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Abstract: Resource tax has been widely adopted in many countries. This paper evaluates the causal
effect of reform of water resources tax on water resources performance in Hebei Province, China. By
using the provincial panel data, we first measure the water resources performance of 21 provinces
from 2008 to 2018 by considering the NDDF-ML method of undesirable output. We found that each
province in China has gradually improved its water resources performance in the past 10 years, but
there are great differences between regions. Then, we employ the synthetic control method, which
allows us to consider the influence of unobservable time-varying factors to evaluate the policy effect.
The results show that water performance index has increased significantly by 18.0%. The effect is
mainly due to technological progress (17.3%) rather than technological efficiency (0.7%), which means
no significant improvement in the allocation of water, and after placebo tests, our results are still
robust. The DID approach shows a similar conclusion, but unobservable time-variation caused by
other policies may lead to an overestimation of DID. In order to make good use of water resources,
China should accelerate the reform of water resource taxes and pay more attention to the allocation
of water resources.

Keywords: water tax; tax for fee; NDDF-ML index; synthetic control method

1. Introduction

Water resources are the basic conditions for maintaining people’s lives and promoting
economic development. Environmental pollution and unpredictable climate change further
exacerbate water scarcity problems [1,2], particularly in developing countries character-
ized by rapid population growth and rapid urbanization [3]. China’s per capita water
resources are far below the world average, about one-fourth of the average, one of the most
water-deficient countries in the world. In addition, the distribution of water resources in
various regions is very uneven. The land area of the Yangtze River Basin and its south
area accounts for only 36.5 percent of the country, and its water resources account for an
exacerbated 81 percent of the country. With the progress of social and economic devel-
opment, the process of urbanization continues to accelerate, and domestic and industrial
water consumption has increased significantly. Water pollution exacerbates the problem of
drinking water supply shortage. For example, the Yangtze River is a drinking water source
for 800 million people, and it undertakes the most serious industrial activities of water
pollution in China [4]. Due to water pollution, about 190 million people become sick and
60,000 people die every year [5]. Rapid urbanization and economic growth have created a
large demand for water resources [6,7]. In order to meet the needs of life and industrial
development in water resources, the rational use of water resources and improvement of
water efficiency are very important for the sustainable development of the economy and
society in China.

China’s extensive economic growth model depends on a large consumption of re-
sources and energy, which leads to pollution and low efficiency. For observing the perfor-
mance of resource utilization under environmental constraints, it is necessary to integrate
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resource factor input and environmental economic output into the evaluation framework.
As a nonparametric method, data envelopment analysis can be used to evaluate the perfor-
mance of a multi-input–output decision unit based on relative efficiency [8]. Since the form
of a production function is not assumed in advance, the evaluation of the decision unit
will be more objective. The Malmquist–Luenberger productivity index can also measure
the relative position change (efficiency change) of the production unit and the production
front by constructing the optimal actual production front, as well as the movement of the
production front itself (technological progress) [9].

Chinese government announced water resources tax reform (WRTR) in Hebei Province
in 2016. Choosing it as a pilot province may be due to many reasons. In order to avoid
the strong endogeneity of the policy, we are concerned about the effect on Hebei Province,
which is the only one province. In this paper, the synthetic control method [10,11] is
introduced to estimate the impact of Hebei’s water resources tax reform on water efficiency.
Synthetic control improves the limitation of traditional policy evaluation methods and
creates a new method of constructing counterfactuals. The basic idea is that, though it
is difficult to find a control group that is highly similar to the treatment group, a highly
similar “synthetic Hebei” can be constructed by making appropriate linear combinations
of provinces that have not implemented water resources tax reform. The gap between “real
Hebei” and “synthetic Hebei” in water performance can be regarded as the effect of water
resource tax reform.

The pilot of WRTR in December 2017 expanded to nine provinces, including Beijing
and Tianjin. The water efficiency of these nine provinces is also affected by this policy later,
and they are not suitable to be included in control group. In order to accurately reflect the
effect of WRTR in Hebei Province, the control group of this paper only includes 21 other
provinces that have not implemented the WRTR pilot between 2008 and 2018 (except the
9 provinces we mentioned above, Hong Kong, Macao, Taiwan, and Tibet). The input
indicators include fixed assets investment, social labor force, and total water use, and the
output indicators include regional GDP and chemical oxygen demand (COD) emissions.
Firstly, considering the undesirable output, the environmental technical efficiency of water
resources utilization in China is evaluated (based on 2007), and the data envelopment
analysis method is used to measure the water resources efficiency of provincial regions.
After that, the synthetic control method (SCM) is used to evaluate the effect of the policy,
and then to provide policy suggestions for improving water resources efficiency and
solving the problem of water resources shortage.

The first contribution of this paper is to determine the causal effects of WRTR policy
and solve the problem of endogeneity related to WRTR. There may be unobservable factors
with time-varying effects in each province, resulting in the difference in water resources
performance. Even if the parallel trend is met before the implementation of the policy, some
policies may interfere with the policy in the year of policy implementation because China
also promulgated a number of water related policies in 2016. We used the synthetic control
method, DID, and their robustness tests to verify. Secondly, this paper decomposes water
resources performance and supplements the mechanism of WRTR affecting performance.
When the cost of water increases, residents and enterprises can improve their awareness of
water conservation by recycling, using more advanced equipment, or redistributing water
resources in different departments. Therefore, this paper evaluates the overall performance
of water resources and the policy’s causal effects on efficiency and technology.

Non-radial Malmquist Water Performance Index (NMWPI).
Our results show that the policy effect is positive and significant. After the implemen-

tation of WRTR, the non-radial Malmquist water performance index (NMWPI) increased
significantly that year, with an average increase of 18.0% during post-treatment. It was
found that the technical change (TC) increased by 17.3% and the efficiency technology (EC)
only increased by 0.7%; the change trends of NMWPI and TC are similar, while the causal
effect of EC is weak and insignificant; and TC is the main driving factor of NMWPI. Finally,
the DID approach found similar results, which proves the robustness of our results again.
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The structure of this paper is as follows: The second section describes the implemen-
tation background of water resources tax policy. The third section is the introduction of
research methods. The fourth part is the selection of data and variables used in this paper.
The fifth part is the measurement results of water resources performance, and the empirical
analysis of the impact of water resources tax on water resources performance by using
the synthetic control method. The fifth part summarizes the research and puts forward
some suggestions.

2. Policy Background

The collection of taxes and fees on water resources is a common method. Many coun-
tries in Europe have adopted water resources tax laws to clarify the tax obligations of water
users or consumers in order to save water resources and improve the efficiency of water
resources utilization. In 1970, the Netherlands adopted and enacted the Surface Water
Pollution Act to prevent groundwater depletion from the over-exploitation of groundwater
resources. The Groundwater Act was passed in 1981, and a groundwater tax was intro-
duced in 1995. France introduced a water pollution tax in 1968 and a water resources tax in
1996. Denmark introduced a tap water tax in 1994, as part of Denmark’s green tax reform,
which is essentially similar to the groundwater tax, since almost all Danish drinking water
originates underground. Although Russia is rich in water resources, there are problems
of regional distribution imbalance and water quality pollution. In order to manage water
resources effectively, the tax law of the Russian Federation, which began in 2005, stipulates
the specific contents of the collection and management of the water resources tax. In China,
the collection of water resources fees began in the early 1980s, when cities began to set fees
system, and continues to improve. However, due to the lack of uniform legal provisions,
the charge standards of water fees were often formulated by local governments. Therefore,
there are great differences in the charge standards of water resources fees in different
regions, and even some governments exempt some high-polluting enterprises from water
resources fees for economic development. This difference is obviously not conducive to
strengthening water resources management by means of taxes and fees. On 10 May 2016,
the Ministry of Finance and the State Administration of Taxation jointly issued a circular on
comprehensively promoting the reform of the resource tax, announcing that China would
comprehensively promote the reform of the resource tax and carry out pilot work on the
reform of the water resource tax as of 1 June 2016. Under the TFR or FGS (tax for fee or Fei
Gai Shui) reform, various types of irregular fees abolished and replaced with a single water
tax. In the past, there were unauthorized manipulations in government fund manage-
ment [12] . Since 1994, China has implemented some important tax reforms, including an
agricultural tax reform, a resource tax, and a property tax. These reforms are considered to
be a possible way to solve the excessive financial plunder of local governments [13,14], that
is, to reduce or prohibit the misappropriation of funds by local governments. The existing
literature on FGS reform in China mainly focuses on the rural FGS reform, which started
in 2001 [15–18]. Is a water resource tax better than a water resource fee? The research of
different scholars has not reached a consistent conclusion. Chen et al. [18] found that a
water resources tax reduces output by increasing the cost difference between enterprises,
while a water resources fee reduces market scale and effects output. A water resources
tax is more conducive to the elimination of backward enterprises. Ma et al. [19] believe
that the tax system reform can reduce arbitrary charges and make the collection and use of
water resources tax more reasonable and transparent. Zhao and Zhang [20] found that the
water resources tax reform can reduce the water consumption per unit of industrial output
value but has no significant impact on the total water consumption. Yang et al. [21] used
the synthetic control method and found that water resources tax can reduce the water con-
sumption per CNY 10000 of GDP and the total water consumption. Kennedy [22] argues
that FGS reduces the financial capacity of local governments, resulting in the reduction
of public services. Mushtaq et al. [12] found that FGS of water resources may hinder
agricultural production.
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Hebei is one of the few provinces in the country that has no major rivers passing
through it, so water resources are seriously inadequate and water for economic and social
development has had to rely on the over-exploitation of groundwater for a long time.
From the perspective of per capita water resources, Hebei’s per capita water resources
are 283 cubic meters, which is only one-seventh of the national per capita water resources,
which is far lower than the internationally recognized “extreme water shortage standard”
of 500 cubic meters per capita. From the comparison between Hebei’s per capita water
resources and the national per capita water resources in the past 10 years, Hebei’s per capita
water resources are only about one-tenth of the national level. In addition, economic devel-
opment requires a large amount of water. The province’s total water shortage in general
years is 12.43 billion cubic meters, of which 7.23 billion cubic meters of water is lacking for
economic and social development and 5.2 billion cubic meters of water for the ecological
environment. The "Administrative Measures for the Collection of Water Resources Taxes in
Hebei Province" imposes differential tax rates on different water withdrawal behaviors in
different industries. For example, higher tax standards imposed on the use of groundwater
in over-extraction areas of groundwater and the use of water for special industries. This
design embodies the restriction of groundwater exploitation and the restriction of high
water consumption. This policy is China’s first attempt to use taxation to regulate the
use of water resources and is of great significance to water resources management. The
difference between a water fee and a water resource tax can be seen in Table 1.

Table 1. Comparison of water resources fee and water resources tax.

Distinction Water Resources Fee Water Resources Tax

Collection provisions

Sets of tax items There are small differences in different industries
and regions

Tax standards have clear provisions for different
industries

Subject of Collection Local water administrative departments at or
above the county level. State tax authorities.

Over-planned water intake

<20%, more than 1.5 times the standard charge. <20%, more than 2 times the standard charge

20∼40%, more than 2 times the standard charge 20∼40%, more than 2.5 times the standard rate

>40%, more than 3 times the standard charge >40%, more than 3 times the standard charge.

Fees

Surface water

The tax rate for the water supply industry is the
same as 0.2∼0.4 CNY/m³

Agricultural production does not levy water
resources fees.

Minimum tax on agricultural production is
0.1 per cent.

Water resources cost 0.2∼0.4 CNY/m³ Special industry water resources cost
2∼4 CNY/m³, other industry 0.3∼0.5 CNY/m³

Ground water

Water supply industry tax standard
0.4∼0.6 CNY/m³.

1. Agricultural production does not levy water
resources fees.

Minimum tax on agricultural production
0.2 per cent

2. The cost of water resources is 0.8∼1.3 CNY/m³.

Special industry water resources cost
20∼40 CNY/m³, other industries
1.4∼6 CNY/water resources tax is higher than
non-ultrasound mining area.

3. Methodology
3.1. Non-Radial Distance Function Malmquist–Luenberger Index (NDDF-ML)
3.1.1. Input–Output Variables Measured by Water Resources Performance Non-Radial
Distance Function (NDDF)

Data Envelopment Analysis (DEA) is a common tool for assessing energy and en-
vironmental efficiency performance. Methodologically, DEA is a linear programming
model. Therefore, by assessing the distance between the decision making unit (DMU)
and the boundary, its relative efficiency [23] can be easily determined. Conventional data
envelopment analysis models are generally based on Shepherd distance functions. The
Shepherd distance function expands the desirable output and the undesirable output in the
same proportion [24]. This means that the reduction of undesirable outputs is not credible,
and traditional data envelopment analysis models are limited in measuring energy and
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environmental efficiency. To solve this problem, Chung et al. [25] proposed the directional
distance function (DDF) method. DDF distinguishes between strong and weak tractabil-
ity between desirable and undesirable outputs. In addition, DDF allows for an increase
in the desired output while reducing undesired outputs and inputs. Therefore, DDF is
gradually applied to empirical research. However, its limitation is that the expansion of
desirable outputs and the contraction of undesirable outputs/inputs are changed at the
same rate [26]. In this sense, DDF is a measure of radial efficiency, and it may underesti-
mate the inefficiency of the evaluated units. Given the limitations of the DDF approach,
Zhou et al. [27] proposed a non-radial distance function (NDDF) method. In comparison,
NDDF allows for different proportions of adjustments to inputs, desirable outputs, and
undesirable outputs. Therefore, NDDF has higher recognition ability than DDF. Fukuyama
and Weber [28] believe that the non-radial directional distance function (NDDF) can avoid
input redundancy and make the calculated efficiency more accurate. Considering the
advantages and characteristics of the NDDF, we applied it in this paper. Assuming there
are N assessment areas, each region is regarded as a DMU, and each DMU uses capital (K),
labor (L), and water resources (W) to produce desirable goods (Y). Meanwhile, undesired
chemical oxygen demand (C) emissions are produced during production. According to the
Färe et al.’s [29] joint production framework, production technologies may be expressed as:

P = {(K, L, W, Y, C) : (K, L, W) can produce (Y, C)} (1)

Assuming that the production technology set has the following characteristics:

(i) P is a bounded set, which means that limited inputs produce only limited outputs.
(ii) If C = 0, (K, L, W, Y, C) ∈ P, then Y = 0. It is called zero combination, that is, if the

expected output is produced, the unexpected output will also be produced
(iii) If (K, L, W, Y, C) ∈ PY′ < Y, then (K, L, W, Y′, C) ∈ P. This feature is called the strong

disposability of inputs and desirable outputs, which means that inputs and expected
outputs can be changed without constraints.

(iv) If (K, L, W, Y, C) ∈ P, α ∈ [0, 1], then (K, L, W, αY, αC) ∈ P. This situation is called
weak disposability of undesirable output, which means that if we to reduce the
undesired output, we must reduce the expected output.

With these assumptions, the production techniques used to describe the joint produc-
tion of desirable output Y and undesirable output C have been conceptually well defined
but cannot be directly used in empirical analysis. A common practice is to describe produc-
tion techniques within a nonparametric framework, which can be performed using piece-
wise convex combinations (DEA) of observed data. Suppose there are n (n = 1, 2, . . . , N)
provinces. For province i, inputs, desirable outputs, and undesirable outputs in provinces
are (Kn, Ln, Wn, Yn, Cn), and the environmental production technologies that show constant
returns to scale in N provinces can be described as follows:

P = {(K, L, W, Y, C) :
N

∑
n=1

ZnKn ≤ K,
N

∑
n=1

ZnLn ≤ L,
N

∑
n=1

ZnWn ≤W,

N

∑
n=1

ZnKYn ≥ Y,
N

∑
n=1

ZnCn = C, Zn ≥ 0, n = 1, 2, . . . , N} (2)

According to Zhou et al. [27], Zhang et al. [30], and Zhang and Choi [24], non-radial
distance functions are defined as:

−→
D (K, L, W, Y, C; g) = sup

{
wT β : (K, L, W, Y, C) + disg(β) · g ∈ P

}
(3)

where β= (βK, βL, βW , βY, βC)
T ≥ 0 is the proportional factor vector that measures the

deviation of actual production activity from the best state; disg(β) represents the diagonal
matrix; β = (gK, gL, gW , gY, gC)

T is a direction vector that determines the direction in which
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each input and output is scaled; and w = (wK, wL, wW , wY, wC)
T is a vector that represents

the weight assigned to each input and output. Values of NDDF for specific province n′ can
be solved by the following DEA models:

N
−→
D (K, L, W, Y, C; g) = max wW βW + wY βY + wCβC

s.t. ∑N
n=1 ZnKn ≤ Kn′

∑N
n=1 ZnLn ≤ Ln′

∑N
n=1 ZnWn ≤Wn′ − βW gW

∑N
n=1 ZnYn ≤ Yn′ − βYgY

∑N
n=1 ZnCn ≤ Cn′ − βCgC

Zn ≥ 0, n = 1, 2, . . . , N
βK, βL, βW , βY, βC ≥ 0

(4)

Direction vector g and weight vector w can be set in different ways to serve different
policy objectives. To evaluate China’s regional water resource utilization efficiency, we
set the direction vector to g = (0, 0,−W, Y,−C), w =

(
0, 0, 1

3 , 1
3 , 1

3

)
, which emphasizes

water resources input, desirable output, and chemical oxygen demand (COD) emissions
and eliminates the dilution effect of other inputs (capital and labor) because capital and
labor do not directly produce emissions. Suppose that under w =

(
0, 0, 1

3 , 1
3 , 1

3

)
and

g = (0, 0,−W, Y,−C), β∗ =
(

β∗W , β∗Y, β∗C
)T is the solution of Equation (1). On the basis of

Zhou et al. [27] and Zhang et al. [31], the total-factor water performance index (TWPI) can
be described as follows:

TWPI =

1
2[(1−β∗W)+(1−β∗C)]

1 + β∗Y
(5)

Formula (5) measures the maximum possible increase in water resources utilization
intensity, which can be used to measure the water resources performance of each province
in a specific time period, and TWPI is between 0 and 1. In order to investigate the dynamic
change in water resources’ performance over time, considering non-radial relaxation, we
propose a water performance index for non-radial Malmquist in the next section (NMWPI).

3.1.2. Non-Radial Malmquist–Luenberger Water Performance Index

The Malmquist productivity index was first proposed by Caves [31] to measure
productivity by calculating a ratio of two distance functions. Färe et al. [29] extended it
by considering the technical inefficiency of productivity measurement in a nonparametric
framework. For environmental research, Chung et al. [25] first proposed a Malmquist–
Luenberger (ML) index, which includes undesirable outputs, to measure environmentally
sensitive productivity growth. This paper proposes NMWPI to evaluate water resources
performance over time according to the meaning of nonparametric Malmquist productivity
index. Let t and s (t < s) denote two time periods, assuming that TWPIt(Kt

n, Lt
n, Wt

n, Yt
n, Ct

n)
and TWPIs(Kt

n, Lt
n, Wt

n, Yt
n, Ct

n
)

are the total factor water performance index (TWPI) of
province n based on the input and output in period t and the technology in period t and s,
respectively. In addition, assume TWPIt(Ks

n, Ls
n, Ws

n, Ys
n, Cs

n) and TWPIs(Ks
n, Ls

n, Ws
n, Ys

n, Cs
n)

are the total factor water performance index (TWPI) of province n based on the input and
output in period s and the technology in period t and s, respectively. NMWPI is defined as:

NMWPIn(t, s) =
[

TWPIt(Ks
n, Ls

n, Ws
n, Ys

n, Cs
n)× TWPIs(Ks

n, Ls
n, Ws

n, Ys
n, Cs

n)

TWPIt(Kt
n, Lt

n, Wt
n, Yt

n, Ct
n)× TWPIs(Kt

n, Lt
n, Wt

n, Yt
n, Ct

n)

] 1
2

(6)

NMWPIn(t, s) is used to measure the change in water resources performance of
province n from t period to s period. NMWPIn(t, s) < 1 (or NMWPI > 1) indicates that
water performance has improved (or deteriorated). Similar to the Malmquist productivity
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index, it can be broken down into two components (i.e., efficiency change and technological
change) and expressed as:

EFFCHn(t, s) =
TWPIs(Ks

n, Ls
n, Ws

n, Ys
n, Cs

n)

TWPIt(Kt
n, Lt

n, Wt
n, Yt

n, Ct
n)

(7)

TECHn(t, s) =
TWPIt(Ks

n, Ls
n, Ws

n, Ys
n, Cs

n)× TWPIt(Kt
n, Lt

n, Wt
n, Yt

n, Ct
n
)

TWPIs(Ks
n, Ls

n, Ws
n, Ys

n, Cs
n)× TWPIs(Kt

n, Lt
n, Wt

n, Yt
n, Ct

n)
(8)

The efficiency change (EC) of Equation (7) is a measure of the catch-up effect of the technical
efficiency change representing the performance of water resources in two time periods
(t ,s) within a specific group. EC > 1 (or EC < 1) means efficiency improvement (or loss).
Equation (8) technological change (TC) partially measures the frontier transfer effect, and
the frontier transfer effect quantifies the transfer of production technology over time from
the t period to the s period. TC > 1 (or TC < 1) means technological progress (or decline).

To calculate the NMWPI and its two components EC and TC, four non-radial distance

functions must be solved (i.e.,
−→
D

t(
Kt, Lt, Wt, Yt, Ct; g

)
,
−→
D

t
(Ks, Ls, Ws, Ys, Cs; g),

−→
D

s(
Kt, Lt, Wt, Yt, Ct; g

)
,
−→
D

s
(Ks, Ls, Ws, Ys, Cs; g). According to Formula (4) and the envi-

ronmental protection production technology given by (2), four direction distance functions
can be solved by the DEA model. Once NDDFs are solved, we can obtain the four corre-
sponding TWPIs, defined in (5), that are predicted to be total factor productivity change
indices according to the Malmquist productivity index. Hence, NMWPI can be interpreted
as a total-factor water performance index.

3.2. Synthetic Control Method

Difference in difference (DID) is a common method in policy evaluation, which has
two basic premises: one is random grouping, the other is to satisfy the assumption of
parallel trend. However, the systematic difference between Hebei Province and other
provinces is the reason why Hebei Province has been selected as a pilot project of a water
resources tax. The pilot province (treated unit) and the non-pilot province do not meet the
precondition of random grouping, that is, the policy is endogenous. Although matching
estimation is another common method in policy evaluation, the basic idea is to match the
individual in the control group with the treated group according to a certain “distance”.
The counterfactual results of the individual of the treated group are represented by the
observations of the successfully matched control group. However, it is difficult to find 1 of
the other 21 provinces similar to Hebei in all aspects.

Suppose there is N + 1 provinces, only province 1 (Hebei Province) is interfered by
the WRTR policy after the T0 period, and the other N provinces are not interfered by the
policy at all times. Let Dit denote the intervention state of province i in period t, Dit = 1
if province i is interfered by the water resource tax policy in period t, and Dit = 0 in
other cases.

Dit =

{
1, i = 1, t > T0

0, otherwise
(9)

Y1it represents water resource efficiency in the t period when province i is interfered
with by the water resource tax policy, and Y0it represents water resource efficiency in the t
period when province i is not interfered with by the WRTR policy, then, the observation
result of province i in period t is as follows:

Yit = DitY1it + (1− Dit)Y0it

= Y0it + Dit(Y1it −Y0it)

= Y0it + Ditτit

(10)
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Since only the pilot provinces will be subject to WRTR policy intervention after T0
period, our goal is to estimate the effect of this policyτ1T0+1 , . . . , τ1T , for t >T0:

τ1t = Y1it −Y0it = Y1t −Y0it (11)

When t > T0, we can observe the actual water resource performance of Hebei Province,
but cannot observe its water resource performance without policy intervention. Therefore,
in order to assess the impact of the implementation of WRTR, τ1t, we can estimate the
counterfactual result Y01t after the period T0. Assume that Y01t can be represented by the
following model:

Y01t = δt + θtZi + λtµi + εit i = 1, 2, . . . , N + 1, t = 1, 2, . . . , T (12)

δt is an unobserved public factor, which has the same impact on all provinces. Zi
is a K × 1 dimensional observable covariate that is not affected by the WRTR policy, θt
is 1 × K dimensional unknown coefficient vector, λt is unobserved common factor of
1× K dimension, µi is K× 1 a dimensional coefficient vector, εit is an observed temporary
shock, and its average value is 0 at the provincial level. Consider the N × 1 weight vector
W = (w2, . . . , wN+1), satisfying wi ≥ 0, i = 2, . . . , N + 1 and w2 + . . . + wN+1 = 1. Each
specific weight vector W represents a specific synthetic control, and the synthetic control
model for the weight W is:

N+1

∑
i=2

wiYit = δt + θt

N+1

∑
i=2

wiZi + λt

N+1

∑
i=2

wiµi +
N+1

∑
i=2

εit

N+1

∑
i=2

w∗i Yi1 = Y11,
N+1

∑
i=2

w∗i Yi2 = Y12, . . . ,
N+1

∑
i=2

w∗i YiT0 = Y1T0 ,
N+1

∑
i=2

w∗i Zi = Zi

(13)

Equation (13) proves that the synthetic control group constructed by assigning a
certain weight to each control group province behaves very similarly to the intervention
group provinces before the implementation of the water resource tax. Therefore, this paper
has reason to regard the result of the synthetic control group after the policy intervention
as the counterfactual result of the intervention group province 1 (Hebei).

If ∑T0
t=1 λt

′λt is non-singular, then:

Y01t −
N+1

∑
i=2

w∗i Yit =
N+1

∑
i=2

w∗i
T0

∑
s=1

λs

[
T0

∑
n=1

λt
′λn

]−1

λs(εis − ε1s)−
N+1

∑
i=2

w∗i (εit − ε1t) (14)

According to the proof by Abadie et al. [1], when the time before the WRTR interven-
tion occurs is long enough, formula (14) will approach 0, so the counterfactual results of
the intervention group provinces can be approximated by the synthetic control group, that
is Ŷ01t = ∑N+1

i=2 w∗i Yitτ1t, then the policy effect τ1t of the pilot WRTR in the treated group
provinces can be expressed as follows:

τ̂1t = Y1t −
N+1

∑
i=2

w∗i Yit, t = T0 + 1, . . . , T (15)

It can be found that the optimal weight vector W∗ = (w∗2 , . . . , w∗N+1) is the key to
obtain τ̂1t by the synthetic control method. Let X1 be the feature vector of the treated
group province before the WRTR policy, including several linear combinations of the
observable covariate Z1 and the ex-ante results, and be a vector of M × 1 dimensions;
let X0 be the characteristic variables of the provinces in the control group before the
WRTR policy, which is M × N-dimensional matrix. Then, the optimal weight vector is
the one that minimizes the distance between X1 and X0W, that is, W∗min||X1 − X0W|| =√
(X1 − X0W)′V(X1 − X0W), where V is a positive definite matrix of M × M and the
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diagonal element vm (m = 1, . . . , M) is non-negative, reflecting the relative importance of
intervening provinces and controlling province covariates. In addition, the optimal V can
make the characteristics of the synthesized Hebei Province as close as possible to the real
Hebei Province before the implementation of the policy.

The optimal V is obtained by minimizing the mean square prediction error
(MSPE), namely:

min MSPE =
T0

∑
t=1

(Y1t −
N+1

∑
i=2

w∗i (V)Yit)

2

(16)

4. Data Sources and Description of Variables

The data used in this paper mainly come from the annual Statistical Yearbook of China
and the statistical yearbooks of provinces and cities from 2007 to 2018. Some of the missing
data were retrieved from the corresponding Statistical Bulletin on National Economic and
Social Development and from provincial government websites. Tibet was excluded from
the study because there were more missing data values.

4.1. Input–Output Variables Measured by Water Resources Performance

According to the traditional production function, taking the capital, labor force and
water consumption as the input index and the negative externalities such as pollutants as
the undesired output index, we constructs a production function with multiple inputs and
outputs (Y, COD) = F (K, L, W). Some existing literature has conducted a lot of research on
the selection of input-output indicators, which provides a useful reference. In the study on
the ecological performance of the paper industry in 16 provinces in China, Xiong et al. [32]
selected industrial water consumption as the input index, the industrial output value as
the desired output, and wage emission, COD, and ammonia nitrogen emission as the
undesired outputs. In Zhao et al. [33], in the first stage, labor, investment in fixed assets,
and total water consumption are taken as inputs, GDP as the ideal output, and COD and
ammonia nitrogen emissions as bad outputs. An input–output research framework for
calculating the two-stage efficiency of provincial water resources in China is constructed.
Qian et al. [34], taking agricultural employment data, agricultural water, chemical fertilizer
consumption, and agricultural machinery power as input factors and COD and ammonia
nitrogen emission as undesired outputs, studies the performance of China’s water resources
under the constraint of pollution emission.

Input indicators. Water resources need to be combined with other production factors
to bring output. Capital and the labor force are the basic production factors in economic
activities and indispensable input indicators in economic efficiency evaluations. This
paper takes fixed asset investment, social labor force, and water consumption as the input
indicators. In order to ensure the consistency of the input–output data, the perpetual
inventory method is used to calculate the fixed assets of each province. Since the research
period begins in 2007, we take the fixed assets of each province in 2007 as the initial fixed
assets. Labor force is an important input factor. Considering the availability of data,
10,000 units of social labor force is used as the input index of the employed population.
Water consumption (10,000 tons) includes total agricultural water, total industrial water,
and total domestic water.

Output indicators. Regional GDP is an important indicator of economic output, its
calculation is based on the data obtained from market exchange, which can reflect economic
activities. Of course, there are also defects, such as not considering the pollution to the
environment and resource consumption. COD discharge is an important observation
factor for water pollution control in China, including the pollution monitoring of river
and enterprise wastewater. Therefore, considering regional gross domestic product (CNY
100 million) as a desirable output and a reduction based on 2007, the COD emissions,
including the discharge from domestic sewage and industrial wastewater, in 10,000 tons, is
selected as the undesirable output.
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4.2. SCM Covariates

In order to evaluate the effect of WRTR by the synthetic control method, we collected
panel data from 21 provinces and cities in China from 2008 to 2018 to ensure the fitting
effect of the synthetic control group and the robustness of the results. As far as possible,
some important factors affecting water performance are added as predictive covariates,
including the following:

(1) Natural factors. One of the most important factor affecting the efficiency of water
resources utilization is the abundance of water resources. Per capita water ownership
is usually used as an alternative variable to water resource abundance. However,
the amount of water resources per capita cannot be fully converted into the amount
of available water resources. Therefore, using the amount of water resources per
capita as an agent variable to determine the source of water resources richness may
underestimate its impact on water resources efficiency. In this paper, the per capita
water supply is used as a representative variable because not all water resources can
be used, and the per capita water resources supply can better reflect the scarcity of
available water resources.

(2) Economic development. In the process of economic development, people’s attitude
towards natural resources will change with the development of economy and society.
In the early stage of economic development, people often pursue rapid growth
and put economic development first, which often leads to the serious wasting of
resources, environmental pollution, and further decline in the utilization efficiency of
water resources. When the economy grows to a certain extent, people have higher
requirements for ecological environment and sustainability. Resource shortages and
environmental pollution hinder further social development and economic growth.
People must consider using environment-friendly production methods to improve
resource utilization efficiency. Therefore, this paper takes the actual per capita GDP
and urbanization rate as the representative variables of economic development.

(3) Industrial structure. This directly determine the utilization structure of water re-
sources. China’s agricultural production scale is small, the average technical level
is backward, the industrial production mode is not fine enough, and the efficiency
of water recycling is low, resulting in low utilization efficiency of water resources
and huge water consumption. Therefore, the industrial structure is also an important
factor. This paper takes the proportion of primary industry and secondary industry
as the index of industrial structure.

(4) Social factors. Social factors may also affect the efficiency of water resources utilization.
This paper takes water-saving consciousness and technical level as proxy variables of
social factors. Generally, with the improvement of the technical level, the utilization
efficiency of water resources will be relatively high. The per capita education level
and the TFP are taken as alternative variables of water-saving consciousness and
technology level, respectively.

The descriptive statistics of the variables shown in Tables 2 and 3.

Table 2. Descriptive statistics of input–output indicators.

Variable Symbol Unit Sample Size Mean Standard Error

Input indicators K Billions 231 11,514.07 1512.04
Labour input L Thousands 231 2571.91 152.89

Water consumption W Billions of tons 231 228.78 8698.79
Output indicators Y Billions 231 17,273.48 15,027.99

COD C 10,000 tons 231 58.63 39.92
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Table 3. Descriptive statistics of synthetic control covariates.

Variable Symbol Unit Sample Size Mean Standard Error

Per capita water supply Water_per Tons 231 593.72 459.97
Urbanization rate Urban_r % 231 54.64 11.69

GDP per capita Gdpper Yuan 231 44,210.36 22,743.78
Proportion of primary industry Indus1 % 231 11.04 5.35

Proportion of secondary industry Indus2 % 231 45.23 7.44
Total factor productivity Tfp 231 1.53 0.77

Average years of education Edu Year 231 8.82 0.80

5. Empirical Analysis

The maxDEA software was used to evaluate the water performance of every decision-
making unit considering the undesirable output. The NMWPI in China’s regional economies
is shown in Table 4. The result was calculated based on 2007. We can find from 2008 to 2018
that the performance of water resources in almost all provinces in China has improved,
but the extent of this improvement varies greatly. The province we are concerned about is
Hebei. We can see that Hebei’s NMWPI annual growth rate after 2016 (water resource tax
reform) was 11%, but Shanghai’s growth rate was 12%, which is higher than Hebei. At the
same time, there are unbalanced developments between regions in China. The characteris-
tics of different provinces, such as urbanization, per capita GDP, and technological level,
are very different. It is difficult for us to directly judge whether the regional differences in
water resource performance are caused by caused by tax reform. The decomposition of the
NMWPI can be seen in Appendix A.

Table 4. Estimation results of the NMWPI.

Province 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Shanghai 1.344 1.579 1.706 1.907 2.036 2.189 2.319 2.590 3.076 3.638 3.899
Yunnan 1.084 0.958 1.077 1.153 1.211 1.234 1.692 2.032 2.171 2.268 2.705

Jilin 1.102 0.994 1.053 1.113 1.257 1.262 1.375 1.527 1.603 1.877 2.009
Ningxia 1.260 1.265 1.277 1.266 1.295 1.330 1.346 1.375 1.404 1.606 1.341
Anhui 1.177 1.036 1.696 1.335 1.859 1.968 2.282 2.450 2.775 3.016 3.114

Guangdong 1.414 1.686 1.950 2.395 2.609 2.817 3.146 3.287 3.552 3.755 3.936
Guangxi 1.092 0.892 1.007 1.229 1.357 1.807 1.942 2.168 2.300 2.676 3.386
Xinjiang 1.212 0.929 0.948 1.088 1.136 1.054 1.100 1.157 1.286 1.421 1.495
Jiangsu 1.302 1.495 1.618 1.823 2.038 2.357 2.685 3.018 3.364 3.689 3.804
Jiangxi 1.064 0.931 1.227 1.319 1.617 1.602 1.860 2.120 2.129 2.416 2.778
Hebei 1.124 1.182 1.308 1.460 1.620 1.772 1.933 2.113 2.638 2.999 3.252

Zhejiang 1.255 1.435 1.544 1.747 1.764 1.931 2.108 2.311 2.386 3.108 3.435
Hainan 1.216 1.138 0.968 1.018 0.948 0.931 0.954 0.919 1.185 1.529 1.452
Hubei 1.041 0.951 1.179 1.377 1.661 1.658 1.838 1.965 2.228 2.589 2.827
Hunan 1.062 0.937 0.967 1.255 1.564 1.680 1.826 1.980 2.493 2.549 2.483
Fujian 1.118 1.079 1.371 1.427 1.602 1.671 1.836 2.024 2.222 2.568 2.732

Guizhou 1.017 0.938 0.916 1.008 1.006 0.905 0.974 1.208 1.816 1.805 2.672
Liaoning 0.925 0.991 1.078 1.215 1.346 1.475 1.581 1.714 1.733 1.724 1.674

Chongqing 1.120 0.958 0.948 1.133 1.424 1.563 1.801 2.023 2.246 2.341 2.551
Qinghai 1.237 1.324 1.394 1.410 1.470 1.530 1.569 1.608 1.648 1.932 2.285

Heilongjiang 1.136 1.038 1.052 1.229 1.733 1.539 1.610 1.702 2.074 2.210 2.242

In order to find out the policy effect, we employed the SCM and a series of robustness
tests. Firstly, we show the provincial weights of the Synthetic Hebei. Secondly, we report
the counterfactual results of the NMWPI, TC, and EC, without implementing a WRTR
policy. In addition, the results of the treatment effect of the policy implementation on
presented in Tables 5 and 6.
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Table 5. Synthetic Hebei: Estimated weights for control units.

Control Units NMWPI EC TC

Shanghai 0 0 0
Yunnan 0.098 0.12

Jilin 0 0.515 0.176
Ningxia 0 0 0
Anhui 0 0 0.259

Guangdong 0.169 0 0.341
Guangxi 0 0 0
Xinjiang 0 0 0
Jiangsu 0 0 0
Jiangxi 0.184 0.128 0

Zhejiang 0 0 0
Hainan 0 0 0
Hubei 0 0.067 0
Hunan 0 0 0
Fujian 0 0.262 0

Guizhou 0 0.028 0
Liaoning 0.194 0 0

Chongqing 0.125 0 0
Qinghai 0.23 0 0.103

Heilongjiang 0 0 0

Table 6. Outcome and predictor means (2008–2012).

Y:NMTWPI Treated Synthetic

Lngdp_per 10.688 10.916
Lnwater_per 5.491 5.785

Edu 9.088 9.060
Urban_r 54.919 59.917
Indus2 45.434 41.516
Indus1 9.938 8.994

Tfp 2.130 2.120
NMWPI (2009) 1.182 1.149
NMWPI (2011) 1.460 1.452
NMWPI (2014) 1.933 1.936

Y:EC Treated Synthetic
Lngdp_per 10.688 10.945

Lnwater_per 5.491 6.160
Edu 9.088 9.223

Urban_r 54.919 58.409
Indus2 45.434 44.980
Indus1 9.938 9.274

Tfp 2.130 2.155
EC(2009) 0.931 0.932
EC(2011) 0.918 0.907
EC(2014) 0.912 0.912

Y:TC Treated Synthetic
Lngdp_per 10.688 10.895

Lnwater_per 5.491 6.018
Edu 9.088 9.023

Urban_r 54.919 58.696
Indus2 45.434 43.118
Indus1 9.938 8.147

Tfp 2.130 2.117
TC(2009) 1.270 1.217
TC(2011) 1.591 1.610
TC(2014) 2.119 2.125
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We estimate the synthetic Hebei as a linear combination of outcomes of the 21 control
provinces by using SCM. Thereby, we obtain optimal weights for each province separately.
Table 5 reports the estimated weights. Through the optimal weight, we can construct “Hebei
Province without WRTR”—synthetic Hebei Province. The control units of Qinghai and
Jiangxi best resemble Hebei in terms of water performance index (NMWPI); Yunnan and
Fujian in terms of technical efficiency (EC); Guangdong and Qinghai in terms of technical
change (TC). The SCM provides unbiased counterfactual estimates if the predictor variables
as well as the outcomes of the treated unit are sufficiently close to those of the synthetic unit
pre-treatment. If the predictor variables and outcomes of the treated unit are sufficiently
close to those of the synthetic unit pre-treatment, we can think that the SCM provides
unbiased counterfactual estimates. Table 6 compares the average values of the covariates
between real Hebei and synthetic Hebei and 21 provinces before the implementation of the
water tax in 2016. It can be seen that the average values of the covariates of the synthetic
Hebei and the real Hebei are very close, which is much smaller than the difference between
the average of the covariates of the 21 provinces and the real Hebei. This table shows that,
compared to the sample average assigning equal weights to all control units, synthetic
Hebei is most similar to Hebei in terms of outcomes and predictor averages. Although
the proportion of primary industry, the proportion of secondary industry, and the per
capita water supply are slightly different from the real variables, the difference between
the mean values of other covariates is very small, and the real Hebei and the synthetic
Hebei before the policy are almost the same in the NMWPI, TC, and EC in 2009, 2011,
and 2014. This shows that the synthetic control method does fit the characteristics of
Hebei Province well before the pilot of WRTR, and the change path of the NMWPI, TC,
and EC in the synthetic Hebei fits the real path well. Therefore, it is appropriate to use
the synthetic control method to evaluate the effect of the WRTR policy. Based on annual
panel data for 21 provinces in 2018, we uses the synthetic control method to evaluate
the short-term impact of the WRTR on water resources performance in Hebei Province.
Figure 1 shows the outcome fit in each time period, and a vertical dotted line that separates
the pre-treatment from the post-treatment periods in 2016. Before the implementation of
the WRTR policy in 2016, synthetic Hebei fitted the trend of the NMWPI, TC, and EC of
real Hebei well. The gaps in the change path of the NMWPI, TC, and EC between synthetic
Hebei and real Hebei were very small, which indicated that synthetic Hebei controlled the
influence of unobserved factors or missing variables well (including unobserved factors
changing at any time). Therefore, if there is no WRTR policy in Hebei, the changes in the
NMWPI, TC, and EC of Hebei after 2016 can be fitted with the changes of the NMWPI,
TC, and EC of synthetic Hebei, that is, the NMWPI, TC, and EC of synthetic Hebei can
be considered as the counterfactual results of NMWPI, TC, and EC of real Hebei. Thus,
after the implementation of WRTR, the difference of NMWPI, TC, and EC between the real
Hebei and the synthetic Hebei is the policy effect of the water resource tax.

According to Figure 1, before the levy of the water resources tax, Hebei’s NMWPI
and TC have maintained an upward trend, and both the treated outcome and its coun-
terfactual follow a positive trend. The EC fluctuates, but the amplitude is not large (the
difference between the maximum value and the minimum value is about 0.03). After the
implementation of the WRTR policy, the real Hebei’s NMWPI and TC have risen faster and
have been higher than the synthetic Hebei’s NMWPI and TC. The gap between the two
has gradually widened over time. The EC of real Hebei is smaller than that of synthetic
Hebei. Specifically, from 2008 to 2015, the average gap in the NMWPI between real Hebei
and synthetic Hebei was −0.025. Since the implementation of the policy in 2016, the gap in
the NMWPI between real Hebei and synthetic Hebei began to be positive, which was 0.40,
0.54, and 0.74 higher than that of synthetic Hebei, and the ATT, computed as the average
post-treatment percent gap, amounts to 18.0%. We know the WRTR has a significant role in
promoting the NMWPI in Hebei Province in the short term. For TC, similar to the change
in the NMWPI over time, the average gap of TC between real Hebei and synthetic Hebei is
0.006 in pre-treatment period, and the ATT, amounts to 17.3%. The WRTR also significantly



Sustainability 2021, 13, 13854 14 of 21

promote TC of Hebei in the short term. For RW, we observe a very small magnitude of gap,
the ATT is 0.7%, therefore, may not be such a sizable post-policy gap for the treated unit.
Since the NMWPI = TC × EC, we can know that most of the changes in the NMWPI are
derived from TC.

Figure 1. NMWPI, TC, EC time series for Hebei (solid) and synthetic Hebei (gotted).

6. Robustness Test

The study found that the NMWPI and TC of real Hebei and synthetic Hebei showed
large differences after the WRTR, while EC did change slightly. It is not clear whether the
effect is statistically significant. This phenomenon may not be due to the reform; there may
be accidents or some unobserved external factors. Therefore, in order to test the validity of
the above empirical results, a placebo test and a ranking test are employed to verify the
significance of the implementation effects of the WRTR policy to exclude the interference
of contingency and other factors.

6.1. Placebo Test

First, this article assumes that policy intervention has no causal impact on provinces.
Then, select a province from the control group as a pseudo-intervention group. This means
to consider control units as treated one at a time, to estimate their respective synthetic
control, and to compute the treatment effect given by the post-policy differences between
control unit outcomes and their counterfactuals, the estimated policy effects of 21 provinces
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can be obtained, and the estimated distribution of the WRTR policy effects can be obtained.
If the water performance of a province is not well fitted before the WRTR policy, the ability
to explain the changes in water performance will also decrease after the policy. Therefore,
we delete the poor fit provinces before the policy.

The black solid line represents the influence of the WRTR policy on the NMWPI, TC,
and EC of Hebei Province, while the light solid line is the pseudo policy effect estimated
by the synthetic control method as a pseudo-intervention unit in other provinces. We can
detect the location of the assessed Hebei WRTR policy effect in the above distribution.
If the estimated treatment effect for the actually treated unit, Hebei, is larger relative to
the ones estimated for the control provinces, the significance of the estimated effects is
ascertained. If the line of real Hebei is in the tail extreme position of the distribution, the
null hypothesis is rejected, which shows that the WRTR has a significant impact on Hebei’s
water performance. If the line is in the middle of the distribution, it means that the random
sampling of a province as a treated unit can obtain a significant policy effect, that is, in
fact, the provinces that are not treated by the policy also have significant effect. In this case,
we could not refuse the null hypothesis, which indicates that the policy has no significant
effect on the water performance.

Figure 2 shows that by 2016, the degree of change in the NMWPI, TC, and EC in the
Hebei is in the middle of the distribution. However, after the implementation of the WRTR
in 2016, the gap in the NMWPI and TC has gradually become larger, which is located
outside other provinces and at the extreme end of all paths. For the NMWPI and TC, the
average treated effect (ATT) estimates of the province (Hebei) actually affected by policy
are the largest, exceeding the other placebo ATT estimates. However, this does not hold for
EC. Therefore, the placebo test shows that the WRTR policy has a statistically significant
impact on NMWPI and TC, but no impact on EC.

Another form of the placebo test is to calculate the distribution of the ratio of “Post
period-MSPE” to “Pre period-MSPE” [11,35]. The basic logic is that, if the WRTR policy
is effective, the synthetic control method will not be able to predict the real post-treated
NMWPI, TC, and EC of Hebei province, resulting in a larger Post-period MSPE. However,
before the policy is implemented, if synthetic Hebei cannot predict the outcome variable of
real Hebei well (larger MSPE before intervention), which will also lead to a lager MSPE
after intervention, then the ratio of the two can be used to control the disturbance of the
former. Therefore, the significance of the treatment effect can be well recognized by the
ratio of Post-period MSPE/Pre-period-MSPE. That is, if the WRTR policy in Hebei does
have a larger effect, the placebo effect of other provinces is relatively lower; in Figure 3, we
can observe that the Post-period MSPE/Pre-period-MSPE of Hebei province is higher than
that of the other provinces.

The mean square error ratio test shows that the NMWPI of Hebei and the mean square
error ratio of the TC are both the maximum values of 90 and 75, respectively. Therefore,
the policy effect is significant for both. Through the analysis above, the WRTR policy has
statistical significant effect for the NMWPI and TC, but no significant effect on EC. As the
goal of this policy, water performance has improved. Through ML decomposition, we can
know that the increase in the total factor productivity of water resources seems to come
from technological progress (TC) rather than technological efficiency (EC). This may result
from the policy objective of the WRTR policy being to raise the tax standards for the high
water consumption by industry and excess use areas where groundwater is over-exploited
but to maintain necessary production and domestic water. As the cost of water increases,
firms have to improve their technical level, such as buying more advanced equipment
and reusing more wastewater so TC has a big rise. Because Hebei Province is more heavy
industry, in the case of rapid economic development in China, there is a certain demand
for heavy industrial products. In addition, special industries, such as car washing and golf
courses, belong to the service industry, and they are becoming an indispensable part of life.
These reasons may lead to the unchanged EC.
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Figure 2. Placebo tests: Hebei (black line) and control units (grey lines).

6.2. DID Approach

Finally, we employ the conventional policy evaluation method, DID, to estimate the
policy effect. The treated unit is only one province in Hebei, the treated variable Hebei is
1. In other provinces, the time variable is set to 0 before 2016, 1 after 2016, and the DID
terms are treat and time interactions, indicating the effect of the policy implementation.
Table 7 reports the results estimated using the DID method; as you can see, the WRTR
policy has achieved statistically significant results, the NMWPI is approximately increased
by 63.9%, the TC increased 83.0 percent, and similar to the synthetic control estimates, the
change in EC is not statistically significant and other control variables are the same with
the synthetic control method. Since there is likely to be collinearity among these control
variables, for example GDP per capita, education, and share of industry, we do not pay
much attention to the significance of these variables as their coefficient is biased. The DID
estimator obtained is unbiased only under the condition that the outcome variables of the
treated group and the control group before the policy shock are not significantly different,
that is, the parallel trend assumption (PTA) should be satisfied. If the PTA is violated, the
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prediction is biased. We prove this by conducting parallel trend tests on the NMWPI and
TC. Figure 4 plots the estimated treatment effects and their respective confidence intervals
for each year. For the NMWPI, the treatment effect in 2017 and 2018 was significant at the
10% level, and it was not significant before 2017. For TC, the treatment effects in 2017 and
2018 are both significant at the 10% level. The parallel trend shows that the policy will
only have a significant effect in 2017 and 2018. Specifically, though the PTA holds, other
unobserved determinants or special events would have different impacts over time. In
2016, China implemented several water resources policies, such as “the implementation of
clean production technology in key industries for water pollution prevention and control”
and new “Water Pollution Prevention and Control Law of the People’s Republic of China”,
and China appointed local government heads as river chiefs across the nation to clean up
and protect water resources (River Chief System). As a pilot province of water resources
tax, Hebei is likely to be more sensitive to water resources tax, so the response of the
treatment group (Hebei province) and the control group may be different. Especially if the
reaction of the treatment group is larger than the control group, DID will be overestimated.
Since Hebei is one of the most water-deficient provinces in China, its response to water
policies are likely to exceed most provinces. Therefore, controlling for this variation is at
the heart of this paper’s motivation to employ the SCM.

Figure 3. MSE ratio for Hebei (black) and control units (white).

Figure 4. Pre-and post-treatment policy effects (left: MNWPI, right: TC).
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Table 7. DID regression estimates (2008–2018) for NMWPI, TC, and EC.

NMWPI TC EC

Treated × time 0.6391 *** 0.8304 *** 0.1342
(0.127) (0.146) (0.091)

Lngdp_per 0.0927 *** 0.0769 ** 0.0662 **
(0.034) (0.037) (0.032)

Lnwater_per −0.0750 −0.0119 -0.0242
(0.065) (0.049) (0.067)

Edu 0.0912 0.1866 * 0.0522 *
(0.087) (0.104) (0.031)

Urban_r 0.0711 *** 0.0609 *** 0.0725 ***
(0.019) (0.019) (0.020)

Indus2 −0.0450 *** −0.0168 0.0160
(0.0112) (0.012) (0.011)

Indus1 0.0252 0.0745 0.0484
(0.018) (0.017) (0.039)

Tfp 1.3021 *** 1.6194 *** 1.7633 ***
(0.196) (0.317) (0.621)

Constant 4.777 * 5.514 *** 6.002 ***
(2.723) (1.918) (0.800)

Year fixed effect Y Y Y
Province fixed effect Y Y Y

Observations 231 231 231
R-squared 0.580 0.472 0.440

Robust standard errors in parentheses, *** p < 0.01, ** p < 0.05, * p < 0.1.

7. Conclusions

This article uses the case of water tax reform in Hebei, China, to investigate the policy
effect on water resource performance. For the first time, the impact of water tax reform
on water resource utilization is analyzed, and the research results verified the effect of the
policy. First, this paper considers the water efficiency under environmental constraints by
using the the NDDF-ML index method, which allows undesirable outputs and desirable
outputs to decrease and expand in different proportions, to measure the water performance
(NMWPI) of each province in China from 2008 to 2018, and decomposes it into technical
changes (TC) and technical efficiency (EC). Secondly, there are problems in how to select
the control group and how to make statistical inferences in the case study. The synthetic
control method that we adopted was to assign appropriate weights to the control group
by mining the information of the data to obtain a control group that fits the best before
the event occurs. Then, the “counterfactual” phenomenon constructed by the synthetic
control method and the real water resources utilization performance of Hebei Province
(NMWPI), Technical changes (TC), and technical efficiency (EC) were compared. Research
shows that China’s total factor productivity of water resources has been rising in the
past 10 years, and the WRTR policy in Hebei has further promoted the increase of the
NMWPI and TC, but the EC has remained unchanged in the whole period. After the
placebo test and the ranking test, our results are still stable. The DID method proves that
since the implementation of multiple water resources policies in 2016 has different effects
on different provinces, the DID method overestimates the effects of water resource tax
policies. Therefore, it is reasonable to use the synthetic control method. The findings
contribute to the further promotion of the policy on water resources tax reform, as it
has achieved positive results. Our evidence shows that taxes on resources can help to
improve the efficiency of resource utilization, and increasing the cost of resources can
reduce the negative externalities to a certain extent. The possible reason for this is that
increasing the cost of water can promote enterprises, especially those with high water
consumption and high pollution, to adopt advanced production equipment and increase
the reuse of water resources. In addition, the revenue from the resource tax can used to
subsidize enterprises to use more advanced and resource-saving technologies to carry
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out ecological projects of water resources protection. However, the decomposition of
the water performance index shows that the improvement in water performance comes
from technological progress, not the improvement of efficiency. The change in technical
efficiency is very small, and the allocation of water resources is still an urgent problem.
The government needs more effective measures, such as forcing the closure of high water
consumption and high pollution enterprises or guiding these enterprises to move to places
rich in water resources for production. In the case of the shortage of water resources, we
can also establish a water rights trading market to make water resources reallocate to more
environmentally friendly sectors. China is the country with the highest population in the
world and is also one of the most water-scarce countries in the world. Water resources are
ultimately important to people’s lives and production, especially in developing countries
where resource utilization efficiency is lower. Fortunately, some countries, such as China,
have begun to experiment with policies to improve the performance of water resources.

8. Disscussion

The findings contribute to the further promotion of the policy on water resources tax
reform, as it has achieved positive results. Our evidence shows that a tax on resources can
help to improve the efficiency of resource utilization and increasing the cost of resource
can reduce the negative externalities to a certain extent. However, due to the limitation
of data, our research did not specifically explore the reasons for the improvement of
water resources efficiency, technological change, and efficiency change. The possible
reason for this is that increasing the cost of water can promote enterprises, especially
those with high water consumption and high pollution, to adopt advanced production
equipment and increase the reuse of water resources. In addition, the revenue from
the resource tax can used to subsidize enterprises to use more advanced and resource-
saving technologies to carry out ecological projects of water resources protection. The
decomposition of the water performance index shows that the improvement in water
performance comes from technological progress, not the improvement of efficiency. The
change in technical efficiency is very small, and the allocation of water resources is still
an urgent problem. The government needs more effective measures, such as forcing
the closure of high water consumption and high pollution enterprises or guiding these
enterprises to move to places rich in water resources for production. The micro-mechanism
of the impact of a water resources tax remains to be further studied. China is the country
with the highest population in the world, and it is also one of the most water-scarce
countries in the world. Water resources are ultimately important to people’s lives and
production, especially in developing countries where resource utilization efficiency is lower.
Fortunately, some countries, such as China, have begun to experiment with policies to
improve the performance of water resources.
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Appendix A

Table A1. Estimation results of the technology change (TC) in China.

Province 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Shanghai 1.302 1.343 1.562 1.641 1.802 1.868 2.055 2.346 2.929 3.073 3.768
Yunnan 1.211 1.045 1.179 1.262 1.301 1.321 1.616 1.921 1.902 1.945 2.186

Jilin 1.215 1.107 1.176 1.245 1.403 1.386 1.535 1.707 1.740 2.087 2.227
Ningxia 1.125 1.089 1.119 1.146 1.193 1.211 1.242 1.264 1.315 1.189 1.150
Anhui 1.260 1.150 1.569 1.426 1.721 1.915 2.196 2.399 2.421 3.096 3.106

Guangdong 1.432 1.405 1.826 2.187 2.340 2.526 2.800 2.925 3.145 3.129 3.687
Guangxi 1.220 0.912 1.079 1.272 1.377 1.672 1.876 2.094 1.979 2.779 3.195
Xinjiang 1.010 0.956 1.056 1.208 1.267 1.168 1.230 1.292 1.422 1.582 1.676
Jiangsu 1.255 1.279 1.474 1.605 1.867 2.141 2.414 2.703 2.991 3.074 3.564
Jiangxi 1.181 1.041 1.219 1.347 1.551 1.635 1.849 2.107 2.148 2.517 2.827
Hebei 1.247 1.270 1.435 1.591 1.773 1.927 2.119 2.316 2.834 3.266 3.534

Zhejiang 1.266 1.267 1.472 1.421 1.561 1.701 1.862 2.046 2.364 2.850 3.126
Hainan 1.020 0.827 0.897 0.829 0.834 0.864 0.799 0.783 1.292 1.370 1.077
Hubei 1.141 1.019 1.286 1.503 1.782 1.850 2.043 2.192 2.443 2.894 3.167
Hunan 1.167 0.956 1.081 1.355 1.662 1.839 2.010 2.189 2.698 2.848 2.710
Fujian 1.231 1.075 1.506 1.592 1.791 1.827 2.041 2.246 2.477 2.788 3.051

Guizhou 1.099 0.910 1.023 1.117 1.111 1.009 1.038 1.197 1.583 1.737 2.213
Liaoning 1.013 1.002 1.128 1.243 1.386 1.481 1.634 1.777 1.549 1.631 1.476

Chongqing 1.248 1.044 1.059 1.244 1.541 1.735 1.998 2.255 2.510 2.608 2.883
Qinghai 1.072 1.162 1.160 1.205 1.266 1.295 1.334 1.353 1.413 1.991 1.453

Heilongjiang 1.252 0.993 1.172 1.360 1.752 1.709 1.792 1.899 2.249 2.450 2.525

Table A2. Estimation results of the efficiency change (EC) in China.

Province 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Shanghai 1.032 1.175 1.092 1.162 1.130 1.172 1.128 1.104 1.050 1.184 1.035
Yunnan 0.895 0.916 0.914 0.914 0.930 0.934 1.047 1.058 1.142 1.166 1.237

Jilin 0.907 0.898 0.895 0.894 0.896 0.911 0.896 0.895 0.921 0.900 0.902
Ningxia 1.120 1.161 1.142 1.104 1.086 1.098 1.084 1.087 1.067 1.350 1.166
Anhui 0.935 0.901 1.081 0.936 1.080 1.028 1.040 1.021 1.146 0.974 1.003

Guangdong 0.988 1.200 1.068 1.095 1.115 1.115 1.124 1.124 1.130 1.200 1.068
Guangxi 0.894 0.978 0.933 0.967 0.985 1.081 1.035 1.035 1.162 0.963 1.060
Xinjiang 1.200 0.971 0.898 0.901 0.896 0.902 0.895 0.896 0.904 0.898 0.892
Jiangsu 1.038 1.169 1.097 1.136 1.092 1.101 1.112 1.117 1.125 1.200 1.067
Jiangxi 0.900 0.894 1.007 0.979 1.043 0.980 1.006 1.006 0.991 0.960 0.983
Hebei 0.902 0.931 0.911 0.918 0.914 0.920 0.912 0.912 0.931 0.918 0.920

Zhejiang 0.991 1.133 1.049 1.229 1.130 1.135 1.132 1.129 1.009 1.090 1.099
Hainan 1.192 1.375 1.079 1.229 1.137 1.078 1.194 1.174 0.917 1.116 1.348
Hubei 0.912 0.934 0.917 0.916 0.932 0.896 0.900 0.896 0.912 0.895 0.893
Hunan 0.910 0.980 0.895 0.926 0.941 0.914 0.908 0.905 0.924 0.895 0.916
Fujian 0.909 1.004 0.910 0.896 0.894 0.914 0.900 0.901 0.897 0.921 0.895

Guizhou 0.925 1.030 0.896 0.902 0.906 0.897 0.939 1.009 1.147 1.039 1.208
Liaoning 0.913 0.989 0.956 0.977 0.971 0.996 0.968 0.965 1.119 1.057 1.134

Chongqing 0.897 0.918 0.895 0.911 0.924 0.901 0.901 0.897 0.895 0.898 0.885
Qinghai 1.154 1.139 1.201 1.170 1.162 1.182 1.176 1.189 1.166 0.970 1.572

Heilongjiang 0.907 1.045 0.898 0.904 0.989 0.900 0.898 0.896 0.922 0.902 0.888
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