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Abstract: Resilience is the capability of a system to resist any hazard and revive to a desirable
performance. The consequences of such hazards require the development of resilient infrastructure to
ensure community safety and sustainability. However, resilience-based housing infrastructure design
is a challenging task due to a lack of appropriate post-disaster datasets and the non-availability
of resilience models for housing infrastructure. Hence, it is necessary to build a resilience model
for housing infrastructure based on a realistic dataset. In this work, a Bayesian belief network
(BBN) model was developed for housing infrastructure resilience. The proposed model was tested
in a real community in Northeast India and the reliability, recovery, and resilience of housing
infrastructure against flood hazards for that community were quantified. The required data for
resilience quantification were collected by conducting a field survey and from public reports and
documents. Lastly, a sensitivity analysis was performed to observe the critical parameters of the
proposed BBN model, which can be used to inform designers, policymakers, and stakeholders in
making resilience-based decisions.

Keywords: resilience; housing infrastructure; Bayesian belief network; flood hazard and sensitiv-
ity analysis

1. Introduction

Resilience is defined as the capability of a system to sustain against any hazard and
return to its desired performance level after the occurrence of the hazard [1]. Hosseini et al.
and Meerow et al. reviewed the definition of resilience in different disciplines [2,3], and its
meaning has been discussed and evaluated in the existing literature [3,4]. The reliability and
recovery of infrastructure are the two key dependent parameters of infrastructure resilience;
furthermore, these two key parameters depend on four additional parameters: robustness,
redundancy, rapidity, and resourcefulness, as shown in Figure 1 [1,5-7]. Robustness refers
to the sustainability of a system against the effects of the disaster, redundancy refers to
the duplication of any critical components or functions of a system that are intended to
increase the reliability of the system, rapidity refers to the length of time required to return
to its desired position after the occurrence of the hazard, and resourcefulness refers to the
availability of resources for recovery. Reliability depends on the robustness and redundancy
of the infrastructure, whereas the recovery process depends on rapidity and resourcefulness.
Therefore, determining the reliability of infrastructure involves considering parameters
based on robustness and redundancy, and similarly, determining the recoverability of
infrastructure involves considering parameters based on rapidity and resourcefulness.
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Figure 1. Resilience flowchart of the dependency parameters.

Figure 2 represents the generalized performance of a system/infrastructure over its
service life [7,8], where A represents the initial condition of a system (which is generally
considered to be 100% performance); AB and DE represent the gradual degradation in
system performance due to operational conditions; BC represents a sudden drop in system
performance due to a disaster, which is also known as loss; CT; represents the robustness
of a system; T1 T represents the time required for the recovery of the system; CD represents
the recovery profile of the system. Figure 2 shows that, initially, the system/infrastructure
performance degrades with time due to natural causes. Then, due to the occurrence of a
disaster, the performance level sharply declines. The loss that is shown in the figure mainly
depends on the impact of the disaster and the robustness of the system/infrastructure,
which means that if the resistance ability of the system is very high, then the losses due
to the disaster will be very low. The losses can be estimated using the Hazus technical
manual created by the Federal Emergency Management Agency [9]. This manual provides
several methodologies for multihazard loss estimation. After the loss, the system tries to
recover to its baseline performance by following a recovery profile, which is uncertain and
dependent on the type of infrastructure system. There are three types of recovery profiles:
linear, non-linear, and stepped. The restoration of roads and bridges, for example, typically
follows a stepped recovery pattern.
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Figure 2. System Performance over its service Life.
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1.1. Socio-Physical Infrastructure

Over the past decade, resilience quantification for communities has been an active
area of research for both scientists and engineers. Engineering resilience is relatively new
and currently developing, and valuable resources are available for the development of new
engineering practices, codes, and regulations [10]. A community is defined as a group of
people living in a given geographical area and mainly comprising two key infrastructure
systems, namely, social and physical, as shown in Figure 3a [7]. The cross-dependency
between different infrastructure systems is shown in Figure 3b [11,12].
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Figure 3. Representation of community infrastructure and multilayer interdependency between different infrastructure

systems: (a) Community infrastructure; (b) Interdependency.

Social infrastructure resilience is the ability of societies to resist the effects of a disaster
and mainly depends on the population of the community, physical health conditions,
literacy or education level, and economic conditions. The physical infrastructure consists
of networks for transportation, electricity, water, and telecommunications [7]. The de-
pendencies between infrastructures enhance the complexity of infrastructure resilience
quantification, which can be modeled using different approaches [12-14].

Quantification of resilience is very challenging because of many factors, including non-
linear relationships between the dependent parameters, a lack of mathematically proven
equations or studies to represent these relationships, a requirement for both qualitative and
quantitative data, a need for the involvement of experts, data scarcity, data from different
sources, and missing data. To overcome these challenges, a resilience measurement scale
has been developed for performing quality assessments [15]. Mahmoud and Chulahwat
developed a mathematical model to reduce the effect of hazards and proposed a new
resilience model for resilience quantification [16]. An infrastructure resilience model plays
a crucial role in the proper operation of an infrastructure system during and post disaster
in terms of satisfying societal needs [17]. Resilience quantification for water and telecom-
munication networks was performed using the Resilience-compositional demand/supply
(Re-CoDeS) framework [18].

Various frameworks and models have been proposed for quantification and studying
resilience in different fields [19-21]. Several methodologies have been proposed for the
proper quantification of resilience, such as probabilistic methods [14,22,23], graph theory
methods [24,25], fuzzy logic methods [26], and analytical methods [27,28]. A “PEOPLES”
(Population and demographics, Environmental and ecosystem, Organized governmental
services, Physical infrastructure, Lifestyle and community competence, Economic devel-
opment, Social cultural capital) factor-based framework for resilience quantification at
different scales was also proposed [7,8]. To keep the sustainability of a structure against
future hazards, the structure should be resilient enough. Resilience quantification needs a
well-formatted past event dataset; however, the biggest hindrance in quantifying resilience
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is the lack of availability of properly formatted data for the damage and recovery for
infrastructure systems. Inappropriate datasets for previous damage and restoration can
lead to inaccurate probability estimations for future disasters and hamper sustainable de-
velopment. Additionally, dependencies between infrastructure systems play a crucial role
in resilience quantification [29]. A virtual system was formed based on an interdisciplinary
system to improve resilience and identify the impacts of post-disaster recovery efforts [30].
The codes and standards for designing resilient systems were updated to consider both
physical and non-physical infrastructure systems, and a new model for system resilience
quantification was developed that considers dependencies and cross-dependencies be-
tween the networks, which makes the system more resilient [11]. Resilience has also been
discussed and quantified in various networks, such as housing [31], the transportation
network [32-34], the electrical network [35,36], the water network [37,38], and the telecom-
munication network [39,40], but there is a lack of literature that is directly focused on
the flood resilience of housing infrastructure systems. Sen et al. studied the resilience of
housing infrastructure by using the variable elimination method, but interdependencies
between the resilience parameters were not considered in that study, which is a major draw-
back, as dependency plays a vital role in resilience [31]. This present work is novel in that
it directly addressed the housing infrastructure system by considering the dependencies
between the resilience parameters against flood hazards.

The main objectives of this work were as follows: (i) to perform a comprehensive
study/survey of a community and its socio-physical infrastructure to identify the most
influential factors affecting the flood resilience of its housing infrastructure system, (ii) to
develop a probabilistic graphical model (Bayesian network model) for the flood resilience
quantification of a housing infrastructure system, (iii) to quantify the flood resilience for
housing infrastructure against flood hazards, and (iv) to check the sensitivity of each
dependent parameter of reliability and recovery.

1.2. Socio-Physical Infrastructure of the Barak Valley Community

In this research, the case study region selected was the Barak Valley region of Northeast
India. This valley is one of the most important regions of Northeast India as it connects
many neighboring states of India. The longitude of this region ranges from 92°15’ E to
93°15’ E, and the latitude ranges from 24°8’ N to 25°8' N. The total surface area of this
valley is approximately 262,230 km?, with a population of more than 3.6 million [41]. The
climate of Barak Valley is sub-tropical, warm, and humid, the average rainfall of this valley
is 3180 mm, and due to the high intensity of rainfall, floods and landslides are common in
the valley. Per the Assam State Disaster Management Authority (ASDMA), in 2017, due to
flooding, many water sources were severely damaged, with an estimated restoration cost of
more than 277 million USD and an additional 150,000 USD sanctioned for housing system
recovery. In 2018, approximately 200,000 people were affected, more than 1300 hectares of
agricultural land were damaged, and a main national highway (NH-53, 44) and several
other highways remained non-functional for several days. With each year, the damage
and costs due to flooding increase [42]. The occurrences of such disasters are frequent in
this region, and hence, the associated risk is high [42]. In this valley, nearly 11% of the
population do not live in a house, and only 1% of the population live in a house with three
or more rooms. The average annual per capita income of the valley is generally low and is
in the range of 205 to 342 USD [41,43]. In this study, the housing infrastructure system of
Barak Valley was used as the basis for the case study.

Barak Valley is a developing community with mixed demographics and economic
conditions. Per the census report, only 30.75% of households use electricity and 0.84% of
households use internet services [41]. The elevation of the valley varies from —58 m to
1694 m from mean sea level (MSL), as shown in Figure 4 [44]. In Figure 4, the outlines
signify the administrative divisions of an Indian state, which is known as a district; this
valley consists of three districts, namely, Cachar, Karimganj, and Hailakandi. Most of
the population-dense areas of this valley are located in low-elevation zones, as shown in
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Figure 5 [41,44]. Hence, from a flood risk perspective, the valley can be expected to incur
significant socio-economic losses.
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Figure 4. Details of Barak Valley overlapping with a digital elevation model (DEM).
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Figure 5. Population densities of different areas.
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The housing system of this valley comprises various building typologies with a wide
range of construction materials. Most of the residential and industrial buildings of this
valley are located in low elevations, in the range of —59 to 35 m from MSL, as shown in
Figure 6 [44]. These buildings are expected to have a high level of exposure with significant
losses during a flood-related disaster. In this valley, traditional single-family houses, also
known as Assam-type houses, were found to be the most common type of construction for
both urban and rural areas. This type of house is constructed in flat and sloped terrains.
The roof is mainly erected using high gables and the walls are made up of timber frames
that are plastered with cement and the flooring is made up of either wood or concrete.
This type of construction is less reliable and robust compared to RCC construction. More
recently, RC construction has increased significantly in urban localities.
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Figure 6. Categorization of buildings based on occupancy.

The water system plays a vital role in a community, as its primary function is to
provide potable water to residential and commercial buildings. Proper functioning of the
overall system depends on the working conditions of individual components, such as the
supply source, water pipeline, treatment plant, water tanks, and reservoirs, along with
their dependencies. Most of the water supply sources of this valley are located at lower
elevations, as shown in Figure 4.

There are three aspects of the electrical power supply network: generation, transmis-
sion, and distribution [45]. This network plays a role that is as critical as other infrastructure
systems, such as housing, and the water network depends on the electrical network to func-
tion. The electrical network comprises five components, which include transmission towers,
substations, transformers, electric towers, and electric poles. It can be seen in Figure 7 that
the majority of the substations in this valley are located at low elevations, leading to a
higher risk of being damaged by floods [46]. On the other hand, the telecommunications
network is another important infrastructure system in a community, as the number of
phone calls increases during and after any disaster. Most of the population in rural areas
do not use internet services, which increases the lack of awareness and communication.
For instance, many small communication towers are installed on building roofs, which
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may lead to low supply connectivity in an area with a high connectivity demand. Hence, it
is expected that the resilience of the communication network and other interdependent
systems in Barak Valley will be relatively low during and after disasters.
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Figure 7. Bayesian belief network (BBN) model for flood resilience quantification of a housing infrastructure system.

The transportation network of this valley connects several major states within India.
The transportation network comprises four modes: the railway, the roadway, the airway,
and the waterway. In the roadway network, bridges are lifelines, as they are considered
the most sensitive points of failure during a disaster. Flexible pavement is found to be the
most common type of pavement in this valley. Recently, rigid pavement with RC and paver
block has become preferred in construction for mitigating repetitive damage due to floods.
The airport serving this valley is located at a relatively high elevation, 107 m from the MSL,
with a total area of 36.70 acres. Due to the small-scale operation of the airport with limited
aircraft, helicopters, and cargo vehicles, it is expected to have a low impact on post-disaster
recovery, rescue, and relief operations.

The remaining sections of this paper are organized as follows. In Section 2, the
proposed BBN model based on the housing infrastructure system is described in detail.
In Section 3, the data collection process for the flood resilience study is described. In
Section 4, the proposed model is verified, the sensitivities of the parameters of the proposed
BBN model are evaluated, and the proposed BBN model is applied to assess the reliability,
recovery, and resilience values of Barak Valley for the housing infrastructure system. Finally,
in Section 5, conclusions, limitations of the study, and recommendations for further research
are discussed.

2. Probabilistic Graphical Model

To develop an effective resilience framework for the housing infrastructure system,
it is necessary to utilize different types of data, such as damage and recovery data from
multiple sources. Expert judgment should also be obtained for the data interpretation,
as the data can often be incomplete. Therefore, it is necessary to consider uncertainties
in resilience assessments for the housing infrastructure. To address these uncertainties,
different network-based models, such as artificial neural networks (ANNSs), an analytic
network process (ANP), a Bayesian belief network (BBN), and fuzzy cognitive maps (FCMs)
are used. ANN provides insights into uncertainties if a comprehensive post-disaster
dataset is available. In the case of insufficient data, techniques such as an ANP, BBN, or
FCM can mitigate such uncertainties. It becomes very difficult for experts to generate a
supermatrix, as found in the ANP method, where the representation of the relationship
between parameters is performed using pairwise comparisons [47]. FCMs allow for the
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expression of dependence between the nodes with an influence degree ranging from “+1”
to “—1” [48]. BBN assigns effective relationships between the nodes by considering a
conditional probability table (CPT). A comparison of these different techniques is shown
in Table 1 [4]. Note that, in the table, VH—very high, H—high, M—medium, and L—low.
Based on this comparison, the BBN tool was selected for this study.

Table 1. Comparison between different techniques.

Attributes ANN ANP BBN FCM
Capability to express causality N L VH H
Capability to control qualitative inputs N VH H VH
Capability to control quantitative inputs VH L M L
Capability to control dynamic data H M H M
Capability to model complex systems VH M VH H
Learning/training capability VH H H H

ANN: artificial neural network, ANP: analytic network process, BBN: Bayesian belief network, FCM: fuzzy
cognitive map; L: low, M: medium, H: high, VH: very high, N: Negligible.

2.1. Bayesian Belief Network

BBN is an extensive probabilistic model that is used to characterize the uncertainty
that is associated with variables that constitute the model [49]. BBN is a graph-based
model comprising nodes and edges, where nodes represent model variables and edges that
represent the relationship between the nodes and also the conditional dependencies [50,51].
BBN can also be defined as a class of graphical models that presents a brief representation
of the probabilistic dependencies between a given set of random variables [52]. The BBN
model generally deals with discrete probabilities; therefore, each node is categorized
into a finite set of variables with their probability values [53]. The CPT quantifies the
dependencies between the child node and the parent node, as shown in Figure 8, where
node A represents the child node and nodes B and C represent the parent nodes. The CPT
for the parent nodes transfers to the unconditional probability (UP) and can be attained via
an expert decision [53] and/or training from the dataset [54].

Node B Node C

Variable  Probability Variable  Probability

Low P(B=L) Low P(C=L)

Medium PB=M) Medium P(C=M)

High P(B=H) High P(C =H)

Node Node Node A
B C Probability B
Low (L) Medium (M) High (H)

L L P(A=LB=L.C=I) PA=MB=L C=I) PA=HB=L C=0L)
M M PA=LB=M.C=M) PA=MB=MC=M) PA=HB=M,C=M)
H H PA=LB=H,C=H) PA=MB-HC=H) PA=HB=HC=H)

Figure 8. Representation of a BBN.

Probabilistic methods, such as a BBN, have been used to model various types of
networks, such as transportation networks [32,55-57], water networks [14,38], telecommu-
nications networks [58,59], and electrical networks [60]. An infrastructure system can be
depicted as a BBN by using the dependent parameters and their interdependencies. BBN
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modes have also been used in the assessment of risks in infrastructure systems [61,62]. In
this model, variables of any parameter can be updated when the values of evidence vari-
ables are available [63]. BBN comprises two types of inference, such as forward inference
and backward inference, where the forward inference method is used to determine the
system’s probability value based on its component probability values and the backward
inference method is used to determine the value of the updated probability of a system
or its components based on the system state. It can also simulate the dependence of a
network of uncertain variables and compute the inferences of any event based on evidence.
For example, consider a BBN in which the probability occurrence of an event A depends
on the occurrences of any other event, such as E; (i=1, ..., n). The posterior probability
of the ith event, E;, given the occurrence of A, is given by Bayes’ theorem, as shown in
Equation (1) [64]:
P(A|E;)P(E;)
p(a) 7

where P(A | E;) is the conditional probability of the event A given the occurrence of E; and
P(E;) is the prior probability of E;.

P(Ei|A) = @

2.2. BBN Model for Flood Resilience Quantification of Housing Infrastructure

In this section, the development of the BBN model for flood resilience is discussed.
Initially, several experts from various domains were selected. Then, based on the experts’
knowledge and the literature, the resilience parameters were selected. The experts were
selected based on the assumption that they have experience in the field of utility infras-
tructure management, risk management, Bayesian analysis, or catastrophes. A total of
ten experts were selected for this work; their experience was as follows: (i) two field
officers from the District Disaster Management Authority (DDMA) with more than three
years of experience and who also helped during the field survey for data collection; (ii)
one district project officer (DPO) from DDMA with more than ten years of experience
and expertise in disaster management monitoring and policy implementation; (iii) two
academic experts from different institutions having more than two and ten years of ex-
perience, respectively, with both obtaining a Ph.D. in Civil Engineering and are experts
in reliability, risk, and resilience assessments; (iv) five flood catastrophe modelers from
different industries with experiences of 16, 7, 5, 5, and, 4 years, respectively, where all of
whom obtained a Ph.D. in Civil Engineering. Several meetings were conducted with the
experts for the selection of resilience parameters and the identification of interdependen-
cies. As resilience depends on the two key factors of reliability and recovery, 14 resilience
parameters for housing infrastructure against flood hazards were selected based on the
experts’ knowledge and a literature review. The selected resilience parameters were as
follows: (i) Type_of_house (robust types of houses are expected to perform better during
floods) [31,65]; (ii) Wall_thickness (increasing wall thickness increases the resistance capabil-
ity and reliability) [31,66]; (iii) Building_age (newly constructed buildings were found to be
in better condition than older building) [31,67]; (iv) Number_of_stories (as stories increase,
casualties decrease during floods) [31,67]; (v) Drainage (adequate drainage systems prevent
damage to infrastructure) [31,68]; (vi) Flood_depth (this produces water pressure, which
reduces the reliability of the infrastructure) [31,68]; (vii) Foundation_type [65,69]; (viii)
Plinth_level (increasing the plinth height of the house to the top level of the road reduces
vulnerability) [31]; (ix) Insurance (insurance enhances the recovery rate as the insurer can
pay off the insurance claims) [31,70]; (x) Income (for households with higher income levels,
the recovery process will be faster after a disaster) [31,69,71]; (xi) Education (education
enhances the preparedness against disaster) [67,69,72]; (xii) Relief_received (whether dur-
ing/after the disaster relief is received or not) [31,73,74]; (xiii) Approachability (whether
connectivity from resource location to vulnerable site is disturbed or not) [31,69]; (xiv)
Resource_availability (whether during/after the disaster raw materials for construction are
available locally or not) [31].
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To reduce the complexity during the construction of the CPT, reliability was subdi-
vided into two parameters: (i) superstructure condition (Super_Struc) and (ii) substructure
and external conditions (Sub_Struc_Ex). Next, these two parameters were linked with
different resilience parameters, such that Super_Struc was linked with Type_of_house,
Wall_thickness, Building_age, and Number_of_stories, while Sub_Struc_Ex was linked
with Drainage, Flood_depth, Foundation_type, and Plinth_level. Similarly, recovery was
divided into two parameters: (i) Personal_factor and External_factor. Personal_factor was
then linked with Insurance, Income, and Education, while External_factor was linked
with Relief_received, Approachability, and Resource_availability. Finally, the two key
parameters, namely, reliability and recovery, were linked with resilience, as dependency
plays a crucial role in resilience quantification. Therefore, based on the experts” judge-
ments, the dependency was constructed and the dependencies between the parameters
were as follows: (i) Type_of_house depended on Income, (ii) Wall_thickness depended on
Type_of_house, (iii) Flood_depth depended on Drainage, (iv) Relief_received depended on
Approachability, (v) Insurance depended on Income, and (vi) Foundation_type depended
on Number_of_stories. After the selection of resilience parameters and the assignment of
interdependencies, a BBN model was developed.

The developed BBN model for the flood resilience quantification of housing infras-
tructure with dependencies is shown in Figure 7. In the model, resilience was categorized
into three different probability states—low (L), medium (M), and high (H)—where low
means that immediate attention should be given by the stakeholders to the housing infras-
tructure of the community for strengthening or reconstruction, medium means that the
housing infrastructure of the community can act as functional for the long-term, and high
means safety exists in the housing infrastructure of the community for future hazards [75].
Reliability was categorized into four different probability states: DS1, DS2, DS3, and D54,
as discussed in Table 2 [76].

Table 2. Damage state (DS) descriptions.

Damage State Category Description

No-damage condition, where floodwater touches the
foundation but has no contact with electrical systems

DSt Low with a water height that is about 2.5 cm from ground
level and damage occurs to carpets and flooring.
Drywall damage up to a 30 cm water level from the
DS2 Medium ground level and damage occurs to household

furniture and other major equipment on the floor;
doors need to be replaced.

Electrical panels, bathroom/kitchen cabinets and
DS3 High electrical appliances, lighting fixtures on walls,
ceiling lighting, and studs got damaged.

DS4 Very High The structure is fully damaged.

DS4 means that damage due to the occurrence of the flood is very high, which indicates
that the reliability of the housing infrastructure of the community is very low; on the other
end of the range, DS1 means damage due to the occurrence of the flood is very low,
which indicates that the reliability of the housing infrastructure of the community is very
high. Recovery is categorized into three different probability states—low (L), medium
(M), and high (H)—where H is less than 10 days, which corresponds to the 25th percentile
for recovery time; M is between 11 and 35 days, which corresponds to the 26th to 75th
percentile for recovery time; L is more than 35 days, which corresponds to the 76th to 100th
percentile for recovery time. The recovery of the housing infrastructure is discussed based
on the amount of time required for the infrastructure to fully recover, where high means
that the infrastructure took little time to fully recover and low means that the infrastructure
took a very long time to fully recover. The recovery time is mainly based on the recovery
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of the infrastructure; it does not include the recovery of housing essentials, such as kitchen
essentials, bathroom essentials, furniture, and utilities. The different probability states of
each parent and intermediate parameter, as shown in Tables 3 and 4, were assigned based
on the field survey data and experts” knowledge.

Table 3. Variable details for the parent parameters.

Parameter Scale Parameter Scale
Annual Income Less than 10,000, Below 10th standard,
(Indian Rupees) 10,000-20,000, or Education 10th or 12th standard

P more than 20,000 passed, or graduate

Insurance Yes or no Relief_received Yes or no

No, yes with a 0 to

10% increase, or yes
with more than a 10%
increase

Resource_availability Approachability Yes or no

Less than 10 years, 10 Plinth_level of house Uptolm,1to2m,

Building_age to iizsagg’y(;ragore w.r.t the road top level and above 2 m
Drainage availability Yes or no Number_of_stories 1 or more than 1

Table 4. Variable details for the intermediate parameters.

Parameter Scale Parameter Scale
Personal_factor Good or bad Super_Struc Good or bad
External_factor Good or bad Sub_Struc_Ex Good or bad

Less than 30 cm, 30 to
Foundation_type Shallow or deep Flood_depth 90 cm, or more than
90 cm

Bamboo, masonry
(Assam type), or
Reinforced Cement
Concrete (RCC)

Less than 5 cm, 5 to 10

Wall_thickness cm, or more than 10 cm

Type_of_house

3. Data Collection for Flood Resilience Study

In Barak Valley, flood hazards occur at regular intervals, which mainly affect the
infrastructure systems and a considerable rise in annual rainfall in the past few years has
contributed to flooding. It has already been stated that for accurate resilience quantification,
a properly formatted dataset of past disasters should be utilized; however, the collection of
such data is often a difficult task.

As India is a developing country, the proper collection and management of pre- and
post-disaster data for housing should be readily available for most governmental agencies.
Post-disaster data has been provided by some governmental agencies, but the volume
of data provided is inadequate as their variables differ from those in this work. For
example, the datasets divided the housing infrastructure into two types, namely, pucca
and kutcha, and the number of damaged houses in terms of pucca and the kutcha type was
provided. In our work, however, we required the data in terms of bamboo, masonry, and
RC type. Moreover, information on the maximum considered nodes in this BBN model
is unavailable.

To overcome this challenge and to acquire the necessary data, an extensive field
survey was performed in various flood-affected areas in this valley regarding housing
infrastructure systems. A flood resilience assessment form was prepared for the survey, as
shown in Figure 9. In this process, we visited 23 vulnerable places and 1 non-vulnerable
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place. Post-disaster data were collected for more than 500 houses, with each survey taking
around 20-25 min.

FLOOD-RESILIENCE ASSESSMENT FORM
GPS location: 24749 )° N, 92-C//S £| Elevation:

DATE: ()9 /'02./1 /9

Place Name: _A_qukfm (Hmw% m#)

RELIABILITY INFORMATION

Type of House: Bamboo . Assam Type/Masonry R.C.C.
T
Year of Construction: XD0L ( [2_71() SM) =
Numbers of stories: o1 | Floor Height: x5 hn
Foundation type: Pile or deep Shallow Crawlspace other: Explain
Height of plinth w.r.t. to road: /. Flood Depth: 3 b‘f !
Wall Thickness: Z, [ Drainage Available: /NO
Overall damage state: DSI DS2 D83 DS4
FLOOD INFORMATION
Reason of flood:
\_,/Hoigh intensity rainfall in saturated soil
/ Poor drainage system

e Failure of flood embankment
o Overflow of water from water bodies, such as river, lake or ocean

o Others
RECOVERY INFORMATION

Annual Income Less than 1 Lacs 1 lacs — 2 Lacs More than 2 Lacs

(Indian Rupees): \/

Resource No Yes Yes at increased rate

Availability: W AL
-’Appmehbllltymcmlibﬂny' Yes (16 dryy ] ?
[ A [Relief Recefved: Vo 7

10% Std annmp-— 12" Std passed | Graduation

\/

bl ol ”

Figure 9. Flood resilience assessment form.

During the survey, respondents provided recommendations for future preparedness,
which we discuss in the last section of this document. The form was designed in a
generalized manner, such that it can be used for resilience quantification of housing
infrastructure systems in different communities. This collected data and associated data-
driven resilience analysis are beneficial for improving the preparedness of a housing
infrastructure system for future flood disasters, increasing its structural reliability, and
enabling a thorough risk assessment against flood hazards.

4. Results and Discussion
4.1. Model Validation

The validation of a model is critical, as an inaccurate model will always provide
erroneous results. Therefore, it is very important to validate the proposed BBN model
such that it can provide accurate information. In this study, two qualitative validation
approaches, namely, an extreme condition test and a scenario analysis, were performed
to validate the proposed BBN model [77]. The experts’ judgment played a critical role in
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developing and validating the proposed BBN model due to data scarcity. Initially, the prior
probability of each parent node was assigned from the collected field survey dataset. As an
example, consider P(Y), the prior probability of “Y” and, say, there are two variables for Y,
namely, “yes” and “no.” If X is the total number of data collected, out of which, “A” is the
number of data for the “no” variable and “B” is the number of data for the “yes” variable,
then the prior probability of “Y” is assigned based on Equation (2) [78]:

P(Y =no)=A/X and P(Y = yes) = B/X, )

and the CPT between the parameters is obtained based on expert judgment and the
collected data. During the development of the CPT, the DPO of DDMA and other industry
experts generated the CPT values for each intermediate and child node based on their
knowledge and the available literature. Next, the academic experts modified the CPT
values according to their experience, and finally, CPT values were assigned between the
parent and child node.

In this study, 332 CPT values were generated for the proposed BBN model. The
recovery, reliability, and resilience values for different vulnerable places were computed
using Netica software [79].

4.1.1. Extreme Condition Analysis

In the extreme condition analysis, two extreme conditions, namely, extreme 1 (E-1)
and extreme 2 (E-2), were considered for the analysis in this process. E-1 represented one of
the most vulnerable places (Burunga) in this valley, where all the parent nodes of resilience
were in the worst condition states, while E-2 represented a non-vulnerable place (Tarapur),
where all the parent nodes were in favorable condition states. The proposed BBN model
for resilience based on the housing infrastructure system was applied to these two extreme
conditions. Here, for the E-1 and E-2 conditions, the recovery for Burunga and Tarapur was
estimated as being (low, medium, high) = (75.9, 15.7, 8.38) and (24.5, 26.6, 48.9), respectively.
Similarly, the reliability for Burunga and Tarapur was estimated as (DS1, DS2, DS3, DS4) =
(12.2,15.2,21.6, 51.0) and (33.2, 24.6, 22.1, 20.1), respectively. The resilience for Burunga
and Tarapur was estimated as (low, medium, high) = (66.9, 18.4, 14.7) and (29.3, 25.7, 45.0),
respectively. The evaluated values indicated that E-1 and E-2 had the highest probabilities
of 66.9% and 45.0% at the low and high resiliencies, respectively. These indicated that for
the E-1 condition, the probability of resilience in the low state was higher than other states,
but for the E-2 condition, the probability of resilience was in the high state was higher. The
E-1 and E-2 tests showed that the proposed BBN model based on the housing infrastructure
system performed according to the assumed model behavior, which also indicated that the
proposed BBN model was valid.

4.1.2. Scenario Analysis

In the scenario analysis, five different types of scenarios were considered for the
quantification of reliability and recovery. The probability states of all resilience parameters
for all five scenarios are presented in Tables 5 and 6. Scenario 1 represents all the parent
nodes in the severe condition; with subsequent progress of the parent nodes, the conditions
improved gradually to ultimately reach the best condition, as represented by scenario 5.
The probability states for the resilience parameters for each scenario were assigned based
on the condition of the scenario. Based on the probability states, the reliability and recovery
for all the scenarios were calculated, as shown in Tables 5 and 6.
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Table 5. Scenario analysis for recovery.
Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Insurance No No No No Yes
Income Less than 10,000 10,000 to 20,000 10,000 to 20,000 More than 20,000 More than 20,000
Blucatin U0 ondadpassed  stondandpassed | C0u0te Graduate
Relief_received No No Yes Yes Yes
Resource_availability No Yes wi(’:h more than  Yes wizh more than  Yes wi(’:h more than inz{f;a‘;vei?ya(l)l to
a 10% increase a 10% increase a 10% increase 10%
Approachability Yes Yes No No No
Recovery
Low 74.3 50.9 329 26.5 1.7
Medium 18.3 29 35.1 33 11.9
High 7.4 20.1 31.9 40.5 86.4
Table 6. Scenario analysis for reliability.

Parameter Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Type_of_house Bamboo Assam Type RCC RCC RCC
Wall_thickness Less than 5 cm 5t0 10 cm More than 10 cm More than 10 cm More than 10 cm

Building_age More than 20 More than 20 Up to 20 Up to 10 Up to 10
Number_of_floor 1 1 More than 1 More than 1 More than 1
Plinth level More than 2 m More than 2 m More than 2 m Uptolm Uptolm
Foundation_type Shallow Shallow Shallow Deep Deep
Flood_depth More than 90 cm More than 90 cm More than 90 cm 30 to 90 cm Less than 30 cm
Drainage No No No No Yes
Reliability
DS1 4.5 9.9 17.5 28.3 87.2
DS2 7.8 16.1 27.8 28.7 7.8
DS3 30.9 29.4 27.3 23 33
DS4 56.8 44.6 27.4 20 1.7

In scenario 1, the probabilities of recovery and reliability were (low, medium, high) =
(74.3,18.3,7.4) and (DS1, DS2, DS3, DS4) = (4.5, 7.8, 30.9, 56.8); in scenario 2, the probabilities
of a low state recovery and DS54 state reliability decreased from 74.3 to 50.9 and from 56.8
to 44.6, respectively, while the probabilities of a high state recovery and DS1 state reliability
increased from 7.4 to 20.1 and from 4.5 to 9.9, respectively; in scenario 3, the probabilities of
a low state recovery and D54 state reliability decreased to 32.9 and 27.4, respectively, while
the probabilities of a high state recovery and DS1 state reliability increased to 31.9 and 17.5,
respectively; in scenario 4, the probabilities of a low state recovery and DS54 state reliability
decreased to 26.4 and 20.0, respectively, while the probabilities of a high state recovery and
DS1 state reliability increased to 40.5 and 28.3, respectively; in scenario 5, the probabilities
of a low state recovery and DS54 state reliability decreased to 1.7 and 1.7, respectively, while
the probabilities of a high state recovery and DS1 state reliability increased to 86.4 and
87.2, respectively. All five scenarios represented the desired model behavior. Similarly,
different combinations of parameters were considered to generate different scenarios and
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their recovery and reliability probability distributions were tested to perform the model
validation. Based on the results of the analysis and the discussion presented above, it is
believed that the proposed BBN model was validated.

The validation of the proposed BBN model using different approaches also indicated
that the constructed CPTs based on the experts” knowledge were correct. Hence, this model
can be used for resilience quantification for housing infrastructure against flood hazards.

4.2. Sensitivity Analysis

Sensitivity analysis in the BBN is broadly concerned with understanding the re-
lationship between local network parameters and global conclusions drawn from the
network [80-84]. A sensitivity analysis was performed to achieve the following objectives:
(i) to identify the critical parameters for reliability and recovery of a housing infrastructure
system and (ii) to identify the possible changes of the dependent parameters in the BBN
model that can ensure the satisfaction of a query constraint for the target reliability, recov-
ery, or resilience. Sensitivity analysis provides essential information about the results and
their variance according to a very small change in the input value with uncertainty [53,80].
This analysis included an investigation of the effect of changes in uncertain input parame-
ters on the uncertainty of the response of interest. The sensitivity analysis also reduced
the predicted uncertainty as it identified the high-impact parameters. Here, the variance
reduction (VR) method was utilized to identify the sensitivity of the parameters of the
proposed BBN model based on the housing infrastructure system [85,86]. This method
computes the VR of the expected real value of a query node R, for example, reliability and
recovery, due to a result that was caused by changing variable node P, such as Drainage,
Type_of_house, Income, or Resource_availability. Therefore, the variance of the real value
of R given evidence on P, namely, V(R 1g), can be computed using Equation (3) [84]:

V(Rlg) = Y_p(rlg)[Ys — E(R|9))%, 3)

where 7 is the state of the query node R, g is the state of the varying variable node P, p(r 1)
is the conditional probability of r given g, Y, is the value corresponding to state r, and
E(R1g) is the expected real value of R, after the new finding g for node P.

The VR and percentage of VR of the parent nodes for the child node recovery and
reliability are shown in Figure 10. For the recovery, Insurance showed the highest contribu-
tion (2.87%) to the percentage of VR, followed by Relief_received (2.13%), Income (1.05%),
Approachability (0.91%), Resource_availability (0.79%), and Education (0.08%). It can be
observed that the parameters Education and Resource_availability were far less sensitive
for recovery. Similarly, regarding reliability, Type_of_house showed the highest contribu-
tion (5.06%) to the percentage of VR, followed by Wall_thickness (4.69%), Drainage (1.53%),
Flood_depth (1.04%), Building_age (0.63%), Number_of_stories (0.29%), Foundation_type
(0.26%), and Plinth_level (0.19%). It can be observed that the parameters Plinth_level,
Foundation_type, and Number_of_stories were far less sensitive regarding reliability.

The sensitivity analysis aligned with the expert statements, as recovery was highly
dependent on External_factor (24.1%) and Personal_factor (15%), followed by Insurance
and Relief_received, as it is known that the recovery for insured houses is relatively fast;
similarly, after a disaster, if a stakeholder provides relief to vulnerable places, then the
recovery process can be fast. Reliability was highly dependent on Super_Struc (37.3%) and
Sub_Struc_Ex (28.4%), followed by Type_of_house and Wall_thickness, as the resisting
ability of RC houses (Type_of_house) against flood hazards is greater compared to bamboo
houses, and with an increase of wall thickness, the withstanding capability against hazards
increases. Lower wall thickness impacts the Super_Struc, which directly impacts the
reliability of the housing infrastructure system, and finally, affects the resilience of the
system. It can be observed from the outcome of this analysis that the sensitivity of the
child node highly depended on the variability of the parent nodes. This technique also
provided information for optimal changes to parameters that were required to obtain
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a targeted recovery, reliability, and resilience of an infrastructure system. The crucial
parameters to recovery and reliability were identified, thereby providing information for
tuning those sensitive parameters for increasing the reliability of systems and to speed up
the recovery process.

[l variance Reduction Il variance Reduction
I Fercent I Percent
Insurance
Type_of_house
Relief_recived
Wall_thickness
Drainage Income|
Flood_depth
Approachibility|
Building_age
Number_of_stories Resource_available|
Foundation_type|
Education|
Plinth_level
T T T T T 1 t T T T T T T
0 10 20 30 40 50 0 5 10 15 20 25 30
(a) (b)

Figure 10. Sensitivity analysis for (a) reliability and (b) recovery.

4.3. Reliability, Recovery, and Resilience Values

In this section, the evaluated reliability, recovery, and resilience of the housing in-
frastructure for Barak Valley is discussed. In this work, the evaluated resilience values
considering different parameters represent the resistance to flood hazards and recoverabil-
ity after the occurrence of the hazard. Tables 7 and 8 show the reliability, recovery, and
resilience of Barak Valley. It can be observed from Table 7 that the reliability of more than
50% of the housing infrastructure of Burunga (one of the locations visited) fell under the
DS54 state, which indicates that the reliability of that location was extremely low. Similarly,
locations such as Poschim Kumrapara, Algapur, and Rajnagar fell under the same probabil-
ity state. The housing infrastructure recovery of Burunga was also not positive, as can be
observed from Table 8, as more than 75% of the housing infrastructure recovery fell under
the low probability state. It has been stated that resilience is a combination of recovery
and reliability.

It can be observed from Table 8 that the housing infrastructure resilience of Burunga
had a maximum probability in the low state. It can be noted, by including the dependencies
between the resilience parameters in the model, the results changed compared to the
evaluated results by Sen et al. [31]. According to Sen et al., the probabilities of housing
infrastructure (Algapur) were 0, 0.1, 0.6, and 0.3, but in this study, the evaluated values
were 12.7,15.3,21.8, and 50.1 [31]. During the field visit, it was observed that the maximum
of the housing infrastructure was in an extremely hazardous situation, which means that
the evaluated values of this study were more reliable than the earlier study. Similarly, for
Tarapur, it was observed that there were some houses that needed immediate attention in
terms of strengthening, but in the earlier study, the probability of housing infrastructure in
the DS4 state was zero. In this study, 20.1% of the housing infrastructure of this place was
in the DS4 state, which indicated that this study provided more accurate results. Overall,
this indicates that the BBN approach was better than the VE method.
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Table 7. Reliability values of all flood vulnerable areas.

Place Name DS1 DS2 DS3 DS4
Algapur 12.7 153 21.8 50.1
Amjurghat 13.6 16.1 21.8 48.5
Anipur Grant 16.4 18 21.9 43.7
Baleswar 16.9 18.2 21.9 43
Bhatirkupa 19.2 18.9 22 39.8
Borbond 17.5 18.3 22 42.2
Burunga 12.2 15.2 21.6 51
Dullabcherra 21.1 20.3 21.7 36.9
Dwarbond 19.8 19 25 36.1
Fanai Cherra Grant 16.9 19 21.9 429
Hailakandi Town 20.7 21 21.7 36.6
Jamira 17.2 18 22 42.8
Kanakpur 18.8 18.6 22.1 40.5
Katlicherra 16.6 18.5 21.8 43.1
Lalaghat 11.3 14.5 21.5 52.8
Rajnagar 12.7 15.6 21.7 50.1
Panchgram 19.8 19.7 21.8 38.7
Poschim Kumarpara 11.1 15 21.2 52.8
Rakhal Khalerpaar 13.5 17 21.6 47.6
Rangirghat 17.5 18.7 21.8 419
Ratnapur 16.3 18 21.9 43.8
Silchar Municipality 15.7 174 21.9 45
Tarapur 33.2 24.6 22.1 20.1
Uttar Krishnapur 18.2 18.9 21.9 41

Table 8. Recovery and resilience values of all flood-vulnerable areas.

Recovery Resilience
Place Name
Low Medium High Low Medium High
Algapur 54.2 25.5 20.2 54.9 23.2 21.9
Amjurghat 57 243 18.7 55.9 22.7 21.4
Anipur Grant 52.1 224 21.9 51.5 23.8 247
Baleswar 53.8 25.1 21.1 52.2 23.6 242
Bhatirkupa 60.8 23 16.2 54.7 23 222
Borbond 59.8 23.8 16.4 55.1 23.1 21.8
Burunga 75.9 15.7 8.38 66.9 18.4 14.7
Dullabcherra 54.8 243 20.9 50.4 24 25.6
Dwarbond 56.4 241 19.5 51.6 23.8 24.6
Fanai Cherra Grant 56.2 23.9 19.9 53.3 23.2 23.4
Hailakandi Town 46.8 23.6 26.9 46.1 25 28.9
Jamira 46.6 26.3 27.1 48.1 24.5 27.4
Kanakpur 60 23.4 16.6 54.6 23.1 224
Katlicherra 53.3 24.7 22 51.9 23.6 24.5
Lalaghat 56.2 24.9 18.9 56.9 22.5 20.5
Rajnagar 60.1 22.7 17.2 58.1 21.8 20.1
Panchgram 66.3 20.3 13.4 57.1 22 20.9
Poschim Kumarpara 68.1 19.5 124 63.5 19.8 16.7
Rakhal Khalerpaar 54.8 24.3 20.9 54.4 229 22.7
Rangirghat 48.8 25.8 25.3 59 24.3 26.7
Ratnapur 49.1 25.8 251 49.8 241 26.1
Silchar Municipality 53.6 24.9 21.4 52.8 23.5 23.8
Tarapur 24.5 26.6 489 29.3 25.7 45
Uttar Krishnapur 59.2 23 17.9 54.2 23 22.8

As most of the surveyed areas are vulnerable to flood hazards, it is clear that the
recovery, reliability, and resilience values for the housing infrastructure system were
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categorized as low, DS4, and low, respectively. To obtain more detailed information for the
reliability, recovery, and resilience of the housing infrastructure of Barak Valley, the “low”
state of recovery and resilience, and the DS4 state of reliability were further sub-divided
into four additional categories according to the percentile of the total low state values
(higher to lower): extremely low (>75th percentiles), very low (50th to 74th percentile),
moderate-low (26th to 49th percentile), and low (<25th percentile). Finally, three types
of flood models—a flood recovery model, flood reliability model, and flood resilience
model—of the valley were prepared based on the categorization of the low state, as shown
in Figures 11-13.
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Figure 11. The flood recovery model of the housing infrastructure in Barak Valley.
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Figure 12. The flood reliability map of the housing infrastructure in Barak Valley.
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Figure 13. The flood resilience map of the housing infrastructure in Barak Valley.
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5. Conclusions, Limitations, and Future Research Direction

This work illustrates a BBN model for flood resilience quantification of the housing
infrastructure system in Barak Valley of Northeast India. The main challenge faced during
the quantification of resilience values was a lack of proper post-disaster data. To overcome
the challenge, a flood resilience assessment form was developed and a detailed survey was
performed in various vulnerable places according to the DDMA, and the resilience values
were evaluated for those places. Those quantified values provide a realistic scenario of
the housing infrastructure system of this valley, which supports the planners, designers,
policymakers, and stakeholders of this valley to become involved in the detailed identi-
fication of resilience-influencing parameters for housing systems and the preparedness
of these vulnerable places against flood hazards. In this study, influential parameters for
resilience quantification were considered and localized and could be mapped with global
resilience quantification, which may include a new study area. Lastly, a sensitivity analysis
was performed to find the most crucial parent nodes of recovery and reliability, which can
also help decision-makers of this valley to focus on the most sensitive parent parameters;
to improve a child node, it was not necessary to improve all the associated parent nodes
because small changes in the most sensitive parent parameters may lead to a targeted
probability of the child node. This analysis will also help in the decision-making process
for preparedness against future hazards [86]. As this method is generalized, it can be
integrated with any kind of infrastructure system and can be used by a public authority
for the resilience quantification of any infrastructure system against flood hazards. The
main contributions of the proposed resilience model were: (i) the BBN model provided a
more realistic scenario of housing infrastructure for this valley based on collected real data
and can be updated by including more uncertain parameters and associated data, and (ii)
the sensitivity analysis helped to identify the crucial parent parameters of recovery and
reliability against flood hazards.

The following are the recommendations for improving the resilience of the hous-
ing/building infrastructure system of this valley against flood hazards based on the dis-
cussions with affected householders during the field survey: (i) construction of building
infrastructure should follow engineering principles; (ii) people should have a solid under-
standing of reliability and recovery processes related to housing infrastructure in prepared-
ness for future disasters in the valley; (iii) stakeholders should immediately give attention
to the housing infrastructure of Burunga, Poschim Kumrapara, Rajnagar, Panchgram, and
Lalaghat, as the resilience of these places was extremely low. Moreover, it was observed
that the parent parameters, such as Type_of_house and Wall_thickness were most sensitive
regarding reliability, and Insurance and Relief_received were the most vulnerable parent
parameters for the recovery of the housing infrastructure against flood hazards. Therefore,
decision-makers should strengthen these sensitive parameters to make the infrastructure
more resilient against future floods. There are some noted limitations in this work, such
as (i) the consideration of more factors for a comprehensive framework is required, (ii)
more detailed information about the factors or more data collection is required, and (iii)
the involvement of multiple experts from various disciplines is required. In the future,
resilience scenarios for other infrastructure systems, such as water, electrical, transportation,
and telecommunication systems, as well as critical housing infrastructure systems, such
as hospitals, markets, and schools, can be evaluated. Similarly, resilience values against
other natural disasters, such as earthquakes and landslides, can be computed [87-89]. Out-
come comparisons with other hierarchical-based methods, such as fuzzy AHP (Analytic
hierarchy process) and Dempster—Shafer theory, can also be performed. As infrastructure
resilience changes with time, these variabilities can be captured with the help of a dynamic
Bayesian network.
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