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Abstract: Future emissions scenarios have served as a primary basis for assessing climate change
and formulating climate policies. To explore the impact of uncertainty in future emissions scenarios
on major outcomes related to climate change, this study examines the marginal abatement cost
(MAC) of carbon emissions under the latest Shared Socioeconomic Pathways (SSPs) subject to the
economic optimum and the 1.5 ◦C temperature increase constraint using the Epstein-Zin (EZ) climate
model. Taking the “Regional Rivalry” (SSP3) scenario narrative under the economic optimum as a
representative case, the expected MACs per ton CO2 equivalent (CO2e) emissions in the years 2015,
2030, 2060, 2100, and 2200 are: $102.08, $84.42, $61.19, $10.71, and $0.12, respectively. In parallel, the
associated expected average mitigation rates (AMRs) are 0%, 63%, 66%, 81%, and 96%, respectively.
In summary, in a world developing towards regional rivalry (SSP3) or fossil-fueled development
(SSP5) with high mitigation pressure, the MAC values have approximately doubled, compared with
the sustainability (SSP1) and inequality (SSP4) storylines with low mitigation pressure levels. The
SSP2 (Middle of the Road) shows a moderate MAC decreasing trend with moderate mitigation
pressure. The results provide a carbon price benchmark for policy makers with different attitudes
towards the unknown future and can be used to formulate carbon mitigation strategy to respond to
specific climate goals.

Keywords: EZ climate model; shared socioeconomic pathways; marginal abatement cost; average
mitigation rate

1. Introduction

Since the start of industrialization, economic development and population growth
have driven the high use of carbon-based fossil fuels. This has been followed by a steady
increase in atmospheric carbon emissions and higher carbon concentrations, and has trig-
gered global climate change. In response, an increasing number of countries have proposed
carbon trading and carbon tax policies to effectively encourage emission reduction. Both
approaches place a price on carbon dioxide (CO2) emission permits and enable economic
entities to reduce CO2 emissions. Marginal cost theory proposes that, in a perfectly com-
petitive market, the optimal price per unit of CO2 emission permit should be equal to the
marginal abatement cost (MAC), defined as the cost to reduce one unit of CO2 emissions at
a specific emission level [1]. Therefore, measuring the MAC of CO2 can provide a carbon
price benchmark.

The interactions between climate change and economic development are highly uncer-
tain. As such, quantitatively analyzing optimal abatement costs under uncertainty requires
a recursive dynamic programming implementation of Integrated Assessment Models
(IAMs) [2]. IAMs modelers use several generations of emission scenarios to develop a
series of impact assessments with respect to climate change [3]. In other words, emission
scenario storylines provide input drivers to climate models, and climate models output
major variables of climate change. These variables are of direct interest to policymak-
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ers concerned about the design of mitigation policies, such as emissions, concentrations,
temperature, MACs, mitigation rates, and the social cost of carbon (SCC) [4].

Emission scenarios describe what the future could look like and provide several
possible futures [5]. The climate change community has developed several generations of
emissions scenarios. These include the “1990 IPCC First Scientific Assessment” (SA90) [6],
the “1992 IPCC Scenarios” (IS92) [7], the 2000 IPCC “Special Report on Emission Scenarios”
(SRES) [8], and the 2010 “Representative Concentration Paths” (RCPs) [9] and the 2017
“Shared Socio-economic Pathways (SSPs)” [10] developed outside the IPCC. Currently,
SSPs are starting to be used in climate modeling and were prepared for the IPCC sixth
assessment report.

Many studies have discussed future climate change mitigation, adaptation, and
broader social and environment sustainability issues under the framework of SSPs sce-
narios. Chen et al. applied a 14-region global TIMES model (GTIMES) to study mid-to-
long term energy development and carbon emission strategies for different regions using
SSPs [11]. Bauer et al. explored future energy sector developments across the five SSPs, us-
ing five leading IAMs [12]. Yang et al. applied the GTIMES with scenarios designed using
SSPs and RCPs, and created a detailed depiction of the quantification of SSP trajectories into
the GTIMES model [13]. Yang et al. updated the SCC under the SSPs using the Dynamic
Integrated Model of Climate and the Economy (DICE) [14]. Chen et al. projected future
urban land expansions at a 1 km resolution at a global scale under SSPs using the FLUS
model, and explored the potential impacts on the environment and food production [15].

SSPs have been successfully applied in different impact assessment studies; however,
this coverage has not included predicting future MACs. This paper estimates the MACs
under the SSP storylines by applying the Epstein-Zin (EZ) climate model; the associated
average mitigation rates (AMRs) are given in parallel. We also compared the MACs under
different SSPs. The key added value over previous studies is the impact of uncertainty
in SSP narrative storylines on the MACs of carbon emissions. The MAC values provide
a carbon price benchmark, and the AMR values provide a basis for formulating carbon
mitigation strategies to assist policy makers with different approaches with respect to an
unknown future.

This paper is organized as follows. Section 2 presents the SSP data set used for our
analysis. Section 3 introduces the theoretical model, which includes the Epstein-Zin (EZ)
recursive utility function, geophysical equation, emission reduction cost function, and
climate damage function. Section 4 presents the simulation results. Focusing on the SSP3
narrative under the economically optimal policy as a representative case, this section
presents the MACs and AMRs at five emission reduction decision timepoints for each state:
2015, 2030, 2060, 2100, and 2200. This section also presents the expected MACs and AMRs
at the five emission reduction decision timepoints under the five SSPs. Then, the sensitivity
of the main model parameters is analyzed. Section 5 concludes the paper.

2. Materials

The SSPs offer five scenario narratives, which describe broad socioeconomic trends
that could shape different characteristics in a future society. All are baseline scenarios with-
out future climate policies, i.e., the “business as usual” (BAU) scenarios. The five pathways
include: SSP1 (Sustainability), SSP2 (Middle of the Road), SSP3 (Regional Rivalry), SSP4
(Inequality), and SSP5 (Fossil-fueled Development). Of them, SSP1 represents the green
growth road. SSP2 involves a medium level of challenge associated with both mitigation
and adaptation. SSP3 represents international fragmentation and regional rivalry. SSP4
considers the scenario of extreme inequality. SSP5 represents high levels of challenge with
respect to mitigation and low challenges with respect to adaptation [10].

Climate scientists have examined how to adapt to different climate mitigation targets
under five alternative pathways described by the SSPs for various outcomes in a future
society. Similar to RCPs, climate mitigation targets are also defined by Radiative Forcing
(RF), which is the net change (downward minus upward) radiative flux (expressed in
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w/m2) at the tropopause or top of atmosphere due to a change in an external driver of
climate change [16]. Climate mitigation targets are to limit RF within the time before
2100 to 8.5, 7.0, 6.0, 4.5, 3.4, 2.6, and 1.9 w/m2, which are represented by RCP8.5, RCP7.0,
RCP6.0, RCP4.5, RCP3.4, RCP2.6, and RCP1.9, respectively. Of these, RCP8.5 and RCP7.0
represent the “worst” and “average” no-policy scenarios, respectively. In this article, we use
“RCPBaseline” to represent RCP8.5 or RCP7.0 scenarios. A total of 26 mitigation scenarios
are constructed by combining mitigation targets of the RCPs with the five SSPs [17]. Table 1
lists all mitigation scenarios.

Table 1. All mitigation scenarios.

Shared Socioeconomic
Pathways (SSPs)

Representative
Concentration Paths (RCPs) Mitigation Scenarios

SSP1 (Sustainability)

RCPBaseline SSP1-Baseline
RCP4.5 SSP1-4.5
RCP3.4 SSP1-3.4
RCP2.6 SSP1-2.6
RCP1.9 SSP1-1.9

SSP2 (Middle of the Road)

RCPBaseline SSP2-Baseline
RCP6.0 SSP2-6.0
RCP4.5 SSP2-4.5
RCP3.4 SSP2-3.4
RCP2.6 SSP2-2.6
RCP1.9 SSP2-1.9

SSP3 (Regional Rivalry)

RCPBaseline SSP3-Baseline
RCP6.0 SSP3-6.0
RCP4.5 SSP3-4.5
RCP3.4 SSP3-3.4

SSP4 (Inequality)

RCPBaseline SSP4-Baseline
RCP6.0 SSP4-6.0
RCP4.5 SSP4-4.5
RCP3.4 SSP4-3.4
RCP2.6 SSP4-2.6

SSP5 (Fossil-fueled
Development)

RCPBaseline SSP5-Baseline
RCP6.0 SSP5-6.0
RCP4.5 SSP5-4.5
RCP3.4 SSP5-3.4
RCP2.6 SSP5-2.6
RCP1.9 SSP5-1.9

Climate scientists have also described several different climate policies [18]. The first is
a baseline policy, where no policies are taken to slow or reverse the greenhouse effect until
2250. The second policy is the “economic optimum” policy, where economically “optimal”
policies are adopted to slow climate change. The third policy is a “CO2 concentration
constraints” policy, where CO2 concentrations are constrained to a specific level. The fourth
policy is a “temperature constraints” policy, where this century’s temperature increase
is constrained to a specific level above pre-industrialization levels, usually at 1.5 or 2 ◦C.
Nordhaus [18] noted that the “baseline policy” and “optimal policy” have fallen out of fa-
vor with analysts, who tend to focus on the temperature-limiting or concentration-limiting
policies. However, the economically-focused “optimal policy” continues to have research
value as a measure benchmark of efficiency or inefficiency when assessing other climate
policies. Global efforts to mitigate climate change are guided by projections of future
temperatures [19]. On 12 December 2015, parties to the UNFCCC (United Nations Frame-
work Convention on Climate Change) reached the Paris Agreement, which established the
goal of controlling global temperature increases to within 2 ◦C above the pre-industrial
level, and pursuing a level below a 1.5 ◦C increase, during this century [20]. Therefore, we
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consider the scenarios where the economically optimal policy and the global temperature
increase is kept within 1.5 ◦C pre-industrial levels in this century.

3. Theoretical Model

The studied time period is divided into 6 periods: (2015, 2030), (2030, 2060), (2060,
2100), (2100, 2200), (2200, 2400), and (2400, +∞). These correspond to period t = 0, 1, 2, 3, 4,
and 5, with five-year time steps. There are five emission reduction decision time points:
2015, 2030, 2060, 2100, and 2200. Figure 1 shows the model tree structure. The connection
line between two “boxes” indicates the path with information about θt. The parameter
θt is the climate fragility, which also represents all states of nature in period t. The five
“red boxes” in 2400 represent the five states of nature, or nodes. The fragility or climate
damage of each node in each period increases from the bottom to the top. At emission
reduction decision time t, there are t + 1 states of nature, or nodes. Period 0 represents
the time period from 2015 to 2030 with only one node. By 2030, there are two nodes to
choose from and there is a 50% probability of each of the two nodes. Assume that, in an
economy with a single representative agent, the representative agent knows in which state
he is, an “up (u)” or “down (d)” state. Similarly, there are three nodes to choose from by
2060. Again, the representative agent knows whether the world is in the state of “uu”, “ud”
(or “du”), or “dd”. At each state of nature in the binary tree, more information about θt and
the resulting climate damage is revealed, before the uncertainty is fully resolved in 2200.
Assuming that the representative agent takes no more actions to reduce carbon emissions
from 2400 to infinity, a “2T − 1” (T = 5) dimensional optimization problem is created as the
essence of the model. Consumption grows deterministically after t = 2400 at a growth rate
r0. Therefore, consumption is defined as Ct = CT(1 + r0)

(t−T), when t > T. In the binary
tree, all grouped or clustered nodes in a given period represent the same state, which has
the same level of climate fragility. When the cumulative radiative forcing (CRF) is equal,
the grouped or clustered nodes experience the same level of climate damage.
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According to the framework of the EZ climate model, the Epstein-Zin recursive utility
function, geophysical equation, abatement cost function, and climate damage function are
all introduced. All prices are in 2015 international dollars for this study.

3.1. Epstein-Zin Recursive Utility Function

Daniel et al. [21] proposed that the Epstein-Zin recursive utility function of the represen-

tative agent in period t, t∈{0, 1, 2, . . . T}, is expressed as: Ut =
[
(1− β)Cρ

t + β(Et[Ut+1
α])

ρ
α

] 1
ρ
,

where Et is the predicted value of period t + 1 based on the information of period t; δ
is the time preference rate, δ = (1− β)/β; σ is the intertemporal substitution elasticity,
σ = 1/(1− ρ); and η is the relative risk aversion coefficient, η = 1− α.
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The consumption of period t is expressed as:

C0 = C0[1− k0(x0)] Ct = Ct[1− kt(xt)][1− Dt(CRFt, θt)],
CT = CT [1− DT(CRFT , θT)]

(1)

where the agent is endowed with a certain amount of the consumption good in period t,
Ct, Ct = C0(1 + r0)

t; and r0 is the consumption growth rate. The climate damage function
Dt(CRFt, θt) captures the fraction of climate damage as a proportion of the endowed
consumption. The CRFt is the cumulative radiative forcing of atmospheric CO2e emissions
from period 0 to t, which determines the global temperature increase; and θt represents the
uncertain relationship between the global temperature increase and consumption damage.
The abatement cost function kt(xt) is the fraction of abatement cost as a proportion of the
endowed consumption, and xt is the emission reduction rate.

3.2. Geophysical Equation

Using the global warming potential with a 100-year time horizon (GWP100), the
future greenhouse gases (GHGs) (GHGs include various gases (CO2, CH4, N2O, HFSs,
PFCs, and SF6) identified for the Kyoto climate agreement) emissions under the five
SSPs are converted into CO2e emissions, Et. Based on an increase of 1 ppm in the CO2
concentration for every 7.77 Gt CO2e emissions, CO2e emissions are converted to CO2e
concentrations [22]. Using the carbon absorption equation in a five-year interval [21], the
atmospheric CO2e concentration is calculated as: CS = a0|CO2 − (a1 + a2 × CCS)|a3 . The
variables CO2 and CCS represent the CO2e concentration emitted into the atmosphere and
the cumulative CO2e absorption, respectively. According to the IPCC fifth assessment
report [16], CO2e concentrations are converted to radiative forcing using Equation (2):

RF(CO2e) =
log
(

CO2e
CO2–preindustry

)
log(2)

RF(2× CO2) (2)

where CO2–preindustry and RF(2× CO2) represent the pre-industrial CO2 concentration
in the atmosphere, and the radiative forcing caused by the doubling of the pre-industrial
CO2 concentration, respectively.

3.3. Abatement Cost Function

Daniel et al. [21] noted that the fraction of abatement cost to endowed consumption in
Equation (1) is expressed as:

kt(xt) =



E0
−
c 0

92.08(xt)
3.413[1− ϕ0 − ϕ1Xt]

t, 0 < xt < x0
t

E0
−
c 0

92.08
(

x0
t
)3.413

+

τ̃
(

xt?x0
t
)
−

b
(

k
xt

) 1
b xt

b−1 +
b
(

k
x0

t

) 1
b

x0
t

b−1


[1− ϕ0 − ϕ1Xt]

t, xt ≥ x0
t

(3)

In this expression, x0
t represents the emission reduction rate associated with the

introduction of backstop technology, defined as a technology that can replace all fossil fuels.
The parameters ϕ0 and ϕ1 are exogenous and endogenous technological improvement
parameters, respectively. The variable Xt is the average mitigation up to period t, which

is defined by: Xt =
∑t

s=0 Esxs

∑t
s=0 Es

. The parameter τ∗ is the marginal cost of the first removed

ton of CO2e from the atmosphere with the backstop technology. The parameter τ̃ is the
marginal cost of removing unlimited CO2e from the atmosphere with backstop technology,
and τ̃ ≥ τ∗, k = x0

t (τ̃ − τ∗)b, b = τ̃−τ∗
2.413τ∗ .
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3.4. Climate Damage Function
3.4.1. Climate Sensitivity

To calculate the climate sensitivity of the five alternative pathways (SSP1, SSP2, SSP3,
SSP4, and SSP5) at the end of this century, three mitigation scenarios are selected for
each of five pathways, resulting in the following: SSP1-2.6, SSP1-4.5, SSP1-Baseline; SSP2-
2.6, SSP2-4.5, SSP2-Baseline; SSP3-3.4, SSP3-4.5, SSP3-Baseline; SSP4-2.6, SSP4-4.5, SSP4-
Baseline; SSP5-2.6, SSP5-4.5, and SSP5-Baseline. The CO2e concentrations at the end of
this century under the three mitigation scenarios of five SSPs are calculated as follows:
SSP1–520, 680, and 740 ppm for SSP1-2.6, SSP1-4.5, and SSP1-Baseline, respectively; SSP2–
520, 690, and 960 ppm for SSP2-2.6, SSP2-4.5, and SSP2-Baseline, respectively; SSP3–
580, 650, and 1000 ppm for SSP3-3.4, SSP3-4.5, and SSP3-Baseline, respectively; SSP4–
480, 620, and 870 ppm for SSP4-2.6, SSP4-4.5, and SSP4-Baseline, respectively; and SSP5–
520, 700, and 1320 ppm for SSP5-2.6, SSP5-4.5, and SSP5-Baseline, respectively. The
GHGs concentrations for each of the SSPs are from the IIASA (International Institute for
Applied Systems Analysis, https://tntcat.iiasa.ac.at/SspDb/ accessed on 28 July 2021).
Wagner et al. [23] summarized the “median temperature increase” and “chance of >6 ◦C
temperature increase” at CO2e concentrations of 400–800 ppm at the end of this century. We
extrapolated the concentration to 1320 ppm. Table 2 summarizes the “median temperature
increase” and “chance of >6 ◦C temperature increase” at the end of this century under
three mitigation scenarios of the five SSPs.

Table 2. Median temperature increase and chance of >6 ◦C temperature increase under different
CO2e concentrations in 2100.

Shared Socioeconomic
Pathways

Radiative Forcing(
w/m2) Concentration

(ppm)
Median Temperature

Increase (◦C)
Chance of >6 ◦C

Temperature Increase

SSP1
2.6 520 2.32 1.92%
4.5 680 3.32 9.8%

Baseline 740 3.64 13.4%

SSP2
2.6 520 2.32 1.92%
4.5 690 3.36 10.4%

Baseline 960 4.54 26.6%

SSP3
3.4 580 2.26 4.2%
4.5 650 3.2 8%

Baseline 1000 4.7 29%

SSP4
2.6 480 2.04 0.84%
4.5 620 2.9 6.2%

Baseline 870 4.18 21.2%

SSP5
2.6 520 2.32 1.92%
4.5 700 3.4 11%

Baseline 1320 5.98 48.2%

Based on Pindyck [24], this study uses a gamma distribution with parameters α1 and
β1 to fit climate sensitivity for 2100. Table 3 shows the parameters.

According to the parameters associated with the climate sensitivity distribution un-
der specific CO2e concentrations in 2100, we calculate the probabilities of temperature
increases in 2100. To obtain the probabilities of temperature increases in other peri-
ods, Pindyck [24] introduced a formula to calculate the temperature increase time path:
∆Tt = 2∆TH

(
1− 0.5

t
H

)
. In this expression, ∆TH represents the temperature increase in

2100 relative to the pre-industrial level; and H is the time interval from 2015 to 2100.

https://tntcat.iiasa.ac.at/SspDb/
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Table 3. Parameters of climate sensitivity distribution under specific CO2e concentration of 2100.

SSPs Concentration (ppm) Shape (α1) Rate (β1)

SSP1
520 3.537 1.424
680 4.158 1.193
740 4.438 1.164

SSP2
520 3.537 1.424
690 4.139 1.169
960 4.907 1.038

SSP3
580 2.493 0.991
650 4.299 1.282

1000 5.077 1.038

SSP4
480 3.483 1.594
620 3.707 1.209
870 4.632 1.560

SSP5
520 3.537 1.424
700 4.118 1.148

1320 31.923 5.285
Note: “Shape” represents the shape parameter of the gamma distribution, while “Rate” represents the rate
parameter of the gamma distribution.

3.4.2. Non-Catastrophic Damage Function

A temperature increase leads to a decrease in the consumption growth rate, which
leads to economic loss. To express this, the non-catastrophic damage function in Weitz-
man [25] is used: L(∆Tt) = e−β(∆Tt)

2
, where L(0) = 1 and L’ < 0, so that consumption

at some horizon H is CtL(∆Tt). Therefore, the fraction of non-catastrophic damage to
endowed consumption is expressed as:

Dt = 1− L(∆Tt) (4)

According to Daniel et al. [21], β = γH
1.79∆TH

, the uncertainty parameter γ draws
from a displaced gamma distribution with parameters α2, β2, and θ2 and expresses the
consumption growth rate after climate warming as: rt = r0 − γ∆Tt.

To calculate the value of Dt in Equation (4), a Monte Carlo simulation is used to calcu-
late the parameters of the displacement Gamma distribution for γ. Hausfather [17] noted
that global warming under the five SSPs is expected to be between 3.1 ◦C and 5.1 ◦C above
the pre-industrial level by the end of this century. The IPCC fourth assessment report [26]
predicted a 66–90% chance of a 1–5% GDP loss associated with a 4 ◦C temperature increase.
Dietz et al. [27] summarized the relationship between temperature increases and GDP
loss calculated using different IAMs, finding that the GDP loss is predicted to be 0.5–2%
when the temperature increase is 3 ◦C, and the GDP loss is predicted to be 1–8% when
the temperature increases by 5 ◦C. Using the range of the IPCC fourth assessment report,
and assuming the chance of GDP loss applies to a 66% confidence interval, we assume the
mean loss for ∆TH = 4 ◦C is 3% of GDP, and the 17% and 83% confidence points are 1%
and 5% of GDP loss, respectively. In parallel, we assume the mean loss for ∆TH= 3 ◦C is
1.25% of GDP loss, and the 17% and 83% confidence points are 0.5% and 2% of GDP loss,
respectively. We assume the mean loss for ∆TH = 5 ◦C is 4.5% of GDP loss, and the 17%
and 83% confidence points are 1% and 8% of GDP loss, respectively.

Using the different ∆TH and the GDP loss at different quantiles, the γ values at
different quantiles are obtained [24]. When ∆TH = 3 ◦C, the mean, 17%, and 83% values
for γ are γ = 0.0000883, γ1 = 0.0000352, and γ2 = 0.000142, respectively. Similarly, when
∆TH = 4 ◦C, the mean, 17%, and 83% values for γ are γ = 0.000160, γ1 = 0.0000529, and
γ2 = 0.000270, respectively. When ∆TH = 5 ◦C, the mean, 17%, and 83% values for γ are
γ = 0.000194, γ1 = 0.0000423, and γ2 = 0.000351, respectively.
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These three γ values at different ∆TH are used to fit a displacement Gamma distribu-
tion. Table 4 shows the parameters of the displacement Gamma distribution.

Table 4. Parameters of the displacement Gamma distribution under different temperature increases
in 2100.

∆TH

Parameters Shape
(α2)

Rate
(β2)

Displacement
(θ2)

3 ◦C 2.582 27,503 0.00000558

4 ◦C 2.085 12,014 0.000014

5 ◦C 1.565 7209 −0.000023
Note: “Shape” represents the shape parameter of the displacement gamma distribution; “Rate” represents the
rate parameter of the displacement gamma distribution; “Displacement” represents the displacement parameter
of the displacement gamma distribution.

3.4.3. Catastrophic Damage Function

When the temperature constraint is reached, climate damage is unlimited [28], trig-
gering catastrophic damage. According to Daniel et al. [21], the probability of hitting a
“tipping point” temperature over a given time interval “period” is expressed as: P(TP) =

1−
(

1−
[

∆T(t)
max[∆T(t),peakT]

]2
) period

30
, where peakT is the “tipping point” temperature; and

period represents the length of each period in the model. Thus, the fraction of both non-
catastrophic damage and catastrophic damage to endowed consumption is expressed in
Equation (5):

Dt = 1− L(∆Tt)
[
1− ITP

(
1− e−TP_damage

)]
(5)

In this expression, ITP is an indicator variable; ITP = 1 when the “tipping point”
temperature is reached; otherwise, ITP = 0. Next, e−TP_damage is the catastrophic damage
function and TP _damage is drawn from a gamma distribution with parameters α3 and β3.

3.4.4. Constructed Smooth Damage Function

Three mitigation scenarios of the five SSPs are linked with climate damage as a result
of CRF. The damage is simulated under each state of nature in each period. Using the SSP3
(Regional Rivalry) narrative as an example, the three mitigation scenarios are SSP3-3.4,
SSP3-4.5, and SSP3-Baseline, respectively. First, Equation (4) or (5) is used to run a set of
100,000 Monte Carlo simulations to generate the damage distribution Dt of each period at
CO2e concentrations of 580, 650, and 1000 ppm. Second, Equation (2) is used to calculate
the CRF at the three concentrations. Third, the damage distribution associated with a
given level of CRF is interpolated or extrapolated relative to the damage distributions
associated with the CRF, estimated using the three concentrations. Fourth, the damage
distribution Dt is ordered from largest to smallest, based on the damage distribution DT .
States of nature, which represent the grouped or clustered nodes in each period of the
binary tree, are chosen with specified probabilities to represent different percentiles of
the damage distribution. For example, if the value of the first state of nature in period t
represents the damage of the worst 1%, the damage coefficient of the first state of nature in
period t is the average damage of the worst 1% of Dt. Fifth, the smooth damage function
Dt(CRFt, θT) is constructed. A linear interpolation of damage is assumed between 650 and
1000 ppm CO2 concentration, and a quadratic interpolation is assumed to be between 580
and 650 ppm, including a smooth pasting condition at 650 ppm. When the concentration is
below 580 ppm, it is assumed that climate damage decays exponentially toward zero.

Daniel et al. [21] noted that the damage function in period t in Equation (1) is expressed
as: Dt(CRFt, θt) = ∑

θT

P(θT |θt)Dt(CRFt, θT). In this expression, P(θT |θt) is the probability

that any one state of nature in period t can reach all states of nature in period T, and
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Dt(CRFt, θT) is the damage over all final states of nature in period T, reachable from any
one state of nature in period t.

4. Results
4.1. Parameter Values

In the SSP1 narrative, the temperature is estimated to increase by approximately
3 ◦C at the end of this century. In the SSP2, SSP3, and SSP4 narratives, the temperature
is estimated to increase by approximately 4 ◦C. In the SSP5 narratives, the estimated
temperature increase is approximately 5 ◦C. The temperature increase data for the SSPs are
from IIASA (https://tntcat.iiasa.ac.at/SspDb/ accessed on 28 July 2021). Table 5 lists the
values associated with the main parameters in the EZ climate model.

Table 5. Calibration of the model.

Description Parameter Value

Consumption growth rate (%) r0 1.5
Time preference rate (%) δ 0.5

Relative risk aversion coefficient η 7.0
Intertemporal substitution elasticity σ 0.9

Aggregate Consumption in 2015 (Billion USD) C0 30,460
Time interval from 2015 to 2100 (year) H 85

Carbon sink parameter a0 0.47418
Carbon sink parameter a1 285.6268
Carbon sink parameter a2 0.88414
Carbon sink parameter a3 0.741547

Pre-industrial CO2 concentration in the atmosphere (ppm) CO2–preindustry 278
Radiative forcing of twice-preindustrial CO2 concentration(

w/m2 )
RF(2×CO2) 3.7

MAC of the first removed ton of CO2e from the atmosphere with the backstop
technology ($) τ∗ 2000

MAC of removing unlimited CO2e from the atmosphere with the backstop
technology ($)

∼
τ 2500

Exogenous technical change (%) ϕ0 1.5
Endogenous technical change (%) ϕ1 1.5

Catastrophic damage function parameter period 15, 30, 40, 100, 200
“Tipping point” temperature (◦C) peakT 1.5

Parameter of Gamma distribution of catastrophic damage function α3 1
Parameter of Gamma distribution of catastrophic damage function (◦C) β3 18

4.2. Model Simulation Results

Based on the EZ climate model framework, the predicted data for the five SSPs are
used to simulate MACs and AMRs in different states of nature or nodes at five emission
reduction decision timepoints (2015, 2030, 2060, 2100, and 2200) under the economically
optimal policy and the 1.5 ◦C temperature increase constraint.

Hausfather et al. [29] posited that SSP3-7.0 is a more-plausible outcome scenario for
future socio-economic development given current policies. It represents the “Regional
Rivalry” path within the five alternative SSPs narratives, with radiative forcing remaining
within 7.0 w/m2 in the 21st century. Therefore, using SSP3 as an example, Figure 2 shows
the MACs and AMRs for each node of the five emission reduction decision timepoints.
The MACs and AMRs of the five SSPs, which are based on the economically optimal
policy and the 1.5 ◦C temperature increase constraint policy, are shown in Figure S1 in the
Supplementary Materials. There are 1, 2, 3, 4, and 5 states of nature or nodes, respectively,
at the five listed emission reduction decision time points (2015, 2030, 2060, 2100, and 2200).
Therefore, the binary tree contains 15 states of nature, or nodes. There is only one node in
2015, two nodes in 2030, three nodes in 2060, four nodes in 2100, and five nodes in 2200.
Therefore, the MAC (or AMR) at a node in 2015 is the value of the first node, and the MAC
(or AMR) at two nodes in 2030 is the value of the second and third node. The same pattern
applies to the remaining periods. The expected MAC or AMR at each emission reduction
decision time point is the average of the corresponding results of each state of nature at
each decision point. Figure 2 shows that the expected MACs in the years 2015, 2030, 2060,
2100, and 2200 are: $102.08, $84.42, $61.19, $10.71, and $0.12, respectively, and the expected
AMRs are: 0%, 63%, 66%, 81%, and 96%, respectively.

https://tntcat.iiasa.ac.at/SspDb/
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Table 6 summarizes the expected MAC and AMR at each of the emission reduction
decision time points for the five SSPs under the “economically optimal” policy and the
1.5 ◦C temperature increase constraint policy.
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Table 6. Marginal abatement cost (MAC) and average mitigation rate (AMR) under the five SSPs (unit: $).

Scenario 2015 2030 2060 2100 2200

SSP1 (Sustainability)

Economically
Optimal

MAC 49.81 47.65 30.02 8.68 0.20
AMR 0% 47% 50% 55% 64%

1.5 ◦C increase
constraint

MAC 70.97 56.80 33.32 9.46 0.16
AMR 0% 54% 55% 61% 69%

SSP2 (Middle of the Road)

Economically
Optimal

MAC 94.24 89.33 57.74 10.65 0.14
AMR 0% 61% 67% 79% 95%

1.5 ◦C increase
constraint

MAC 102.61 102.20 58.83 11.23 0.12
AMR 0% 63% 70% 82% 99%

SSP3 (Regional Rivalry)

Economically
Optimal

MAC 102.08 84.42 61.19 10.71 0.12
AMR 0% 63% 66% 81% 96%

1.5 ◦C increase
constraint

MAC 149.91 137.47 67.82 10.31 0.11
AMR 0% 74% 81% 92% 103%

SSP4 (Inequality)

Economically
Optimal

MAC 61.65 54.51 23.08 1.44 0.12
AMR 0% 51% 42% 37% 28%

1.5 ◦C increase
constraint

MAC 80.46 68.93 27.40 2.27 0.13
AMR 0% 57% 46% 41% 36%

SSP5 (Fossil-Fueled Development)

Economically
Optimal

MAC 74.12 107.99 66.80 9.69 0.11
AMR 0% 55% 69% 88% 96%

1.5 ◦C increase
constraint

MAC 141.96 123.22 75.63 8.93 0.11
AMR 0% 72% 77% 96% 98%

Table 6 shows that: (1) We compared the MAC and AMR trends under the five SSPs.
The expected MAC showed a gradual decreasing trend, with one exception under the
economically optimal policy of SSP5 first increased and then decreased. The expected AMR
showed a gradual increasing trend, with one exception under SSP4. The MAC depends
on improvements in both the emission reduction rate and emission reduction technology.
The AMR depends on the emission reduction rate and the CO2e emissions. Both MAC
and AMR are related to the emission reduction rate. The year 2015 is considered the base
year in this paper; therefore, the AMR in 2015 is 0%. (2) The values of MAC before 2100
and AMR of all periods are greater under the 1.5 ◦C policy compared to the economically
optimal policy.

Figure 3 shows the expected MACs at each of the emission reduction decision time
points for the five SSPs under the 1.5 ◦C temperature increase constraint policy. Comparing
the MACs of the five SSPs, the MAC values of SSP3 (Regional Rivalry) and SSP5 (Fossil-
Fueled Development) are highest, while the MAC values of SSP1 (Sustainability) and SSP4
(Inequality) are lowest. SSP2 (Middle of the Road) shows a moderate decreasing trend with
respect to the MAC.
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4.3. Sensitivity Analysis

This section analyzes the sensitivity of different uncertainty parameters, including
time preference rate, intertemporal substitution elasticity, relative risk aversion coefficient,
marginal abatement cost under backstop technology, exogenous technological improve-
ment, and endogenous technological improvement. Table 7 shows the value of the different
uncertainty parameters. Figure 4 shows the sensitivity analysis results associated with those
parameters, assuming that other parameters affecting MAC are set as the benchmark value.

Table 7. Different uncertainty parameters in the model.

Description Parameter Value

Time preference rate (%) δ 0.5, 0.1, 1.0
Intertemporal substitution elasticity σ 0.9, 0.6, 0.75

Relative risk aversion coefficient H 2.0, 7.0
MAC of the first removed ton of CO2e from the

atmosphere with the backstop technology ($) τ∗ 300, 500, 2000

MAC of removing unlimited CO2e from the atmosphere
with the backstop technology ($) τ̃ 350, 550, 2500

Exogenous technological improvement (%) ϕ0 0.0, 1.5, 3.0
Endogenous technological improvement (%) ϕ1 0.0, 1.5, 3.0

To conduct the sensitivity analysis, time preference rates of 0.1%, 0.5%, and 1% were
used. The intertemporal substitution elasticity was set at 0.6, 0.75, and 0.9, respectively,
based on the study of Daniel et al. [21]. Daniel et al. [21] defined the relative risk aversion
coefficient as 7.0, while Nordhaus [18] proposed using a value of 1.0–3.0. As such, the
values 2.0 and 7.0 were used in this study for the sensitivity analysis. The marginal cost
of the first removed ton of CO2e from the atmosphere in backstop technology and the
marginal cost of removing unlimited CO2e from the atmosphere in backstop technology
were set as: τ∗ = $2000, τ̃ = $2500; τ∗ = $300, τ̃ = $350; τ∗ = $500, τ̃ = $550, respectively.
The parameters of exogenous technological improvement and endogenous technological
improvement were each set at 0.0%, 1.5%, and 3.0%.
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Figure 4 shows the following results. (1) The time preference rate has a significant
impact on MAC before the year 2100, and the MAC and time preference rate are inversely
correlated. (2) The MAC is positively correlated with intertemporal substitution elasticity.
(3) The relative risk aversion coefficient has a weak influence on MAC. (4) The MAC of the
backstop technology has an insignificant influence on the expected MAC. (5) The parameter
of exogenous technological improvement has a negative impact on MAC, i.e., a higher
level of exogenous technological improvement is associated with a lower MAC in each
period. The reverse is also true. (6) With the exception of 2015, higher levels of endogenous
technological improvement are associated with lower MAC values in each period.

5. Discussion and Conclusions

In this paper, we project the future marginal abatement costs (MACs) using EZ climate
model and calculate average mitigation rates (AMRs). Moreover, we consider two climate
policies: the economically optimal policy and the 1.5 ◦C temperature increase constraint
policy. Our dataset is based on the latest SSP storylines. In Section 4, the SSP3 serves
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as a representative case; under the economically optimal policy, the expected MACs for
2015, 2030, 2060, 2100, and 2200 are: $102.08, $84.42, $61.19, $10.71, and $0.12, respectively,
and the expected AMRs are: 0%, 63%, 66%, 81%, and 96%, respectively. However, Daniel
et al. [21] calculated the expected MACs for the same periods at $126.51, $136.40, $130.06,
$99.54, $25.02, respectively, with expected AMRs of 0%, 69%, 74.5%, 83%, and 94.4%,
respectively. Daniel et al. [21] considered catastrophic climate damage to occur when the
temperature increase reaches 6 ◦C; this would be the equivalent of the 6 ◦C temperature
increase constraint policy. However, our study does not consider temperature constraint
under the representative case. That leads to the differences in the studies. Therefore, both
MACs and AMRs are higher in the study of Daniel et al. [21], with the exception of AMR
in 2200.

The expected MAC and AMR under the five SSPs subject to the “economically optimal”
policy and the 1.5 ◦C temperature increase constraint policy are presented. Both MAC
and AMR are related to the emission reduction rate. According to the formulae of MAC
and AMR, when the emission reduction rate increases, AMR also increases. The MAC
may either increase or decrease. The values of MAC before 2100 and AMR of all periods
are greater under the 1.5 ◦C policy compared to the economically optimal policy. This
means that stricter climate policies are generally associated with greater MACs and AMRs.
Comparing the expected MACs of the five SSPs, the MAC values of SSP3 (Regional
Rivalry) and SSP5 (Fossil-Fueled Development) are highest, while the MAC values of
SSP1 (Sustainability) and SSP4 (Inequality) are lowest. SSP2 (Middle of the Road) shows a
moderate decreasing trend with respect to the MAC. This means that in a world developing
towards regional rivalry (SSP3) or fossil-fueled development (SSP5) with high mitigation
pressure, the MAC values approximately double compared with the sustainability (SSP1)
and inequality (SSP4) storylines with low mitigation pressure.

The sensitivity analyses for uncertainty parameters are also provided. The time pref-
erence rate and intertemporal substitution elasticity have the most significant impact on
the MACs. The MAC and time preference rate are significantly inversely correlated. This
means that a higher time preference rate is associated with a higher concern for the welfare
of the current generation. Therefore, a lower reduction in current emissions is associated
with a lower MAC. The reverse is also true. The MAC is positively correlated with intertem-
poral substitution elasticity. This means that a greater intertemporal substitution elasticity
is associated with a greater willingness by the agent to delay consumption. To increase
the future consumption, the agent is willing to reduce emissions more now, yielding a
higher MAC. Since researchers have not reached consensus on the values of the time pref-
erence rate and intertemporal substitution elasticity, the most effective values of the two
parameters have not yet been identified. Both exogenous and endogenous technological
improvements negatively impact the MAC. This means that emission reduction technology
improvements support a decrease in emission reduction costs under identical emission
reduction measures.

This study explores the impact of uncertainty in future socioeconomic development
on major outcomes related to climate change, extending previous studies. First, we project
the future MACs under the five SSPs using the EZ climate model. This contrasts with
the study of Daniel et al. [21], which projected future carbon prices given by MACs
using the EZ climate model under RCPs. Those RCPs, however, did not make socio-
economic assumptions driving future emissions and simply reflect different potential
climate outcomes. Second, our study differs from other studies, in that it indicates a general
downward trend in carbon prices. In our study, the optimal price per unit of CO2 emission
permit should be equal to the MAC in a perfectly competitive market based on marginal
cost theory. Therefore, the trends associated with future carbon prices are consistent with
the trend of MACs, showing a trend of gradual decreasing or first increasing and then
decreasing. Yang et al. [14] updated the SCCs, which measure the present value of future
economic damage caused by each additional ton of carbon emission, under five SSPs using
the DICE model. That established a benchmark for carbon pricing. Therefore, the future
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carbon prices given by the SCCs show a trend of gradual increasing under the five SSPs. In
addition, the MACs decline over time, as the “insurance” value of mitigation declines, and
technological improvement makes emission reductions less expensive in our model. This is
because the MAC mainly depends on the progress of emission reduction technology under
identical emission reduction measure and the replacement of those measures. The MACs
decrease as the technology changes under an identical emission reduction measure. Under
different emission reduction measures, companies often first choose lower abatement cost
measures. Even less expensive cost measures are selected after the low-cost emission
reduction measures have been exhausted, leading to an increase in MACs. Under the dual
influence of these two effects, the expected MAC path shows a decreasing trend, or an
initial increase and then decrease. Along the optimal mitigation path, Gollier [30] proposed
that frontloading the abatement effort is equivalent to an investment with a cost and a
benefit that are equal to the present and future MAC and the marginal investment should
have a zero net present value, causing the growth rate of MAC to be equal to the discount
rate. The trend associated with the MAC is increasing. In summary, our study considers
the advancement and use of different mitigation technologies, and therefore, provides a
more comprehensive consideration of the factors influencing MAC.

Two important implications emerge from this study. The MAC value provides a
carbon price benchmark for policy makers having different attitudes towards an unknown
future. The estimated AMR can be used to formulate carbon mitigation strategies under a
specific climate goal.

Like all studies, this one has some methodological limitations. The Epstein-Zin utility
is defined by the complete branching tree of possible futures growing out of the present
moment. If we divide the long-term future into 40 periods, and make a binary choice
for each period, the tree of possible futures has 240 branches. To calculate the utility of
the first period, it is necessary to follow each of 240 branches to its endpoint [21]. In
response, our study models very few time periods, thereby losing the long-term modeling
of climate and economic dynamics found in IAMs. In addition, this study does not consider
relevant behavioral economics concepts such as psychological costs and “sludge”, where
“sludge” is typically understood as frictions that make good decisions harder. However,
these factors can impede end users in any process, ultimately reducing welfare [31–33]. A
final recommendation is to consider psychological costs and “sludge” in future climate
modeling.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/su132413693/su132413693/s1, Figure S1: Marginal abatement costs and average mitigation
rates of the five SSPs under the economically optimal policy and the 1.5 ◦C temperature increase
constraint policy.
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