, and augmentation
to put information in the right context. In fact, tangible artifacts are better perceived
using such techniques. To that end, modern multimedia tools and frameworks provide
several opportunities [2,3] as they can serve as a means for providing enhanced cultural
storytelling experiences.

Living in a world of continuous digitalization [4], one could also argue that computer
and software development trends carry along important cultural characteristics. Watching
a “computer” or “science fiction” movie of the 1980s or 1990s, playing an arcade game,
or listening to a certain type of music reveals many cultural heritage elements on how
people lived, communicated, and entertained themselves [5]. In fact, similar to the case of
typical cultural heritage assets, where preservation is of vital importance, the same applies
in the software engineering domain where the need to produce sustainable software
has been defined as one of the key challenges in the fields of computational science and
engineering [6]. This fact is more than evident considering that maintainability (the “official”
term for sustainability in the “software engineering” language) is one of the most important
quality characteristics according to ISO/IEC 25010:2011 [7]. Maintainability is defined as

Sustainability 2021, 13, 1079. https:/ /doi.org/10.3390/5u13031079

https:/ /www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-8973-0293
https://orcid.org/0000-0003-0235-6046
https://doi.org/10.3390/su13031079
https://doi.org/10.3390/su13031079
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su13031079
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/2071-1050/13/3/1079?type=check_update&version=1

Sustainability 2021, 13, 1079

20f16

the “degree of effectiveness and efficiency by which a product or system can be modified
by the intended maintainers”. The importance of producing maintainable software is
also indicated by the fact that maintenance-related tasks (i.e., code refactoring given the
existence of updated requirements or bugs) often require up to 80% of the total effort put
into the software project [8]. To that end, several research efforts are directed towards the
identification and construction of efficient methodologies along with the respective tools
that enable evaluating maintainability [9].

Assessing the extent to which a software component is maintainable is a multifaceted
problem and is defined by the scope and internal characteristics of every software project.
These characteristics greatly influence the effort required to modify and/or extend the
project based on changes that occur both in terms of functional and non-functional require-
ments [10,11]. Various metrics have been proposed to model maintainability that quantify
several primary properties of the source code such as cohesion, complexity, coupling,
and degree of inheritance [12,13]. These metrics are often used as the information basis
upon constructing maintainability evaluation models and predictors [8,14]. Apart from
harnessing this information for assessing the extent to which a source code component is
maintainable, constructing models requires defining the appropriate thresholds, which is
a non-trivial task often taken by experts who manually examine the source code so as to
decide the desirable values. However, considering the fact that maintainability evaluation
is an adaptable procedure that requires examining various parameters over the project
lifecycle along with the fact that maintenance effort is highly context-dependent, existing
approaches are often restricted to certain use-case scenarios.

In this work, we argue that assessing software maintainability is not a one-off proce-
dure, but a constantly running process throughout the development lifecycle that requires
being able to adapt to the constantly changing characteristics of the software project. Given
the continuously increasing size and complexity of the software projects currently, which
makes the manual examination of the source code unattainable, we extend the data-driven
methodology proposed by Papamichail et al. [8], which harnesses information residing in
online code hosting facilities towards building a maintainability evaluation methodology
based on the analysis of software releases. As opposed to the aforementioned approach,
which involves analyzing various software projects without accounting for their score
and given the highly context-dependent nature of maintainability, we focus on a specific
domain and show how the scope of software projects indeed affects the software maintain-
ability methodology. In order to be aligned with the scope of this Special Issue, we target
the multimedia domain, a domain highly related to preserving cultural heritage. Upon
formulating our benchmark dataset, we apply static analysis to more than one hundred
open-source multimedia tools and frameworks in order to compute a large number of
metrics along with their evolution in time. This information constitutes the basis upon
which we construct four models, each evaluating maintainability from the perspective of a
certain code’s property.

The rest of this paper is organized as follows. Section 2 reviews the current liter-
ature approaches on maintainability evaluation, while Section 3 discusses the concepts
included in our maintainability evaluation methodology along with the construction of our
benchmark dataset. Section 4 presents the components of our maintainability evaluation
system, as well as the the steps involved towards the generalization of our models. Finally,
Section 5 evaluates our approach on a set of diverse axes, while Section 6 concludes the
paper and provides insights for further research.

2. Background Knowledge

According to several studies [14-17], maintainability prediction is considered as one
of the most challenging tasks involved in the area of software quality. To that end and
given its significance as a quality attribute, several research efforts are directed towards
proposing methodologies that aspire to assess the extent to which a source code component
is maintainable. In this context, the majority of the proposed approaches construct models

Sustainability 2021, 13, 1079

30f16

based on the values of static analysis metrics that quantify several aspects of the source
code [8,18,19].

Although using metrics for evaluating maintainability has been proven efficient in
certain use case scenarios, it exhibits certain inherent weaknesses. At first, using metrics
requires setting the appropriate thresholds and/or defining the acceptable intervals. Given
that this is a multi-faceted problem that requires taking into account various parameters,
this process is usually taken by quality experts who are responsible for examining the
source code and come up with the necessary quality targets [20,21]. However, the manual
examination of the source code is both time- and resources-consuming, especially for large
and complex projects. On top of that, this process is usually not feasible considering the
fact that maintainability evaluation involves analyzing the source code on a regular basis
given the changes that occur throughout the development process. These changes refer to
both functional and non-functional requirements, and their frequency is highly dependent
on the field of application of the software projects under evaluation. Especially in the
multimedia domain, these changes are frequent considering that software needs to handle
various different devices and formats, as well as the constantly updated architectures and
communication protocols [22].

Given the limitations of expert-aided solutions, several approaches employ machine
learning as a way to model the influence of the values of static analysis metrics with
the maintainability degree of software components. In this context, Koten and Gray [23]
used empirical data so as to train a Bayesian Belief Network (BBN) for assessing software
maintainability, while Cong and Liu [24] applied a fuzzy C-means clustering technique as
the preprocessing step towards evaluating maintainability using a Support Vector Regres-
sion (SVR) model. Additional maintainability evaluation approaches suggest the usage
of Artificial Neural Network (ANN) models [25] and Adaptive Multivariate Regression
Splines (MARSs) [26]. Although efficient, these approaches do not account for the evolution
of the software project under evaluation and thus do not provide the ability to predict
non-maintainability at an early stage (before occurrence) when the required refactoring
along with the respective change cost is minimal.

In an effort to overcome the aforementioned limitations and provide models that
enable predicting maintainability, there are also approaches that employ release information
as a way to monitor software evolution over time [27,28]. In a similar research direction,
our prior work [8] suggested that the evolution of the values of static analysis metrics as
reflected in their linear trends can be used as a maintainability indicator. In the context
of this approach, we harness information residing in online code hosting facilities so as
to identify non-maintainable code components and thus construct the ground truth upon
which we build our maintainability evaluation models.

In this work, we employ the aforementioned approach and extend it in several direc-
tions in order to create an efficient maintainability evaluation methodology applicable in
a specific domain (in our case, the multimedia domain). At first, given that multimedia
projects exhibit certain characteristics, we build a benchmark dataset that involves the anal-
ysis results of the most popular and reused multimedia tools, libraries, and frameworks.
In an effort to provide a more accurate evolution analysis, we refrain from using releases,
but we resort to analyzing the development lifecycle at the week level. Consequently, while
trying to reduce false positives and given that trend analysis is highly dependent on the
development phase, we design a methodology that combines evolution analytics with the
absolute values of the static analysis metrics under examination. The evaluation of our
approach indicates that our models are able to successfully model the special character-
istics of software projects that target the multimedia domain and thus efficiently predict
non-maintainability along with providing interpretable results.

3. Source Code Evolution as a Maintainability Indicator

In this section, we discuss our maintainability evaluation methodology built on
information originating from the evolution of the source code throughout the project

Sustainability 2021, 13, 1079

40f16

lifecycle. Specifically, we present our modeling strategy towards defining the extent to
which a software component that targets the multimedia domain is maintainable, inspired
by the one proposed by Papamichail et al. [8]. Furthermore, we describe the construction
of our benchmark dataset, which includes the values of various static analysis metrics
computed for all multimedia-related tools, libraries, and frameworks included in the
1000 most starred and most forked GitHub Java projects.

3.1. Towards Modeling Maintainability

Employing the aforementioned maintainability evaluation approach [8] suggests that
using the trends of several static analysis metrics is able to quantify the source code prop-
erties of complexity, coupling, inheritance, and cohesion. We further extend it and resort to
defining the degree to which a software component is maintainable based on the combi-
nation of two key factors. The first refers to the evolution of the values of static analysis
metrics as reflected in their trends, while the second refers to the absolute values of these
metrics. Combining the absolute values of the static analysis metrics with their trends
aims at reducing the number of false positives, especially in the cases of relatively new
software projects where changes in metrics are intense. This change intensity may not
always suggest that a component is becoming non-maintainable, but it should definitely
act as a warning factor. The severity of this warning factor depends on the absolute values
of the static analysis metrics. In addition, it is worth noting that the desirable intervals of
the values of static analysis metrics do not involve expert knowledge, but originate from
the benchmark dataset.

Given the above, we analyze the lifecycle of packages that have been dropped from
certain multimedia software projects (considered as candidates for non-maintainability
occurrence), as reflected in the progressing behavior of a series of static analysis metrics
along with their absolute values. Instead of using releases for defining the frequency of our
analyses and in an effort to capture the progressing behavior of metrics in a more efficient
manner, we analyze projects on a weekly basis. This design choice originates from the fact
that the release schedule is subject to change especially in projects with a long lifecycle.

Figure 1 illustrates the evolution of the Nesting Level (NL) metric for the package
com.eftimoff.androipathview included in the repository geftimov/android-pathview (https://
github.com/geftimov/android-pathview) over its full lifecycle, which consists of 73 weeks.
Given the presented evolution, it is obvious that there are certain time periods where there
are no changes in the respective package (for instance, the time period between Week 5
and Week 14). These idle periods refer to cases where the project appears to be inactive
or the development focuses on different parts of the source code. As a result, in an effort
to capture the actual evolution of each respective package, we keep only the weeks that
exhibit at least one metric that has been changed. After having computed the actual change
sequence for each package, we calculate the linear trend of each metric, which reflects its
evolution behavior.

1.4

Nesting Level
= =
o N

o
o
s

o
o
L

o ~

SN 9 O N > VS AV AV > Y W & W2
S T O (S S) (S S (S (S N (S (S (S (S
AN ARG A A AU AU A KU AN A A A AU A G- A AV A U A A
0 0 TV @ @O @ OV @ O T QN € A G O O G @R @D
N N N N N T N

Lifecycle Weeks

Figure 1. Overview of the evolution of the Lines Of Code (LOC) metric regarding the package
com.eftimoff.androipathview of repository geftimov/android-pathview.

https://github.com/geftimov/android-pathview
https://github.com/geftimov/android-pathview

Sustainability 2021, 13, 1079

50f16

3.2. Benchmark Dataset

In an effort to create models that are tailor-made to the characteristics of the software
projects that target the multimedia domain, our benchmark dataset includes the analysis
results for all multimedia-related tools, libraries, and frameworks included in the 1000 most
starred and forked GitHub Java projects. This selection originates from the fact that stars
and forks reflect the degree of acceptance of the projects and thus their success among the
community of developers. In addition, especially the high number of forks suggests that
the projects adhere to certain software development principles and code writing guidelines
and thus can be used as representative examples of the state-of-the-practice. Furthermore,
projects that receive high traction are usually projects that exhibit a long lifecycle (usually
several years) and a large number of contributors and thus are suitable for analyzing
maintainability-related information.

Upon having extracted the information regarding the 1000 most starred and most
forked GitHub projects, our first step involves selecting the ones that refer to the multi-
media domain. To that end and in an effort to construct an automatic benchmark dataset
formulation procedure, we use the GitHub API (https://api.github.com) and extract the
description and the keywords of each project. Then, we check whether they contain words
that are related to multimedia (such as image, video, audio, view, sound, player, and media,
along with their synonyms). Following this process, we identified 114 projects, which
constitute our benchmark dataset. Table 1 presents some general statistics regarding our
benchmark dataset.

Table 1. Dataset statistics.

Statistics of the Constructed Dataset

Number of Projects 114
Total Number of Methods 144,469
Total Number of Classes 25,415
Total Number of Packages 2884
Total Analyzed Lines Of Code (LOC) 2,461,150

After having constructed our benchmark dataset, we perform two types of analysis.
The first involves analyzing the latest version (last commit) of all projects in order to
compute a large set of static analysis metrics that quantify four primary code properties:
cohesion, complexity, coupling, and inheritance. This dataset is used to extract the profiles of
the static analysis metrics and thus calculate the desirable intervals based on frequency
analysis. The second analysis type refers to monitoring code evolution. In this context,
we select 10 projects to perform a full lifecycle analysis at the week level. Given that
performing full lifecycle analysis is a highly time- and resource-consuming task and in an
effort to create a dataset that represents multimedia projects that exhibit different charac-
teristics, this selection is based on the size, the complexity, and the length of the lifecycle
of the projects. Of course, although the full analysis of the 10 projects provides enough
information for building our maintainability evaluation models, given that our methodol-
ogy is fully incremental, we can increase this number in order to further strengthen the
effectiveness of our models. Information regarding our experimental setup along with
the corresponding source code for creating our benchmark dataset can be found online
(https:/ / github.com / AuthEceSoftEng /multimedia-tools-sustainability).

In the context of this analysis, we extract information regarding the packages that have
been removed, and this removal originates from them being non-maintainable. The analysis
results for these packages are used to extract the trends of the static analysis metrics and
thus create the training dataset for our maintainability evaluation models. The evolution
analysis at the week level involves analyzing more than 50 M lines of code. Table 2 provides
a full reference of the computed metrics along with their computation level (method or
class). Given that all static analysis metrics are computed either at the class level or method

https://api.github.com
https://github.com/AuthEceSoftEng/multimedia-tools-sustainability

Sustainability 2021, 13, 1079

6 of 16

level, we generate the value of each metric at the package level as the average of the values
regarding all classes and methods included in the package. The computation of all static
analysis metrics was performed using Sourcemeter (https://www.sourcemeter.com/) tool.

Table 2. Overview of the computed static analysis metrics.

Static Analysis Metrics Computation Levels
Property Name Description Method Class
Cohesion LCOM5 Lack of Cohesion in Methods 5 — X
NL Nesting Level X X
. NLE Nesting Level Else-if X X
Complexity i .
McCC McCabe Cyclomatic Complexity X —
HPL Halstead Program Length X —
WMC Weighted Methods per Class — X
CBO Coupling Between Object classes — X
CBOI Coupling Between Object classes Inverse — X
Coupling NI Number of Incoming Invocations — X
NOI Number of Outgoing Invocations — X
REC Response set For Class — X
DIT Depth of Inheritance Tree — X
NOC Number Of Children — X
Inheritance NOP Number Of Parents — X
NOD Number Of Descendants — X
NOA Number Of Ancestors — X

4. Maintainability Evaluation System

In this section, we present our approach towards quantifying the extent to which

a multimedia-related software component is maintainable. In addition, we describe the
calculation of the desired intervals of the values of various static analysis metrics based on
our benchmark dataset along with the construction of our models, each targeting a certain
source code property.

4.1. Overview

Figure 2 provides a general overview of our maintainability evaluation system target-

ing multimedia tools, which involves the following steps.

Step 1: We use the GitHub API in order to extract the information of the 1000 most
starred and most forked Java projects. We use the attributes description and key-
words and apply natural language processing techniques in order to identify the ones
that are related to multimedia. During this process, we identified 114 multimedia-
related projects.

Step 2: After constructing our benchmark dataset, we select 10 projects so as to
perform a thorough lifecycle analysis at the week level. To that end, we again use the
GitHub API in order to retrieve a full list of all commits for each project. Then, we
calculate all weeks between the first and the last commit along with the latest commit
hash (attribute sha) for each respective week.

Step 3: Having identified the repositories that are related to multimedia, we perform
static analysis in order to calculate the values of various metrics that quantify four
primary source code properties: cohesion, complexity, coupling, and inheritance. We
perform two types of analysis. The first involves analyzing all 114 repositories so as
to create the benchmark dataset for extracting the general profiles of static analysis

https://www.sourcemeter.com/

Sustainability 2021, 13, 1079

7 of 16

metrics, while the second involves analyzing all the aforementioned commits of the
10 projects selected for lifecycle analysis. This information is going to be used to
calculate the metrics’ progressing behavior.

e Step 4: We use the static analysis results for all 114 projects in order to extract the gen-
eral profile of each metric. In an effort to calculate the profiles that correspond to the
general distributions of the values of static analysis metrics [29], we apply frequency
analysis and polynomial regression. These profiles aim at providing information
regarding the acceptable intervals of the values of static analysis metrics and thus to
be used as non-maintainability indicators.

* Step 5: We use the results regarding the lifecycle analysis performed for the 10 se-
lected projects so as to locate the packages that have been dropped and calculate
the trends of their computed metrics. These trends constitute the information basis
upon constructing our maintainability evaluation models. In this context and in an
effort to maintain the purity of our dataset, we apply a series of quality criteria to
determine the packages that are actually dropped based on reasons that are related to
quality control.

e Step 6: The sixth step involves training our maintainability evaluation models using
the results of the two previous steps. During this process, we employ one class
classification using support vector machines and train four maintainability evaluation
models, each targeting a certain code property.

e Step 7: The last step involves combining the output of all four models into a single
score that reflects the maintainability degree of the package under evaluation.

n Metrics General Profiles Maintainability
“' Evaluation Models

Preprocessing

GitHub
l Frequency-based
Analysis
D >l
— o >
JAVA d. ¢ Metrics Trends Analysis
1000 top Java Multimedia

Repositories Tools Preprocessing

Complexity

Cohesion

Coupling

Maintainability
Evaluation
Lifecycle Analysis Inheritance
at Week Level

B (R R (R

Figure 2. Overview of the designed system.

4.2. Preprocessing

The preprocessing step involves determining the non-maintainable packages by deter-
mining the source code property (or properties) that cause non-maintainability. This first
step involves computing all metrics at the package level in order to identify their trends
using linear regression. Given that we have already performed a full-scale analysis at the
week level, we use the results in order to create the necessary mappings and thus identify
the classes that are part of each package. In order to perform the necessary mappings, we
use the package declarations located at the top of each source code file.

After having calculated all trends for all packages included in the 10 projects under
evaluation, the next step involves extracting the packages that are being dropped. Upon
using the commit information to sort the analyses in the correct order based on the commit
timestamp, we identify the lifecycle of each unique package. The term lifecycle refers
to the time period between the first week and the last week the package existed in the
project. In case the index of the last week is not equal to the index of the last week of
the project, then the package has been dropped and thus is considered as a candidate for
being non-maintainable.

After having extracted all candidates, the next step involves applying a series of
quality criteria so as to eliminate false positives given that dropping a package does not

Sustainability 2021, 13, 1079

8 of 16

necessarily originate from actions that have to do with quality control. To that end, in an
effort to maintain the purity of our dataset, we apply the following filters:

* We keep only packages that are present for more than four consecutive weeks in an
effort to eliminate packages that are being dropped based on changes in requirements
and/or design choices.

e We keep only packages that appear to have at least one metric that exhibits a trend
that negatively affects its maintainability degree.

* We apply code clone detection techniques in order to identify packages that have been
renamed and thus should be eliminated from our training dataset. Otherwise, these
packages are identified as dropped.

After having extracted all the non-maintainable packages, the next step involves
deciding the property (or properties) that is (or are) responsible for them being non-
maintainable. For instance, a dropped package that appears to have a high positive trend for
the Nesting Level (NL) metric is considered as non-maintainable due to complexity. Upon
applying this process for all packages and code properties under evaluation (complexity,
coupling, cohesion, and inheritance), we use this ground truth information for constructing
our maintainability evaluation models.

4.3. Metrics Behaviors” Extraction

As already noted, our methodology involves using the analysis results for the 114
multimedia-related projects included in the 1000 most popular and reused GitHub Java
projects in order to extract the general behavior of each static analysis metric. These
behaviors are then used for translating the values of each static analysis metric into a score
in the interval of [0, 1], which reflects the compliance of the source code component with
the state-of-the-practice as extracted by the benchmark dataset. This score is used along
with the metrics’ trends for constructing our maintainability evaluation models. Given
that each metric quantifies a certain property, the scores of all metrics that refer to a certain
property are aggregated into a final score that reflects the property itself.

Our first step towards modeling the general behavior of each metric involves comput-
ing its distribution using all code components included in our benchmark dataset. In order
to eliminate any introduced bias and given that different projects contain code components
that exhibit high differences in terms of the values of static analysis metrics, we apply out-
lier detection techniques so as to eliminate extreme values. In this context, we use boxplot
analysis and eliminate values that fall outside the interval [Q1 — 1.5 % IRQ, Q3 + 1.5 % IRQ)],
where Q1 and Q3 refer to the first and the third quartile, respectively, while IRQ refers to
the the Interquartile Range. After having eliminated outliers, we compute the distribution
of the values of each metric as reflected in their histogram. For selecting the appropriate
bin size, we employ the Scott formula [30], which asymptotically minimizes the integrated
mean squared error and represents a global error measure of a histogram estimate. Given
the Scott formula, bin width is given by the following formula:

BinWidth = 349 -6 - n~1/3 (1)

In the above equation, ¢ is an estimate of the standard deviation of the metric values
and 7 is the size of the data sample.

Upon having extracted the generic distribution of the values of each static analysis
metric following the aforementioned procedure, we use the generated bins in order to
construct a set of data instances that translate the values of each metric into a compliance
score. These data instances have the form [BinCenter, Score|, where BinCenter refers to the
center of each bin and Score refers to the normalized frequency of the bin. In that way,
the bins of higher frequency receive higher scores. In an effort to model the identified
behaviors, we apply polynomial regression on the set of data instances produced in the
previous step, and the result for each metric is an evaluation model able to translate the
values of the metric into a score given the standards of the benchmark dataset.

Sustainability 2021, 13, 1079

9o0f 16

Figure 3 illustrates the aforementioned procedure for the case of the Nesting Level (NL)
metric, which is computed at the class level. The blue bars depict the histogram of the NL
values (the ones kept after the outlier detection step), while the black dashed line refers
to the fitted curve that translates NL values into a complexity score. The degree of the
polynomial for each metric s determined using the elbow method of the Root-Mean-Squared-
Error (RMSE). This ensures that the constructed models are effective and able to provide
reasonable estimates, while we avoid overfitting. Given the actual scores y;, 12, . .., y, and
the predicted scores 1,12, . . ., 1, the RMSE is calculated as follows:

1 N
RMSE = | 5+) (9 = vi)? @

i=1

1.01 ——- Fitted curve
B Nesting Level histogram

o o o
B ()] [e-]
=

Normalized frequency

o
N

\
\
\
\
I\ smmaroooo.
Ay
\
\
\
N\
oo - [
1 2 3 4 5 6 7

Nesting Level

8 9
Figure 3. Overview of the fitting procedure based on the general distribution of the nesting level metric.

The RMSE and Mean Absolute Error (MAE) of the polynomial regression models for
all metrics computed at the method and class levels are shown in Table 3.

Table 3. Polynomial regression results.

Metric Level RMSE MAE Metric Level RMSE MAE
LCOM5 class 0.065 0.055 NII class 0.034 0.028
NL class 0.012 0.011 NOI class 0.06 0.052
NLE class 0.01 0.009 REC class 0.067 0.054
WMC class 0.025 0.021 DIT class 0.038 0.034
McCC method 0.08 0.069 NOC class 0.028 0.022
HPL method 0.145 0.1 NOP class 0.099 0.085
CBO class 0.02 0.015 NOD class 0.031 0.025
CBOI class 0.013 0.025 NOA class 0.041 0.036

4.4. Models’ Construction

As already noted, after having calculated the metrics’ trends for the packages iden-
tified as non-maintainable along with the respective property (or properties) flagged as
responsible for the non-maintainability, the next step involves training four maintainability
evaluation models, each targeting a certain source code property. Given that we only have
information regarding the packages identified as non-maintainable (we cannot come to a
conclusion for the other packages), we employ one class classification using Support Vector
Machines (SVMs). The selection of four models instead of one (using all metrics) origi-
nates from the fact that our primary target was building a configurable and interpretable

Sustainability 2021, 13, 1079

10 of 16

maintainability evaluation system able to adapt to the individual needs of each project
under examination.

As for training each model, we use only the packages that were flagged for the respec-
tive source code property. The attributes of the training dataset are the computed trends
of the static analysis metrics that quantify the respective property along with the score
computed using the general behavior of metrics. Table 4 presents the number of packages
identified as non-maintainable for each source code property, while Table 5 provides in-
formation regarding the selection of meta-parameters for each one-class classifier. This
selection is based on the percentage of False Negatives (FNs) and optimizes the values of
three meta-parameters: nu, which corresponds to the fraction of training errors and a lower
bound of the fraction of support vectors, gamma, which is the kernel coefficient that reflects
how far the influence of a single training example reaches, and cost, which trades off the
misclassification of training examples against the simplicity of the decision surface. As
shown in Table 4, coupling and complexity are the dominant properties responsible for
most non-maintainable occurrences.

Table 4. Number of non-maintainable packages per source code property.

Source Code Property # Non-Maintainable Packages
Complexity 305
Cohesion 89
Coupling 352
Inheritance 112

The following paragraphs present the training results regrading the trained maintain-
ability evaluation models, each targeting a different primary source code property.

e Complexity model:
The dataset includes the trends regarding five static analysis metrics that are related
to complexity: NL, Nesting Level Else-if (NLE), Weighted Methods per Class (WMC),
McCabe Cyclomatic Complexity (McCC), and Halstead Program Length (HPL). As
shown in Table 5, the selected values for the nu, gamma, and cost parameters are
0.022, 0.134, and 512, respectively. The percentage of the FNs is 2.62%.

¢ Cohesion model:
The dataset includes the trends regarding the Lack of Cohesion in Methods (LCOMD5)
metric, which corresponds to the number of coherent classes into which each class
could be split. In a similar manner to the aforementioned analysis, the selected values
are 0.041, 0.047, and 256 for the nu, gamma, and cost parameters, respectively, while
the percentage of false negatives is 3.37%.

¢ Coupling model:
The dataset includes the trends regarding five static analysis metrics that are related to
coupling: Coupling Between Object classes (CBO), Coupling Between Object classes
Inverse (CBOI), Number of Incoming Invocations (NII), Number of Outgoing Invoca-
tions (NOI), and Response set For Class (RFC). For the coupling model, the selected
values are 0.03, 0.06, and 256 for the nu, gamma, and cost parameters, respectively,
while the percentage of false negatives is 2.84%.

¢ Inheritance model:
The dataset includes the trends regarding five static analysis metrics that are related to
inheritance: Depth of Inheritance Tree (DIT), Number Of Ancestors (NOA), Number
Of Children (NOC), Number Of Descendants (NOD), and Number Of Parents (NOP).
For the inheritance model, the selected values are 0.027, 0.12, and 32 for the nu, gamma,
and cost parameters, respectively, while the percentage of false negatives is 2.67%.

Sustainability 2021, 13, 1079

11 of 16

Table 5. Statistics regarding the selection of meta-parameters for the constructed models based on
the percentage of False Negatives (FNs).

Maintainability Training Meta-Parameters
Evaluation Model Nu Gamma Cost FN
Complexity 0.022 0.134 512 2.62%
Cohesion 0.041 0.047 256 3.37%
Coupling 0.03 0.06 256 2.84%
Inheritance 0.027 0.12 32 2.67%

5. Evaluation

The evaluation of our maintainability evaluation methodology is performed around
three axes. The first evaluates our system for its ability to predict the maintainability
degree at the package level for a number of randomly selected multimedia-related projects
that exhibit different characteristics in terms of the size and length of the lifecycle. The
second axis evaluates our system for its ability to predict non-maintainability at an earlier
stage, while the third evaluates the maintainability evaluation results from a software
quality perspective.

5.1. Efficiency of Maintainability Evaluation

Our first evaluation axis assesses the ability of our maintainability evaluation system
to effectively identify non-maintainable packages by employing the evolution of static
analysis metrics as reflected in their linear trends along with their compliance with the state-
of-the-practice as reflected in their acceptable intervals based on the constructed benchmark
dataset. To that end, we apply our methodology on four independent and randomly se-
lected multimedia projects. Namely, the selected projects are alexvasilkov /GestureViews
(https:/ /github.com/alexvasilkov/GestureViews), graphhopper/graphhopper (https://
github.com/graphhopper/graphhopper), janishar/PlaceHolderView (https://github.com/
janishar/PlaceHolderView), and wyouflf/xUtils3 (https://github.com/wyouflf/xUtils3).
Table 6 presents certain statistics regarding the evaluation repositories. As given by the
provided statistics, the evaluation repositories differ both in terms of size and in their
length of lifecycle. At this point, it is worth noting that the full-scale analysis for the
aforementioned repositories involves analyzing more than 25 million lines of code.

Table 6. Statistics of evaluation repositories.

Metric Alexvasilkov/ Graphhopper/ Janishar/ Wyouflf/
GestureViews Graphhopper PlaceHolderView xUtils3
Lifecycle length 342 455 96 148
(weeks)
Methods 972 5923 733 1371
Classes 159 860 117 179
Packages 41 59 24 28
LOC (last snapshot) 13,911 95,609 9114 17,207

Figure 4 gives a graphical representation of our maintainability evaluation results
using the janishar/PlaceHolderView project as our reference repository. The lifecycle of
the PlaceHolderView project is 96 weeks, and it includes 24 packages that contain around
9000 lines of code. Upon analyzing a snapshot of the project for each one of the 96 weeks
(around 500 K lines of code), we compute the trends of all static analysis metrics that
quantify the properties complexity, coupling, inheritance, and cohesion. In addition, given
the constructed models that enable translating the values of each static analysis metric
into a compliance score (using the extracted general distributions), we compute for each
property one score for each package that expresses its compliance with the acceptable

https://github.com/alexvasilkov/GestureViews
https://github.com/graphhopper/graphhopper
https://github.com/graphhopper/graphhopper
https://github.com/janishar/PlaceHolderView
https://github.com/janishar/PlaceHolderView
https://github.com/wyouflf/xUtils3

Sustainability 2021, 13, 1079

12 of 16

intervals of the static analysis metrics that quantify the property. The computed trends
along with the compliance scores are then given as the input in our already constructed
maintainability evaluation models, each targeting a certain code property. Each row
of the heat map illustrates the maintainability evaluation results based on a different
property. The green color denotes that the package is considered as maintainable regarding
the respective code property, while red indicates that the package is considered as non-
maintainable. The final maintainability score for each package occurs as the average of
the four respective properties. This final score reflects the risk of the package becoming
non-maintainable, while the disaggregation provides interpretable results regarding the
properties that need improvement.

cohesion

Figure 4. Overview of the maintainability evaluation results for the repository jan-
ishar/PlaceHolderView.

Upon further evaluating the ability of our models to effectively identify non-maintainable
packages, we present the results for the four repositories used for evaluation. Table 7
presents the respective results based on the sensitivity criterion along with the percentage
of packages identified as non-maintainable for each source code property. Sensitivity was
chosen as our evaluation criterion as it expresses the proportion of true positives that are
correctly identified by our models given that we can only come to a safe conclusion for
non-maintainable packages. Given the provided results, the sensitivity (true positive rate)
of our maintainability evaluation approach varies from 76.12% (janishar/PlaceHolderView
project) to 92.47% (graphhopper/graphhopper project), which indicates that our models
are able to effectively identify non-maintainable packages. Finally, as for the properties
responsible for the non-maintainable packages, they indicate that every project exhibits
different strengths and weaknesses as they vary among the evaluation repositories. This is
expected as the characteristics of each project are greatly influenced by its scope. For in-
stance, given the nature of the graphhopper project, which implements a routing engine for
OpenStreetMap, along with its large size and complex functionality, it is expected to exhibit
a higher percentage of non-maintainable packages based on complexity and coupling.

Table 7. Maintainability evaluation results.

Propert Alexvasilkov/ Graphhopper/ Janishar/ Wyouflf/
perty GestureViews Graphhopper PlaceHolderView xUtils3
Complexity 22.79% 45.67% 19.85% 38.12%
Coupling 41.78% 63.79% 36.97% 57.78%
Inheritance 25.28% 16.71% 35.47% 14.67%
Cohesion 8.49% 51.45% 42.37% 22.71%
Sensitivity 88.31% 92.47% 76.12% 86.28%

5.2. Ability to Provide Early Predictions

Given the vital importance of predicting maintainability at an earlier stage as a way
to prevent cases where major refactoring is needed, which is a highly time- and resource-
consuming task, our second evaluation axis targets assessing the ability of our system to

Sustainability 2021, 13, 1079

13 of 16

provide early predictions and thus act in a preventive rather than in a corrective manner.
The early prediction refers to the percentage of lifecycles (expressed as the number of
weeks) for which our models are able to correctly identify non-maintainability.

To that end, we calculated the metrics’ trends for every package and for every week in
the lifecycle taking into account only the previous releases. For instance, given a certain
package that appears to be in the project for 60 weeks (this time period constitutes its full
lifecycle) and is then being dropped, we use only the values of the first 45 weeks (as if our
current timestamp was the 45th week) in order to calculate the metrics’ trends and use our
models to evaluate its maintainability degree. If we successfully identify the package as
non-maintainable, then we have a correct prediction 15 weeks ahead, which corresponds
to 25% of the package lifecycle. Using this strategy for all weeks, we were able to assess the
maintainability degree of each package for every release, as if it was the current release
and thus calculated the number of releases ahead for which our models provided correct
evaluation. The number of releases was then transformed into the percentage of lifecycles
for each package by dividing it by the total number of weeks. As already noted, we use the
term lifecycle for a package in order to refer to the time period between the first and the
last week it existed in the software project.

Figure 5 illustrates the ability of each evaluation model to provide early predictions.
Specifically, the y axis corresponds to the percentage of packages correctly identified as
non-maintainable for each source code property, while the x axis refers to the percentage of
lifecycles divided into ten intervals. Each interval expresses the percentage of the lifecycles
ahead for which our models is able to provide correct maintainability evaluation. For
instance, the first interval refers to the time period between the current week (0% ahead)
up to 10% ahead. Given a certain interval, each bar refers to a different code property.
As expected, while the lifecycle ahead increases, the percentage of correctly identified
packages decreases. The results indicate that all four models are able to provide correct
evaluation (for almost 50% of the non-maintainable packages) at least 50% to 60% earlier.

100 1 mmm Complexity
I Coupling
BN Inheritance
80 - MW Cohesion

601

40 A

20 A

Percentage of correctly identified packages (%)

Percentage of lifecyle

Figure 5. Overview of the percentage of the correctly identified non-maintainable packages for the
evaluation repositories.

5.3. Case Study

As for the third evaluation axis and in an effort to assess whether the compliance
scores computed using the general distribution of metrics are logical from a software
quality perspective, we manually examined the values of the static analysis metrics for
methods and classes that received both high and low compliance scores (these scores
are then aggregated into the package level and are used along with the metrics’ trends
for modeling). Table 8 provides an overview of the computed static analysis metrics for
representative examples of methods and classes with different scores. The table contains
static analysis metrics for two methods and two classes regarding each source code property
that received both high and low scores.

Sustainability 2021, 13, 1079

14 of 16

Examining the values of the metrics, we may note that the scores regarding all four
properties are reasonable from a quality perspective. Concerning the class that received
a high cohesion score, it appears to be very cohesive as the LCOMS (Lack of Cohesion in
Methods 5) metric, which refers to the number of cohesive classes in which a non-cohesive
class should be split, is one. From a complexity perspective, the class that received a high
score appears to be very well structured, which is denoted by the low values of the nesting
level (NL and NLE) metrics, along with the low value (eight) of the Weighted Methods
per Class (WMC) metric. The latter is computed as the sum of the McCabe’s Cyclomatic
Complexity (McCC) values of its local methods. As a result, a high score for the complexity
property is expected. The same applies for the case of methods, where the one that received
a low score appears to be highly nested and of extreme complexity considering the value
of McCC (31).

As for the coupling property, the class that received a high score appears to be very
well decoupled, which is denoted by the values of all five metrics. The same applies for
the respective methods that exhibit low values regarding the metrics NII and NOI, which
refer to the number of incoming and outgoing invocations, respectively. On the other hand,
the code components that receive low scores appear to be highly coupled, which has a
negative impact on their maintainability degree. Finally, given the values of the static
analysis metrics that quantify inheritance, the class that received a low score appears to
lie deep in the code inheritance tree, which has a negative impact in its understandability.
This fact also affects its maintainability degree. On the other hand, the class that received
a high score appears to be well placed in the inheritance tree following the principles of
object-oriented programming. Given all of the above, our scoring mechanism appears to
be able to effectively translate the values of static analysis metrics into an interpretable
compliance score.

Table 8. Overview of the scores for methods and classes that received both high and low compliance scores.

Metric Methods Classes
Prover Name Method Method Class Class
perty with High Score ~ with Low Score = with High Score =~ with Low Score
Cohesion LCOM>5 — — 1 6
Cohesion Scores — — 100.00% 5.31%
NL 1 8 1 9
NLE 1 6 1 6
Complexity McCC 2 31 — —
HPL 84 695 — —
WMC — — 8 79
Complexity Scores 84.97% 16.24% 79.56% 13.18%
CBO — — 1 11
CBOI — — 2 18
Coupling NII 2 29 4 27
NOI 1 10 2 31
RFC — — 2 24
Coupling Scores 89.21% 8.67% 87.14% 6.54%
DIT — — 3 6
NOC — — 4 0
Inheritance NOD — — 4 0
NOP — — 2 2
NOA — — 4 7
Inheritance Scores — — 81.34% 22.87%

Sustainability 2021, 13, 1079 15 of 16

6. Conclusions and Future Work

In this work, we propose a maintainability evaluation methodology targeting multime-
dia projects that harness information residing in code hosting facilities. Our methodology,
applicable at the package level, employs the evolution of static analysis metrics along with
the compliance of the source code with their acceptable intervals as extracted by the bench-
mark dataset, which contains multimedia projects that receive a high degree of acceptance
by the community of developers. Upon performing a thorough code analysis on a weekly
basis and in an effort to provide interpretable results, our methodology quantifies the
extent to which a software component targeting the multimedia domain is maintainable by
evaluating four axes, each targeting a primary source code property: complexity, coupling,
inheritance, and cohesion. The evaluation of our approach denotes that our models are
able to predict maintainability at an earlier stage (in many cases, more than 50% of the
project lifecycle), while at the same time, the results regarding all four axes are logical from
a software quality point of view. Considering all the above, we argue that our system can
be a valuable tool for developers.

Future work lies in several directions. At first, we could further expand the selection
of metrics to be used for the construction of our models. In addition, we could also expand
the trend analysis by employing additional trend types, especially non-linear, in order to
be able to identify more complex behaviors. Furthermore, we could also apply clustering
techniques in order to split our code components into coherent clusters and thus construct
additional models, each applying to the specific characteristics of each cluster. Finally, we
could also expand our benchmark dataset with more multimedia-related projects to cover
additional use case scenarios and thus strengthen the effectiveness of our system.

Author Contributions: Conceptualization, M.D.P. and A.L.S.; Methodology, M.D.P. and A.L.S;;
Software, M.D.P. and A.L.S.; Writing—original draft, M.D.P. and A.L.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research has been co-financed by the European Regional Development Fund of the
European Union and Greek national funds through the Operational Program Competitiveness,
Entrepreneurship and Innovation, under the call RESEARCH-CREATE-INNOVATE (project code:
T1EDK-02347).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data is contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

Cultural Heritage Definition. 2020. Available online: http://www.unesco.org/new/en/culture/themes/illicit-trafficking-
of-cultural-property /unesco-database-of-national-cultural-heritage-laws/frequently-asked-questions / definition-of-the-
cultural-heritage/ (accessed on 20 December 2020).

Dimoulas, C.A.; Kalliris, G.M.; Chatzara, E.G.; Tsipas, N.K.; Papanikolaou, G.V. Audiovisual production, restoration-archiving
and content management methods to preserve local tradition and folkloric heritage. |. Cult. Herit. 2014, 15, 234-241. [CrossRef]
Doulamis, A.; Voulodimos, A.; Protopapadakis, E.; Doulamis, N.; Makantasis, K. Automatic 3D Modeling and Reconstruction of
Cultural Heritage Sites from Twitter Images. Sustainability 2020, 12, 4223. [CrossRef]

Amato, F.; Castiglione, A.; Mercorio, F.; Mezzanzanica, M.; Moscato, V.; Picariello, A.; Sperli, G. Multimedia story creation on
social networks. Future Gener. Comput. Syst. 2018, 86, 412—420. [CrossRef]

Moscato, V.; Picariello, A.; Sperli, G. An emotional recommender system for music. IEEE Intell. Syst. 2020, 6, 1. [CrossRef]
Venters, C.C.; Jay, C.; Lau, L.; Griffiths, M.K.; Holmes, V.; Ward, R.R.; Austin,].; Dibsdale, C.E.; Xu, J. Software sustainability:
The modern tower of babel. In CEUR Workshop Proceedings; CEUR: Karlskrona, Sweden, 2014; Volume 1216, pp. 7-12.

ISO/IEC 25010:2011. 2011. Available online: https://is025000.com/index.php/en/iso-25000-standards /iso-25010 (accessed on
20 December 2020).

Papamichail, M.D.; Symeonidis, A.L. A generic methodology for early identification of non-maintainable source code components
through analysis of software releases. Inf. Softw. Technol. 2020, 118, 106218. [CrossRef]

Elmidaoui, S.; Cheikhi, L.; Idri, A.; Abran, A. Machine Learning Techniques for Software Maintainability Prediction: Accuracy
Analysis. J. Comput. Sci. Technol. 2020, 35, 1147-1174. [CrossRef]

http://www.unesco.org/new/en/culture/themes/illicit-trafficking-of-cultural-property/unesco-database-of-national-cultural-heritage-laws/frequently-asked-questions/definition-of-the-cultural-heritage/
http://www.unesco.org/new/en/culture/themes/illicit-trafficking-of-cultural-property/unesco-database-of-national-cultural-heritage-laws/frequently-asked-questions/definition-of-the-cultural-heritage/
http://www.unesco.org/new/en/culture/themes/illicit-trafficking-of-cultural-property/unesco-database-of-national-cultural-heritage-laws/frequently-asked-questions/definition-of-the-cultural-heritage/
http://doi.org/10.1016/j.culher.2013.05.003
http://dx.doi.org/10.3390/su12104223
http://dx.doi.org/10.1016/j.future.2018.04.006
http://dx.doi.org/10.1109/MIS.2020.3026000
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010
http://dx.doi.org/10.1016/j.infsof.2019.106218
http://dx.doi.org/10.1007/s11390-020-9668-1

Sustainability 2021, 13, 1079 16 of 16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Malhotra, R.; Chug, A. Software maintainability: Systematic literature review and current trends. Int. J. Softw. Eng. Knowl. Eng.
2016, 26, 1221-1253. [CrossRef]

Shafiabady, A.; Mahrin, M.N.; Samadi, M. Investigation of software maintainability prediction models. In Proceedings of the 2016
18th International Conference on Advanced Communication Technology (ICACT), Pyeongchang, Korea, 31 January—3 February
2016; pp- 783-786.

Chidamber, S.R.; Kemerer, C.F. A metrics suite for object oriented design. IEEE Trans. Softw. Eng. 1994, 20, 476—493. [CrossRef]

Perepletchikov, M.; Ryan, C.; Frampton, K. Cohesion metrics for predicting maintainability of service-oriented software.
In Proceedings of the Seventh International Conference on Quality Software (QSIC 2007), Portland, OR, USA, 11-12 October 2007;
pp- 328-335.

Alsolai, H.; Roper, M. A systematic literature review of machine learning techniques for software maintainability prediction.
Inf. Softw. Technol. 2020, 119, 106214. [CrossRef]

Dagpinar, M.; Jahnke, J.H. Predicting maintainability with object-oriented metrics-an empirical comparison. In Proceedings of
the 10th Working Conference on Reverse Engineering, Victoria, BC, Canada, 13-16 November 2003; IEEE: New York, NY, USA,
2003; pp. 155-164.

Li, W.; Henry, S. Object-oriented metrics that predict maintainability. J. Syst. Softw. 1993, 23, 111-122. [CrossRef]

De Lucia, A.; Pompella, E.; Stefanucci, S. Assessing effort estimation models for corrective maintenance through empirical studies.
Inf. Softw. Technol. 2005, 47, 3-15. [CrossRef]

Almugrin, S.; Albattah, W.; Melton, A. Using indirect coupling metrics to predict package maintainability and testability. J. Syst.
Softw. 2016, 121, 298-310. [CrossRef]

Kumar, L.; Naik, D.K,; Rath, S.K. Validating the effectiveness of object-oriented metrics for predicting maintainability. Procedia
Comput. Sci. 2015, 57, 798-806. [CrossRef]

Anda, B. Assessing software system maintainability using structural measures and expert assessments. In Proceedings of the
2007 IEEE International Conference on Software Maintenance, Paris, France, 2-5 October 2007; pp. 204-213.

Schnappinger, M.; Osman, M.H.; Pretschner, A.; Fietzke, A. Learning a classifier for prediction of maintainability based on
static analysis tools. In Proceedings of the 2019 IEEE/ ACM 27th International Conference on Program Comprehension (ICPC),
Montreal, QC, Canada, 25-26 May 2019; pp. 243-248.

Amor, M.,; Fuentes, L.; Pinto, M. A Survey of Multimedia Software Engineering. J. UCS 2004, 10, 473-498.

Van Koten, C.; Gray, A. An application of Bayesian network for predicting object-oriented software maintainability. Inf. Softw.
Technol. 2006, 48, 59-67. [CrossRef]

Jin, C; Liu, J.A. Applications of support vector mathine and unsupervised learning for predicting maintainability using object-
oriented metrics. In Proceedings of the 2010 Second International Conference on Multimedia and Information Technology,
Kaifeng, China, 24-25 April 2010; Volume 1, pp. 24-27.

Kaur, A.; Kaur, K.; Malhotra, R. Soft computing approaches for prediction of software maintenance effort. Int. J. Comput. Appl.
2010, 1, 69-75. [CrossRef]

Zhou, Y.; Leung, H. Predicting object-oriented software maintainability using multivariate adaptive regression splines. J. Syst.
Softw. 2007, 80, 1349-1361. [CrossRef]

Samoladas, I.; Stamelos, I.; Angelis, L.; Oikonomou, A. Open source software development should strive for even greater code
maintainability. Commun. ACM 2004, 47, 83-87. [CrossRef]

Fioravanti, F; Nesi, P. Estimation and prediction metrics for adaptive maintenance effort of object-oriented systems. IEEE Trans.
Softw. Eng. 2001, 27, 1062-1084. [CrossRef]

Papamichail, M.D.; Diamantopoulos, T.; Symeonidis, A.L. Measuring the reusability of software components using static analysis
metrics and reuse rate information. J. Syst. Softw. 2019, 158, 110423. [CrossRef]

Scott, D.W. On optimal and data-based histograms. Biometrika 1979, 66, 605-610. [CrossRef]

http://dx.doi.org/10.1142/S0218194016500431
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1016/j.infsof.2019.106214
http://dx.doi.org/10.1016/0164-1212(93)90077-B
http://dx.doi.org/10.1016/j.infsof.2004.05.002
http://dx.doi.org/10.1016/j.jss.2016.02.024
http://dx.doi.org/10.1016/j.procs.2015.07.479
http://dx.doi.org/10.1016/j.infsof.2005.03.002
http://dx.doi.org/10.5120/339-515
http://dx.doi.org/10.1016/j.jss.2006.10.049
http://dx.doi.org/10.1145/1022594.1022598
http://dx.doi.org/10.1109/32.988708
http://dx.doi.org/10.1016/j.jss.2019.110423
http://dx.doi.org/10.1093/biomet/66.3.605

	Introduction
	Background Knowledge
	Source Code Evolution as a Maintainability Indicator
	Towards Modeling Maintainability
	Benchmark Dataset

	Maintainability Evaluation System
	Overview
	Preprocessing
	Metrics Behaviors' Extraction
	Models' Construction

	Evaluation
	Efficiency of Maintainability Evaluation
	Ability to Provide Early Predictions
	Case Study

	Conclusions and Future Work
	References

