
sustainability

Article

Multi-Objective Optimization of CNC Turning Process
Parameters Considering Transient-Steady State
Energy Consumption

Shun Jia 1,*, Shang Wang 1 , Jingxiang Lv 2,*, Wei Cai 3,* , Na Zhang 1, Zhongwei Zhang 4 and Shuowei Bai 5

����������
�������

Citation: Jia, S.; Wang, S.; Lv, J.; Cai,

W.; Zhang, N.; Zhang, Z.; Bai, S.

Multi-Objective Optimization of CNC

Turning Process Parameters

Considering Transient-Steady State

Energy Consumption. Sustainability

2021, 13, 13803. https://doi.org/

10.3390/su132413803

Academic Editor: Hua Li

Received: 3 November 2021

Accepted: 10 December 2021

Published: 14 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Industrial Engineering, Shandong University of Science and Technology,
Qingdao 266590, China; 18713801086@163.com (S.W.); nzrfd219@163.com (N.Z.)

2 Institute of Smart Manufacturing Systems, School of Construction Machinery, Chang’an University,
Xi’an 710064, China

3 College of Engineering and Technology, Southwest University, Chongqing 400715, China
4 School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, China;

zzw_man@haut.edu.cn
5 School of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China;

baishuowei@qdu.edu.cn
* Correspondence: herojiashun@163.com (S.J.); lvjx@chd.edu.cn (J.L.); weicai@swu.edu.cn (W.C.)

Abstract: Energy-saving and emission reduction are recognized as the primary measure to tackle
the problems associated with climate change, which is one of the major challenges for humanity
for the forthcoming decades. Energy modeling and process parameters optimization of machining
are effective and powerful ways to realize energy saving in the manufacturing industry. In order to
realize high quality and low energy consumption machining of computer numerical control (CNC)
lathe, a multi-objective optimization of CNC turning process parameters considering transient-steady
state energy consumption is proposed. By analyzing the energy consumption characteristics in
the process of machining and introducing practical constraints, such as machine tool equipment
performance and tool life, a multi-objective optimization model with turning process parameters
as optimization variables and high quality and low energy consumption as optimization objectives
is established. The model is solved by non-dominated sorting genetic algorithm-II (NSGA-II), and
the pareto optimal solution set of the model is obtained. Finally, the machining process of shaft
parts is studied by CK6153i CNC lathe. The results show that 38.3% energy consumption is saved,
and the surface roughness of workpiece is reduced by 47.0%, which verifies the effectiveness of the
optimization method.

Keywords: energy saving; multi-objective optimization; transient steady state energy consumption;
process parameters

1. Introduction

As the main equipment of (computer numerical control) CNC machining, the CNC
machine tool is widely used in various fields of manufacturing. It has complex energy
consumption characteristics, high energy consumption, low energy efficiency, and huge
potential for energy saving and emission reduction [1,2]. Therefore, domestic and foreign
scholars are increasingly active in the research on energy consumption modeling and
energy-saving and emission reduction methods of CNC machine tools [3–6]. In the process
of CNC machining, the reasonable selection of process parameters not only affects the
indexes of machining cost [7], quality [8] and efficiency [9], but also is closely related to the
energy consumption of machine tools [10]. How to optimize the process parameters in the
machining process of CNC machine tools is an urgent basic scientific problem to be solved
under the background of green manufacturing [11].
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Traditional research on process parameters optimization mainly aims at optimizing the
quality, cost and efficiency of the process. For example, Zhou et al. [12] took the minimum
surface roughness value as an optimization objective, Addona et al. [13] took the compre-
hensive optimization of processing cost, quality and time as an optimization objective, and
Pan et al. [14] took the reliability of milling accuracy as an optimization objective. In recent
years, with the increasing severity of energy consumption and environmental problems
in manufacturing industry, research considering the objectives of green and low carbon
optimization has gradually appeared [15,16]. The existing optimization methods of CNC
machining process parameters can be roughly divided into three categories: optimization
based on experiment, optimization based on optimization algorithm and optimization
based on expert knowledge system [17].

(1) Optimization method based on experiment. Many scholars use the Taguchi
method [18] and response surface method [19] to analyze the impact of cutting parame-
ters on energy consumption, efficiency and quality, as shown in Figure 1. For example,
Yang et al. [20] studied the influence of CNC milling process parameters on the processing
quality under dry cutting by means of experimental design. The Taguchi method was
used to design experiments and fit the correlation model between process parameters
and quality. The research pointed out that the feed rate has the greatest influence on
the processing quality. Sukumar et al. [21] took roughness in CNC milling process as an
optimization objective and solved different optimal combination of processing parameters
by the Taguchi method and artificial neural network method; the optimization results
showed that the optimization strength of the two optimization methods was almost the
same. Li et al. [22] put forward an energy efficiency optimization method for CNC milling
process parameters based on the Taguchi method and response surface method to study
the complex mechanism of coupling energy efficiency and process parameters of machine
tools. Liu et al. [23] optimized the high-speed milling process parameters by means of the
orthogonal test. The research pointed out that the speed of the spindle should be properly
increased, and the roughness of the workpiece surface can be reduced by reducing the feed
speed and the feed per tooth. The above experimental-based optimization method is simple
and feasible, avoiding the complicated mathematical modeling of energy consumption,
and the influence rule of each parameter on the objective function can be analyzed by fewer
tests.
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(2) Optimization method based on optimization algorithm. For example, Wang et al. [24]
took energy consumption, cost and quality of processing as optimization objectives and
solved the optimal combination of cutting parameters by the NSGA-II algorithm. The
research shows that optimization of cutting parameters is beneficial to energy saving in the
process of machining but increases costs. Yan et al. [25] used cutting energy consumption,
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machining efficiency and surface quality as optimization models of milling process param-
eters and carried out optimization by gray correlation analysis and the surface response
method. Li et al. [26,27] carried out energy efficiency optimization for multi-step CNC
planar milling process parameters, established target functions, such as energy efficiency
and processing cost, and solved the multi-objective optimization model by applying the
multi-objective particle swarm algorithm based on adaptive grid and continuous taboo
algorithm, and obtained the optimal configuration of cutting parameters and work steps.
Most of the above research on the energy optimization model of the CNC machine tool con-
sider the steady state process energy consumption but ignore the phenomenon of frequent
transient process energy consumption and high-power peak in the machining process and
lack the consideration of transient process energy consumption. Therefore, to accurately
reflect the actual energy consumption and running time of CNC machine tools and guide
energy saving of CNC machine tools, a transient-steady state energy consumption function
model is established.

(3) Optimization method based on expert knowledge system. For example, the expert
knowledge system designed by Arezoo is used to determine the cutting tool and cutting
parameters (feed rate, cutting speed, cutting depth, etc.) in the cutting process to establish
the expert knowledge base, and to establish the reasoning mechanism based on the expert
experience so that the system finally outputs the optimal parameters by gradually adjusting
the parameters [28]. Zhou et al. [29] developed a turning expert system with a self-
learning function. The system uses the concentrated mathematical model derived from
cutting experiments to store the cutting data and uses the self-learning function to modify
the cutting mathematical model. It can recommend reasonable and optimized cutting
parameters, such as tool, cutting speed and tool life, and predict the machining quality
and metal removal rate. The optimization method based on an expert knowledge system
depends on the knowledge level and experience of experts, and the optimization results
are practical.

In the manufacturing industry, in addition to optimizing process parameters, there
are many other methods to achieve energy saving and emission reduction. Liu et al. [30]
focused on the classical job shop environment and proposed that energy saving can be
achieved by turning off the machines when they lay idle for a comparatively long period.
Ma et al. [31] studied how to reduce the energy consumption of holes machining through
optimizing the tool path and cutting parameters simultaneously; the integrated optimiza-
tion methodology can further reduce the energy consumption, compared with optimizing
the tool path or cutting parameters separately. Petrovic et al. [32] carried out a series of
research on the optimization of machining process route and achieved rich research results.

In view of this, this paper comprehensively considers the traditional optimization
objectives and low-carbon optimization objectives to study the machining of shaft parts.
Firstly, the energy consumption composition characteristics of the CNC lathe machining
process are analyzed, the transient process energy consumption is introduced into the
energy consumption model of a CNC lathe, and the transient-steady state energy consump-
tion model of a CNC lathe is constructed, which further improves the accuracy of the model.
Secondly, a multi-objective optimization model is established, which takes the spindle
speed, feed rate and cutting depth as the optimization variables, and the high quality and
low energy consumption machining of the CNC machine tool as the optimization objective.
Then, considering the actual constraints, the model is optimized by a non-dominated
sorting genetic algorithm with an elite strategy. Finally, the effectiveness and practicability
of the optimization method are verified by a case study.

2. Energy Consumption Characteristics Analysis and Energy Consumption Modeling

The energy consumption characteristics of a CNC lathe are more complex than that of
common machine tools. In this section, firstly, the energy consumption characteristics of
CNC turning are analyzed in detail through actual machining cases. Secondly, the energy
consumption of transient process is introduced into the energy consumption model of
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a CNC lathe, and a comprehensive energy consumption model of transient steady state,
which is more consistent with the actual situation and has higher accuracy of the energy
consumption prediction, is established.

2.1. Analysis of Energy Consumption Characteristics in CNC Turning Process

Taking the machining of shaft parts by the ck6153i CNC lathe as an example [33],
the basic principle and energy consumption characteristics of CNC machining are an-
alyzed. The machining process of this part mainly includes (a) standby; (b) spindle
speedup to 500 r/min; (c) rapid positioning; (d) feeding; (e) end-face turning; (f) rapid
positioning and feeding; (g) rough turning; (h) rapid positioning and spindle speedup to
1000 r/min; (i) feeding; (j) finish turning; (k) rapid positioning and feeding; (l) chamfer
turning; (m) rapid positioning and spindle speed to 500 r/min; (n) tool changing; (o) rapid
positioning and feeding; (p) grooving; (q) rapid positioning to origin; and (r) standby,
machining finished. The power curve is shown in Figure 2.
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Figure 2. Measured power curve of machining process for a shaft part.

According to Figure 2, the power of the basic module to maintain the standby opera-
tion of the machine tool is stable until the spindle of the machine tool accelerates, mainly
including the operation of CNC systems, fans and other devices of the CNC machine tool to
maintain the basic movement of the machine tool. The spindle starts and accelerates to the
corresponding processing parameters. The duration of this process is short, but the peak
value is large as shown in the power diagram. This process is called spindle acceleration.
After the acceleration of the spindle, the processing activities are carried out at a constant
speed. This power is the spindle rotating power, which is a stable value. The tool then
moves quickly into the given position to the safe cutting position for a short duration.
When positioned in a safe position, the tool approaches the workpiece at a constant feed
speed in preparation for cutting. During the process of end-face turning, the power curve
of the process changes smoothly without an instantaneous peak value due to the gradual
change of the cutting depth and cutting speed. After the end-face turning, the tool rapid
feed is positioned to the origin. This process also lasts a short time, but there is an obvious
power peak.

According to the above-mentioned shaft parts machining process, the energy con-
sumption of the CNC machine tool machining processes can be decomposed into two parts:
(A) energy consumption of the steady state, such as standby operating, spindle rotating,
feeding, material cutting, etc.; (B) energy consumption of transient state, such as spindle
speedup, rapid positioning, etc. The transient state is the transition process between the
two steady states, which may lead to peak power. Transient states frequently occur during
a machining process and their energy consumptions should not be ignored.

Among the existing research on energy consumption of CNC machine tools, the
modeling and optimization of energy consumption in the steady state process during CNC
machine tool machining are more in depth, but the research on the transient process is
relatively little, and the change in power consumption caused by this process is not paid
attention to. For example, the power consumption of transient process is not considered
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in the method given by He’s research, which results in the calculated value being 9.3%
smaller than the measured value [34]. Therefore, it is very important to consider the energy
consumption of the transient process in the study of energy consumption optimization of
CNC machine tools. As can be seen in Ref. [35], when forecasting the demand for energy
consumption of the whole machining process, the predicted value, taking into account the
energy consumption of the transient process, is 6.35% higher than the previously predicted
value.

2.2. Energy Consumption Modeling of CNC Turning

Based on the analysis of the energy consumption composition characteristics of CNC
lathe machining process in the previous section, the CNC lathe machining process is di-
vided into the steady state process and transient state process, and then the CNC lathe
machining process energy consumption is divided into steady state process energy con-
sumption and transient state process energy consumption.

2.2.1. Steady State Process Energy Consumption Model

The CNC lathe machining process involves standby, no-load and a cutting state. When
the lathe is in the cutting state, the total power at this time is called the cutting power
(PCut). The total cutting power is composed of the power of material cutting (PMC) and
power of air cutting (PAC), as shown in Figure 3. The air cutting power refers to the power
of the CNC lathe when it moves according to the specified cutter path (without touching
the workpiece). The material cutting power refers to the power increased by cutting the
workpiece material basis on the air cutter power (the difference between the total cutting
power and the air cutting power) [36]. Therefore, the total cutting power can be expressed
as:

PCut = PAC + PMC (1)

where PCut is the cutting power, W; PAC is the air cutting power, W; and PMC is the material
cutting power, W.
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The power of the air cutting is further decomposed into standby operating power,
machine tool lighting power, spindle rotating power and feeding power. Therefore, the
power of the air cutting can be further expressed as:

PAC = PSO + PL + PSR + PF (2)
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where PSO is the standby operating power, W; PL is the machine tool lighting power, W;
PSR is the spindle rotating power, W; and PF is the feeding power, W.

According to Equations (1) and (2), the cutting power can be further expressed as:

PCut = PSO + PL + PSR + PF + PMC (3)

Next, the functional models of the standby operating power (PSO), machine tool
lighting power (PL), spindle rotating power (PSR), feeding power (PF) and material cutting
power (PMC) are introduced, one by one.

(1). Standby operating power
The standby power refers to the power required by the basic modules (including

control panel, fan, etc.) to ensure the operation of the machine tool. For a given machine
tool, this power is regarded as a fixed value. The standby power can be obtained by
pre-measurement combined with the following formula [37]:

PSO =
NSO

∑
i=1

PSO, i/NSO (4)

where PSO is the standby operating power, W; PSO, i is the standby operation power value
measured for the i-th time, W; and NSO is the number of times to measure the standby
operating power.

(2). Machine tool lighting power
The lighting power of the machine tool is the power required to maintain the lighting

demand of the machine tool. When the model of the machine tool is determined, the
lighting power of the machine tool is equal to the rated power of the lighting device of the
machine tool, and the function expression is [37]:

PL = PLr (5)

where PL is the lighting power of the machine tool, W; and PLr is the rated power of the
lighting device of the machine tool, W.

(3). Spindle rotating power
The spindle rotating power is the power required to ensure spindle rotation. Based

on our previous research results, the spindle rotating power can be written as a linear
piecewise function of speed [35]:

PSR =


Asp1 × n + Bsp1 , 0 < n ≤ n1

Asp2 × n + Bsp2 , n1 < n ≤ n2
Asp3 × n + Bsp3 , n2 < n ≤ n3

(6)

where PSR is the spindle rotation power, W; n is the spindle speed, r/min; and Asp1, Asp2,
Asp3, Bsp1, Bsp2 and Bsp3 are the coefficients of the function, which are obtained through
experimental measurement and statistical analysis.

(4). Feeding power
The feed power refers to the power consumed by the feed device when feeding. The

feed power is related to the performance parameters and operating parameters of the CNC
machine tool itself. During feed execution, the power includes two parts: loss power of
the feed motor itself and output power of the feed motor shaft. According to our previous
research results, the feed power is expressed as a quadratic function of the feed speed [38]:

PXF = Cx0 + Cx1vx f + Cx2v2
x f

PYF = Cy0 + Cy1vy f + Cy2v2
y f

PZF = Cz0 + Cz1vz f + Cz2v2
z f

(7)
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where PXF, PYF and PZF are the feed power of the X, Y and Z axes of the CNC lathe, W; Cx0,
Cy0 and Cz0 are constant terms; and Cx1, Cx2, Cy1, Cy2, Cz1 and Cz2 are coefficients, which
are obtained according to experimental measurement and statistical analysis.

(5). Material cutting power
The material cutting power is one of the most complex parts of the total cutting power

of the CNC lathe. According to our previous research results, the function can be expressed
as [35]:

PMC = CP·vnP
c · f yP ·axP

p (8)

where PMC is the material cutting power, W; CP is the coefficient of the material cutting
power; vc is the cutting speed, m/min; f is the feed rate, mm/r; ap is the cutting depth, mm;
and np, yp and xp are the indexes of cutting speed, feed rate and cutting depth, respectively.

According to the above power function models (1) to (8), the steady state process
energy consumption function model in the CNC turning process can be calculated:

Esteady = ESO + EL + ESR + EF + EMC

= ∑
∫ tSO

0 PSOdt + ∑
∫ tL

0 PLrdt +
∫ tSR

0 (ASP × n + BSP)dt
+
∫ tF

0 (C0 + C1v f + C2v2
f )dt +

∫ tMC
0 CP·vnP

c · f yP ·axP
p dt

(9)

where Esteady is the energy consumption in the steady state process of CNC turning, J;
ESO is the standby energy consumption of the machine tool, J; EL is the lighting energy
consumption of the machine tool, J; ESR is the rotation energy consumption of the machine
tool spindle, J; EF is the feed energy consumption of the machine tool, J; and EMC is the
material cutting energy consumption, J.

2.2.2. Transient State Process Energy Consumption Model

For the modeling of the transient process energy consumption, the energy demand
generated by spindle acceleration and rapid positioning accounts for the majority of the
energy demand generated by the transient process. Therefore, in this paper, the key
transient process energy consumption is selected as the research object to establish the
transient process energy consumption model.

(1). Spindle acceleration
Spindle acceleration refers to the transfer process of spindle acceleration from low

speed to high speed under the condition of no cutting load. The energy demand of
the process includes three parts: (1) the energy demand of the spindle system from the
beginning of spindle acceleration to the peak power; (2) the energy demand of spindle
system during the transition from power peak to power stability; and (3) the basic energy
demand during spindle acceleration. According to our previous research, the energy
demand for spindle acceleration can be expressed as [39]:

ESRA = ESR1 + ESR2 + ESR3

=
∫ tSR1

0 PSR1dt +
∫ tSR2

0
PSRmax+PSR(n2)

2 dt
+
∫ tSR3

0 [PSO + PL + . . .]dt
=

∫ tSR1
0 [PSR(n1 + 30αt/π) + Ts(πn1/30 + αt)]dt

+0.5[PSR(n1 + 30αtSR1/π) + Ts(πn1/30 + αtSR1) + PSR(n2)]tSR2

+
∫ tSR3

0 [PSo + PL+ · · · ]dt

(10)

where ESRA is the energy consumption during spindle acceleration, J; PSR is the spindle
rotation power, W; α is the acceleration angle of the spindle, rad/s2; Ts is the acceleration
torque equivalent to the spindle of the spindle system, N ·m; tSR1 is the time from the start
of spindle acceleration to the power peak stage, s; tSR2 is the time of transition from the
power peak to the stable power period, which is the time of this stage, s; tSR3 is the spindle
acceleration process time, s; n1 is the initial speed of spindle acceleration, r/min; and n2 is
the target speed, r/min.
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(2). Rapid positioning
Rapid positioning refers to the transfer process of the feed system from low feed speed

to maximum feed speed. For a given feed system, the maximum feed speed of each axis is
determined. The energy demand of the process includes two parts: (1) the energy demand
of the feed system in the process of rapid positioning, and (2) the basic energy demand in
the rapid positioning process. According to our previous research, the energy demand of
the rapid positioning process can be expressed as [39]:

EFA = EF1 + EF2

=
∫ tFA

0 [PF + PSO + PL + PSR + · · · ]dt
(11)

where EFA is the energy consumption in the rapid positioning process, J, and tFA is the
rapid positioning process time, s.

According to the above function models (10) to (11), the energy consumption function
model of transient process in CNC turning can be obtained:

Etransient = ESRA + EFA

=
∫ tSR1

0 [PSR(n1 + 30αt/π) + Ts(πn1/30 + αt)]dt
+0.5[PSR(n1 + 30αtSR1/π) + Ts(πn1/30 + αtSR1) + PSR(n2)]tSR2

+
∫ tSR3

0 [PSo + PL+ · · · ]dt +
∫ tFA

0 [PF + PSO + PL + PSR + · · · ]dt

(12)

where Etransient is the energy consumption in the transient process of CNC turning, J.
Therefore, based on the above discussion, the transient-steady state energy consump-

tion function model of the CNC turning process is further obtained according to functional
models (9) and (12):

Ea = Esteady + Etransient
= ESO + EL + ESR + EF + EMC + ESRA + EFA

= ∑
∫ tSO

0 PSOdt + ∑
∫ tL

0 PLrdt +
∫ tSR

0 (ASP × n + BSP)dt
+
∫ tF

0 (C0 + C1v f + C2v2
f )dt +

∫ tMC
0 CP·vnP

c · f yP ·axP
p dt

+
∫ tSR1

0 [PSR(n1 + 30αt/π) + Ts(πn1/30 + αt)]dt
+0.5[PSR(n1 + 30αtSR1/π) + Ts(πn1/30 + αtSR1) + PSR(n2)]tSR2

+
∫ tSR3

0 [PSo + PL+ · · · ]dt +
∫ tFA

0 [PF + PSO + PL + PSR + · · · ]dt

(13)

3. Multi-Objective Optimization Model
3.1. Selection of Optimization Variables

There are many variable factors involved in the process of CNC lathe machining. In
theory, when the manufacturing conditions are determined, the three main factors affecting
the optimization goal are spindle speed, feed rate and cutting depth. The reasonable
selection of cutting three elements has a great influence on the energy consumption and
quality of machining and is the main optimization variable. Therefore, the optimization
variables in this paper are spindle speed, feed rate and cutting depth.

3.2. Selection of Optimization Objectives
3.2.1. Optimization Objectives of Low Energy Consumption

This paper takes energy saving in the machining process of CNC lathe as one of the
optimization objectives (low energy consumption). Compared with the previous energy
consumption models, the energy consumption model in this paper not only takes into
account the steady state energy consumption in the CNC machine tool machining process,
but also takes into account the transient energy consumption, which is more consistent
with the actual situation and has a higher accuracy in energy consumption prediction.
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According to the above analysis, the transient-steady state energy consumption function
model of the CNC machine tool can be expressed as:

Ea = Esteady + Etransient
= ESO + EL + ESR + EF + EMCT + ESRA + EFA

(14)

where Ea, Esteady and Etransient are transient-steady state energy consumption, steady state
process energy consumption and transient state process energy consumption of the CNC
lathe, J.

3.2.2. Optimization Objectives of High Quality

The machining quality of parts is directly related to the working performance and
service life of mechanical products. High quality machining is another optimization
objective of this paper. The quality of a part is usually expressed by its surface roughness.
Surface roughness refers to the dimensional characteristics of microscopic geometry with
small spacing and small valleys on the machined surface. These small geometric errors are
called surface roughness. Commonly used mathematical models for surface roughness of
workpiece are exponential and linear functions as follows [40]:

Ra = C1vα
c aβ

ρ f δ

Ra = C2 + C3vc + C4ap + C5 f + C6vc + C7vcap + C8ap f
(15)

where C1, C2, C3, C4, C5, C6, C7, C8, α, β, and δ are coefficients; vc is the cutting speed, mm/s;
f is the feed rate, mm/r; and ap is the cutting depth, mm.

Under the experimental data, the precision of the primary function form model is
higher, so this paper uses the primary function form surface roughness model of the
workpiece.

3.3. Constraint Condition

The selection of the processing parameters needs to consider the performance re-
quirements of the processing system and the technical requirements of the workpiece,
such as the performance range of CNC, the durability of the tool, etc., which should only
be used within the limited conditions. Therefore, the constraints for the optimization of
cutting parameters should be established according to the actual conditions so that the
optimization results obtained by the algorithm can meet the actual production requirement.

(1) Spindle speed constraint: nmin ≤ n ≤ nmax, where n, nmin and nmax are the spindle
speed of the CNC lathe, the minimum speed allowed by the CNC lathe and the maximum
speed allowed by the CNC lathe, respectively.

(2) Feed speed constraint: v f min ≤ v f ≤ v f max, where v f , v f min and v f max are the
feed speed, the minimum feed speed allowed by the lathe and the maximum feed speed
allowed by the lathe, respectively.

(3) Cutting depth constraint: 0 < ap ≤ apmax, where ap and apmax are the cutting
depth and the maximum allowable cutting depth, respectively.

(4) Tool durability constraint [41]: T = CT
vx

c f yaz
p
≤ TB, where T is the tool durability and

CT is the tool durability coefficient, which is related to tool, workpiece material and cutting
conditions; x, y and z respectively represent the influence of processing parameters vc, f
and ap on tool durability. TB is the reasonable durability of the tool.

(5) Maximum power constraint: Pspindle ≤ Prated, where Pspindle and Prated are the
maximum power of the CNC lathe spindle and the rated power of the CNC lathe spindle
motor, respectively.
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Based on the above discussion, the multi-objective optimization model of the CNC
lathe processing parameters for high quality and low energy consumption is as follows:

minF(n, f , ap) = (minEa, minRa)

s.t.



nmin ≤ n ≤ nmax
v f min ≤ v f ≤ v f max
0 < ap ≤ apmax

T = CT
vx

c f yaz
p
≤ TB

Pspindle ≤ Prated

(16)

4. Model Solving Based on NSGA-II

When solving the multi-objective optimization model, the more popular and mature
NSGA-II algorithm is used. NSGA-II is one of the most popular multi-objective genetic
algorithms. It reduces the complexity of the non-inferior classification genetic algorithm
and has the advantages of fast running speed and good convergence of the solution set [42].

4.1. The Flow of NSGA-II

The main process of the NSGA-II algorithm is as follows:
(1) The initial parent population P(0) with population size S is randomly generated,

and the child population Q(0) is obtained after non-dominated sorting, and set up as g = 0.
(2) The above two generations are combined to form a new population R(g).
(3) At the same time of the non-dominated sorting of population R(g), the crowding

degree of each front-end individual is calculated, and the best individual is selected
according to the order value and crowding degree of the individual to form a new parent
group P(g + 1).

(4) P(g+ 1) is selected, hybridized and mutated to produce a new offspring population
Q(g + 1).

(5) Judge whether the termination condition is true. Otherwise, g = g + 1, go back to (2).

4.2. The Application and Parameter Setting of NSGA-II
4.2.1. The Application of NSGA-II

(1). Chromosome coding
In the optimization solution, the mathematical expression of the model should be

coded according to the programming method. In this paper, the optimization variables
are spindle speed n, feed rate f and cutting depth ap. So, this paper adopts real number
coding. As shown in Figure 4, chromosomes with a length of 3× m are generated by
random generation. The first part is the spindle speed n, the second part is the feed rate f ,
and the third part is the cutting depth ap. According to the specific constraints, the value
range of each variable is given.
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(2). Initial population
Initial filling is the starting point of the algorithm, and good initial filling can improve

the efficiency of the algorithm. In this algorithm, the initial population is generated
randomly, but the range can be limited by constraints to obtain a better initial population.
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The value range of population size M is generally between 20 and 500. The variable
parameters mainly involved in this paper are three real values, and the chromosome length
is general because the value of population size in this paper is 300.

(3). Fitness calculation
In the NSGA-II algorithm, individual fitness is calculated by the non-dominated level

and congestion distance. Firstly, the double objective function value of each individual
in the population is calculated, and then all individuals in the population are divided
into different non-dominated grades by the non-dominated classification method. All
non-dominated optimal solutions in the current population are regarded as the first non-
dominated optimal solution level, and the non-dominated level of each individual is
designated as level 1. Similarly, the remaining individuals in the population are classified
and assigned values until all individuals are divided into different levels. It should be
noted that the smaller the grade value, the better the individual.

The crowding distance refers to the distance between individuals at the same level.
As shown in Figure 5, it refers to the sum of the relative distances between an individual in
the target space and two adjacent individuals at the same level in each objective function.
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At the same level, there are several individuals. In order to ensure that marginal
individuals have a choice advantage, the crowding distance is set to the maximum. For
intermediate individuals, the formula of the crowding distance is as follows:

Lr(s) = Lr(s) +
|Lr(s + 1)− Lr(s− 1)|

Lr(k)
(17)

where Lr(s) is the crowding degree of the s-th individual on the objective function of r.

4.2.2. The Parameter Setting of NSGA-II

This paper mainly uses the NSGA-II algorithm in the geatpy library with the help of
the Python 3.8 platform. Geatpy is a high-performance and practical evolutionary algorithm
toolbox. It provides many library functions of important operations in the implemented
evolutionary algorithms and provides a highly modular and low coupling object-oriented
evolutionary algorithm framework. It adopts the mode of "defining problem class + calling
algorithm template" for evolutionary optimization, which can be used to solve constraint
optimization, combinatorial optimization, hybrid coding evolutionary optimization and
so on.

4.3. Weight of Multi-Objective Optimization

In this paper, when solving the corresponding multi-objective model through NSGA-
II, we obtain a set of solutions, which cannot give the corresponding optimal solution.
Different target weight settings will bring different solutions, and the setting of the weight
is particularly important. This paper mainly determines the corresponding target weight
through the correlation between optimization objectives and optimization variables. In this
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paper, the grey correlation degree analysis method is used to calculate the grey correlation
coefficient of each target and obtain the target weight so as to optimize the target and
obtain the corresponding processing parameters. Combined with the actual data and the
value in the optimization, the grey correlation analysis is carried out. The main steps are as
follows:

(1). Standardize the objective function to eliminate the influence of different orders of
magnitude [43].

Zij-max =
yij−min(yij ,i=1,2,...,n)

max(yij ,i=1,2,...,n)−min(yij ,i=1,2,...,n)

Zij-min =
max(yij ,i=1,2,...,n)−yij

max(yij ,i=1,2,...,n)−min(yij ,i=1,2,...,n)

(18)

among them, the formula of Zij-max is used when the objective function takes the maximum
as the optimal, and the formula of Zij-min is used when the objective function takes the
minimum as the optimal. In this formula, n is the number of experimental data sets and m
is the number of optimization objectives.

(2). Calculate the grey correlation coefficient of the standardization target.

γ(Zo, Zij) =
∆min + β∆max
∆oj(k) + β∆max

(19)

where Zo(k) is the reference sequence and ∆oj(k) is the Zo(k) deviation sequence from
the comparison sequence Zij(k). β is the resolution coefficient, and the value range is
0 < β < 1.

(3). Multi-objective weight calculation.
In this paper, in the multi-objective weight determination, the influence of the opti-

mization of processing parameters on the optimization target is used as the standard to
determine the target weight. The weight coefficient is calculated as follows:

ω =
∑

p
j=1 Rij

∑m
i=1 ∑

p
j=1 Rij

(20)

among them, Rij = max
{

Kij,1, Kij,2, . . . , Kij,k

}
−min

{
Kij,1, Kij,2, . . . , Kij,k

}
where m is the number of optimization objectives, R is the range of grey correlation

coefficients, K is the average grey correlation number of each processing process parameter
at each level, and ω is the weight of objectives. In the later optimization process, combined
with the actual optimization objectives, different weights are given.

5. Case Study

To demonstrate the effectiveness and feasibility of the proposed approach, an actual
machining case is conducted and analyzed in this case study. Firstly, taking a shaft part
processed by the CK6153i CNC lathe as the test object, the importance of considering
the transient state energy consumption is illustrated (the workpiece is shown in Figure 6).
Secondly, taking the finish turning process in the machining process as an example, the
optimization of the machining process parameters is studied. During the processing,
the power and energy data were simultaneously measured by a power-energy collecting
system established by our research group (Figure 7). For more information about the
power-energy collecting system, refer to Ref. [44].
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5.1. Experimental Conditions

The geometric parameters of VNMG160408MV tool and main technical parameters of
CK6153i CNC lathe are shown in Tables 1 and 2.

Table 1. Geometric parameters of VNMG160408MV tool.

α0 Posterior angle 7
◦

κr Principal deflection angle 93
◦

κr′ Secondary deflection angle 52
◦
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Table 2. Technical specification parameters of CK6153i CNC lathe.

Items Types Specifications Unit

Processing range
Maximum turning diameter of workpiece 530 mm

Maximum X-axis travel of worktable 260 mm
Maximum Z-axis travel of worktable 400 mm

Spindle
Spindle head/bore taper A2-8/ASA350

Speed range

BL:25~80
AL:80~250

BH:250~760
AH:760~200

r/min

Rated power of spindle motor 7.5 kw

Feed
Maximum feed speed on X-axis of machine tool 4 m/min
Maximum feed speed on Z-axis of machine tool 8 m/min

5.2. Experimental Study

In order to illustrate the importance of considering transient state energy consumption,
our research group conducted many experiments before. Taking a shaft part processed
by the CK6153i CNC lathe as the test object, the shaft part is machined through five main
cutting processes (dry cutting): (a) end-face turning, (b) rough turning, (c) finish turning,
(d) chamfer turning, and (e) grooving. The power and energy data are simultaneously
measured by the power-energy collecting system mentioned earlier. The results are shown
in Figure 8.
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Figure 8 shows the predicted and measured power curve of the machining case. It can
be seen that the predictive power curve with the energy of the transient state can display
the power peaks during the machining case. The predicted power curve with energy
of transient state can match the measured power curve better than the predicted power
curve without the energy of the transient state. Considering the transient state energy
consumption can improve the integrity of the energy consumption models of the entire
machining process and improve the forecasting accuracy of the energy consumption of the
entire machining process. Therefore, the optimization of the processing parameters based
on the transient steady state energy consumption model is more effective.

5.3. Multi-Objective Optimization Model

As can be seen in Section 5.2, considering the transient state energy consumption can
improve the forecasting accuracy of energy consumption. Therefore, this section considers
transient steady state energy consumption to study the optimization of the CNC turning
process parameters. At the same time, the main parameters of the machining process under
experience are given, as shown in Table 3.

Table 3. Empirical process parameters of finish turning outer circle.

Items Value

Spindle speed (r/min) 1000
Feed rate (mm/r) 0.10

Cutting depth (mm) 0.5

5.3.1. Energy Consumption Model

According to the relevant dimensions of machining shaft parts, the machining process
flow of finishing turning excircle in this case can be divided into seven specific steps:
(a) executing standby; (b) spindle acceleration from static to 1000 r/min; (c) rapid posi-
tioning; (d) feeding; (e) finishing turning; (f) rapid positioning to origin; and (g) executing
standby. The energy consumption of the machining process mainly includes two transient
processes’ energy consumption (spindle acceleration stage, rapid feed positioning stage)
and four steady state processes’ energy consumption (machine tool standby operation
stage, feed stage and finish turning excircle cutting stage). According to the construction of
the energy consumption model in the previous paper, combined with the experiment of
finishing cylindrical machining, the corresponding mathematical function is given.

(1). Executing standby:
In the case, the standby time of the CNC lathe includes two parts: the start part and

the end part. That is, the tSO-start and tSO- f inish processing parameters do not affect this part,
so the corresponding time is no different from the traditional processing, namely, 5.0 s, and
5.0 s. After several measurements, the execution standby power of the CNC lathe CK6153i
is NSO = 200, and PSO = 312.1 w. Then, the execution standby energy consumption of the
CNC lathe in the embodiment is:

ESO = 2×∑
∫ tSO

0 PSOdt
= 2× 312.1× 5 = 3121 J

(21)

(2). Spindle acceleration:
According to the previous analysis, the energy demand of the spindle process includes

three parts. According to the equipment parameters of CNC lathe CK6153i and through
experimental numerical fitting, the piecewise function model of spindle rotation power is
obtained as follows:

PSR =


1.09n + 41.12 , 0 < n ≤ 1000 r/min
0.558n + 605.05 , 1000 < n ≤ 1300 r/min
1.288n− 358.21 , 1300 < n ≤ 1500 r/min

(22)
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At the same time, it can be seen that the time function of spindle acceleration stage is
calculated as follows:

tSR1 = 2π(n1 − n2)/60α

tSR2 = 0.037 + 1.471× 10−4n2
tSR3 = tSR1 + tSR2

(23)

among them, the spindle acceleration angle of the CK61563i CNC lathe is α = 39.78 rad/s;
the acceleration torque of the spindle is Ts = 28.42 N·m.

To sum up, according to Formulas (10), (22) and (23), the energy consumption function
of the spindle acceleration part can be obtained as follows:

ESRA = ESR1 + ESR2 + ESR3

=


5.35× 10−3n2 + 0.11n, 0 < n ≤ 1000
4.65× 10−3n2 + 1.59n, 1000 < n ≤ 1300
5.61× 10−3n2 − 0.94n, 1300 < n ≤ 1500

+


(1.47× 10−4n + 0.037)× (2.58n + 41.12), 0 < n ≤ 1000
(1.47× 10−4n + 0.037)× (2.05n + 605.05), 1000 < n ≤ 1300
(1.47× 10−4n + 0.037)× (2.78n− 358.21), 1300 < n ≤ 1500

+0.92n + 12.29

=


5.73× 10−3n2 + 1.13n + 13.81, 0 < n ≤ 1000
4.95× 10−3n2 + 2.68n + 34.67, 1000 < n ≤ 1300
6.02× 10−3n2 + 0.03n− 0.97, 1300 < n ≤ 1500

(24)

(3). Rapid positioning:
In this case, there are two main processes of rapid positioning: rapid positioning

from the origin to the safe processing position. After machining, the tool is quickly
positioned to the origin. For a given feed system, the maximum feed speed of each axis is
determined. The maximum feed speeds of the X-axis and Z-axis of the CK6153i CNC lathe
are 6000 mm/min and 10, 000 mm/min, respectively. In reference, the fast feed power in
direction and Z direction can be obtained through experimental measurement and statistics,
which can be expressed as PX

FA = 781.33 w, and PZ
FA = 874.35 w. In this experimental case

study, two rapid positioning processes are included, and the distance corresponding to the
process is shown in Table 4.

Table 4. Fast feed motion decomposition.

Items Processing Activities Distance (mm) Time (s)

Rapid positioning Rapid positioning-XZ lx = 25, ly = 41.7 0.25
Rapid positioning-Z ly = 53.3 0.32

Rapid positioning to
origin

Rapid positioning-X lx = 7.5 0.075
Rapid positioning-XZ lx = 20, ly = 33.3 0.2
Rapid positioning-Z ly = 90.67 0.544

According to Formula (11), the energy consumption generated in the rapid positioning
stage in this case design is as follows:

EFA = ∑
∫ tFA

0 (PXF + PSO + PSR)dt
=

∫ 0.25
0 (781.33 + 847.35 + 312.1 + PSR(n))dt

+
∫ 0.32

0 (874.35 + 312.1 + PSR(n))dt
+
∫ 0.2

0 (781.33 + 847.35 + 312.1 + PSR(n))dt
+
∫ 0.544

0 (874.35 + 312.1 + PSR(n))dt

=


1.43n + 1929.15, 0 < n ≤ 1000 r/min
0.73n + 2670.15, 1000 < n ≤ 1300 r/min
1.69n + 1404.43, 1300 < n ≤ 1500 r/min

(25)
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(4). Feeding:
This stage means that after the tool is quickly positioned to the safe cutting position,

the tool is slowly close to the material at the cutting feed speed so as to prepare for the
next finishing excircle cutting. In this case design, it mainly includes two parts: x-feed and
z-feed. According to the power model of the CNC lathe mentioned above and combined
with the experimental data, the feed power functions in X and Z directions of CK6153i can
be obtained as follows:

PXF = −1.63 + 0.017vz f + 4.24× 10−6v2
x f

PZF = 0.49 + 0.030vz f + 2.32× 10−6v2
z f

(26)

At the same time, the feed distance in the x-axis direction is lx = 2.5 mm and the feed
time can be expressed as tx f = lx/vx f = 3 s. If the feed distance in the z-axis direction is
lz = 5 mm, the feed time in this stage can be expressed as tz = lz/vz f = 5/vz f .

Therefore, to sum up, the energy consumption in the feeding stage can be expressed
as:

EF =
∫ tx f

0 PXFdt +
∫ tz f

0 PZFdt
= 1.93× 10−7n· f + 147(n· f )−1 − 2.16

(27)

(5). Finish turning:
According to the power model of the lathe outer circle in the previous paper and

combined with the actual experimental data of CK6153i, the power function model of the
lathe outer circle in this process can be fitted as follows:

PMC = 44.57·v0.909
c · f 0.657·a0.917

p (28)

Accordingly, the cutting time at this stage is t = l/v f = 24/v f . The energy consump-
tion function model of the finish turning outer circle can be obtained as follows:

Ecut =
∫ t

0 PACdt +
∫ t

0 PMCdt

=
∫ 24

v f
0 (312.1 + 1.09n + 41.12− 1.63 + 0.017v f + 4.24× 10−6v2

f )

+
∫ 24

v f
0 (110.61·a0.917

p ·n0.252·v0.657
f )dt

= (2654.62·a0.917
p ·n0.252·v0.657

f + 26.16n + 1.02× 10−4v2
f + 8438.16)/v f

(29)

where Ecut is the energy consumption value of the CNC lathe finish turning excircle
cutting, J; PAC is the auxiliary power in the cutting process of the CNC lathe, W; and PMC
is the material cutting power of the CNC lathe, W.

Combining the above energy consumption mathematical functions, the mathematical
function of the total energy consumption in the processing process in this case can be
obtained.

Ea = ESO + ESRA + EFA + EF + Ecut

=



10, 812.07n−0.091 f−0.343a0.917
p + 1.89× 10−6n f

+5.73× 10−3n2 + 2.56n + 1569.9 f−1 + 506, 436.6× (n f )−1 + 5062.21, 0 < n ≤ 1000
10, 812.07n−0.091 f−0.343a0.917

p + 1.89× 10−6n f
+4.95× 10−3n2 + 3.41n + 1569.9 f−1 + 506, 436.6× (n f )−1 + 5824.08, 1000 < n ≤ 1300
10, 812.07n−0.091 f−0.343a0.917

p + 1.89× 10−6n f
+6.02× 10−3n2 + 1.72n + 1569.9 f−1 + 506, 436.6× (n f )−1 + 4522.71, 1300 < n ≤ 1500

(30)

It can be obtained that under the empirical processing process parameters, that is, the
spindle speed is n = 1000 r/min, the feed rate f = 0.1 mm/min, and the cutting depth
ap = 0.5 mm, the total energy consumption in the processing process is Ea = 40845 J.

At the same time, it can be obtained that the proportion of transient process energy
consumption in the total energy consumption in this embodiment is 16.84%, as shown in
Figure 9. Obviously, the energy consumption of transient process is relatively high, which
cannot be ignored.
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5.3.2. Surface Roughness Model

In this paper, the workpiece is 45# steel and the tool is VNMG160408MV. By inquiring
the requirements of relevant process parameters, empirical values and the research on
surface roughness in Ref. [40], the surface roughness in this paper is as follows:

Ra = 4.12× 10−4n·ap + 2.78× 10−2 f − 1.01× 10−3n + 1.5985 (31)

It can be obtained that under the traditional processing parameters, the spindle speed
n = 1000 r/min, feed rate f = 0.1 mm/min, and cutting depth ap = 0.5 mm, at which
time the surface roughness is:

Ra = (1000, 0.1, 0.5) = 0.7968 µm (32)

5.3.3. Constraint Condition

According to the constraints mentioned above, combined with the geometric parame-
ters of VNMG160408MV tool in Table 1 and the technical specification parameters of the
CK6153i CNC lathe in Table 2, and according to the actual cases in this paper, the specific
range of constraints in this paper can be obtained, as shown in Table 5.

Table 5. Constraint range of cutting parameters.

Cutting Parameters Range

Spindle speed n 100 ≤ n ≤ 1500 r/min
Feed rate f 0.10 ≤ f ≤ 2 mm/r

Cutting depth ap 0.10 ≤ ap ≤ 5 mm

5.3.4. Optimization Model

In summary, the multi-objective optimization model can be expressed as:

minEa(n, f , ap)

=



10, 812.07n−0.091 f−0.343a0.917
p + 1.89× 10−6n f

+5.73× 10−3n2 + 2.56n + 1569.9 f−1 + 506, 436.6× (n f )−1 + 5062.21, 0 < n ≤ 1000
10, 812.07n−0.091 f−0.343a0.917

p + 1.89× 10−6n f
+4.95× 10−3n2 + 3.41n + 1569.9 f−1 + 506, 436.6× (n f )−1 + 5824.08, 1000 < n ≤ 1300
10, 812.07n−0.091 f−0.343a0.917

p + 1.89× 10−6n f
+6.02× 10−3n2 + 1.72n + 1569.9 f−1 + 506, 436.6× (n f )−1 + 4522.71, 1300 < n ≤ 1000

minRa(n, f , ap)
= min(4.12× 10−4n·ap + 2.78× 10−2 f − 1.01× 10−3n + 1.5985)

s.t.


100 ≤ n ≤ 1500 r/min
0.10 ≤ f ≤ 2 mm/r
0.10 ≤ ap ≤ 5 mm

(33)
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5.4. Model Solving Based on NSGA-II

During the double objective optimization, the NSGA-II algorithm is used to solve the
model. Referring to previous literature studies and cases, we preliminarily set the relevant
operation parameters, and through multiple operations, we set the relevant parameters in
the NSGA-II algorithm as shown in Table 6.

Table 6. Parameter setting in NSGA-II algorithm.

Operating Parameters Items Value

M Initial population size 300
G Genetic probability 0.9
Rc Crossover probability 0.7
Rm Variation probability 0.2

N Maximum evolutionary
algebra 100

After the algorithm parameters are set, the algorithm is called several times to solve
the objective function, and the Pareto curve is obtained as shown in Figure 10. It can be
seen that in the optimization of processing parameters for high quality and energy saving,
the value of the optimization objective function conforms to the Pareto curve, and the
discontinuity of the curve is caused by the subsection function of the spindle power. The
partial values display of the Pareto solution set are shown in Table 7.
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Table 7. Partial values display of Pareto solution set.

No. Spindle Speed
(r/min)

Feed Rate
(mm/r)

Energy Consumption
(J)

Surface Roughness
(µm)

1 1500.00 0.15 38,900.00 0.40
2 1500.00 0.16 38,500.00 0.40
3 1500.00 0.15 38,800.00 0.40
4 1500.00 1.33 24,800.00 0.43
5 1360.00 2.00 21,300.00 0.56

. . . . . . . . . . . . . . .
296 1500.00 1.46 24,500.00 0.43
297 1400.00 1.98 22,100.00 0.53
298 1060.00 1.99 18,500.00 0.80
299 1440.00 2.00 22,800.00 0.49
300 1500.00 0.15 39,200.00 0.40

5.5. Results and Discussions

In addition, to demonstrate the benefits of considering transient state energy consump-
tion, we also solve the multi-objective optimization model without considering transient
energy consumption. For multi-objective optimization, the final result is selected from the
Pareto front with a preference of low energy consumption. The results of the empirical turn-
ing, multi-objective optimization (without energy of transient state), and multi-objective
optimization (with energy of transient state) listed in Table 8 are summarized in Figure 11
for a comparison among different schemes.

Table 8. Optimal process parameters results.

Items Spindle Speed
(r/min)

Feed Rate
(mm/r)

Cutting Depth
(mm)

Energy Consumption
(J)

Surface Roughness
(µm)

Traditional parameters 1000.00 0.1 0.5 40,845 0.797

Optimal parameters (without energy
of transient state) 1500.00 0.4 0.5 29,139 0.404

Optimal parameters (with energy of
transient state) 1500.00 1.1 0.5 25,200 0.422
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As can be seen from Figure 11, comparing the objective function values of different
schemes, the optimization results considering transient state energy consumption are
significantly better than those without transient state energy consumption, especially
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for the energy-saving optimization objectives. For the optimization scheme considering
transient state energy consumption, when the spindle speed n = 1500 r/min, feed rate
f = 1.1 mm/r and cutting depth ap = 0.5 mm, the objective function value obtains the
optimal value. Moreover, the energy consumption value is 38.3% lower than that under
empirical process parameters, and the surface roughness is 47.0%. For the optimization
scheme without considering transient state energy consumption, when the spindle speed
n = 1500 r/min, feed rate f = 0.4 mm/r and cutting depth ap = 0.5 mm, the objective
function value obtains the optimal value. Moreover, the energy consumption value is 28.7%
lower than that under empirical process parameters, and the surface roughness is 49.3%.

In addition, it is worth noting that the surface roughness value under the optimization
scheme considering transient state energy consumption is slightly worse than that without
transient state energy consumption. The main reason is that the large feed speed leads to
poor machining quality. However, the effect of energy consumption optimization is much
higher than that without considering transient state energy consumption. It can be seen
that parameter optimization based on the high-precision energy consumption model has
more advantages.

6. Conclusions

In this paper, the energy consumption composition characteristics of the CNC lathe
machining process are analyzed, and the energy consumption of the transient process is
introduced into the energy consumption model of the CNC lathe, which further improves
the accuracy of the model. A multi-objective optimization model is established, taking the
spindle speed, feed rate and cutting depth as optimization variables, and high-quality and
low-energy machining as optimization objectives. The above model is optimized by using
the non-dominated sorting genetic algorithm with elite strategy. Through case analysis, the
optimization results show that it can greatly reduce the machining energy consumption
and workpiece surface roughness.

Energy modeling and parameter optimization of turning were the focuses of this
research. The main limitation of this study is that the influence of the cutting tools was not
considered. Hence, the integrated optimization of machining tools and process parameters
will be the research object in our future work.
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