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Abstract: With increasing global concerns regarding indoor air quality (IAQ) and air pollution,
concerns about regularly replacing ventilation devices, particularly high-efficiency particulate air
(HEPA) filters, have increased. However, users cannot easily determine when to replace filters. This
paper proposes models to estimate the dust loading levels of HEPA filters for an energy-recovery
ventilation system that performs air purification. The models utilize filter pressure drops, the
revolutions per minute (RPM) of supply fans, and rated airflow modes as variables for regression
equations. The obtained results demonstrated that the filter dust loading level could be estimated
once the filter pressure drops and RPM, and voltage for the rated airflow were input in the models,
with a root mean square error of 5.1–12.9%. Despite current methods using fewer experimental
datasets than the proposed models, our findings indicate that these models could be efficiently used
in the development of filter replacement alarms to help users decide when to replace their filters.

Keywords: air purification; data-driven model; energy-recovery ventilation; HEPA filter; indoor
air quality

1. Introduction

With the rapid growth of the global economy, indoor air quality (IAQ) has emerged
as a major global concern [1–4]. The source of most indoor pollutants is the inflow of
atmospheric pollutants, such as automotive exhaust gas and particulate matter (PM);
pollutants are also generated from the use of home appliances, furniture, consumer goods
and the lifestyles of occupants [5,6]. Daily, most people spend 80 to 90% of their time in
indoor spaces [7]. Considering these data, the adverse effects of indoor air pollution on
occupants have also been reported through numerous studies [8–14]. The World Health
Organization has also prepared, and updated, guidelines related to these effects since
1987 [15,16]. Therefore, proper ventilation and indoor air purification are required to
maintain the IAQ at an optimal level and protect occupants from pollutants.

As the air purification capabilities of conventional ventilation systems are weak against
air pollutants, occupants can use indoor air purifiers [17]. To complement the air purifi-
cation capabilities of ventilation equipment, energy-recovery ventilation (ERV) systems
equipped with high-efficiency particulate air (HEPA) filters (called ERV air purifiers) that
combine the benefits of ventilation systems and air purifiers, are widely used [18,19].
ERV air purifiers prevent the inflow of air pollutants from the atmosphere by using high-
efficiency fabric air filters in ventilation operations. They operate as conventional air
purifiers when indoor air purification is required and as ventilators when ventilation is
required. To use ERV air purifiers effectively, users should regularly replace air filters.
According to the recommendations of the American Society of Heating, Refrigerating and
Air-Conditioning Engineers (ASHRAE), air filters should be replaced when their final
resistance becomes twice as high as the initial resistance due to dust loading [20]. However,
most ERV manufacturers provide a guideline that only recommends intervals for cleaning
filters and replacing them every 6 to 12 months. Thus, it is difficult for users to recognize
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when replacement is required, leading to the use of dust-loaded filters over an extended
period [21].

In recent years, adequate management measures and standards for air filter replace-
ment have been proposed to help users better recognize when to replace their filters [22].
According to Korean Industrial Standards, ERV systems and ERV air purifiers should acti-
vate a filter-replacement alarm when the mounted air filters reach final resistance (pressure
drop at which filter is to be replaced). To estimate the filter dust loading level, a sensor
system that can measure changes in the resistances of the mounted filters is required.

According to Kumar et al. [23], the indoor air pollution level can be monitored us-
ing gas sensors, aerosol particle counters, and sensor packages. Although HEPA filter
dust-loading levels can be estimated using these sensor systems, the simplest and most
economical way to do so is to install manometers on air filters and use them to measure the
pressure drop [20]. However, installing manometers on products has been recognized as a
cause for an increase in manufacturing cost because it is customary to replace HEPA filters
according to the replacement interval. Therefore, few commercial models are equipped
with manometers to measure changes in the pressure drop of a filter. Numerous manu-
facturers are now seeking ways to estimate HEPA filter dust-loading levels by observing
the changes in the supply air (SA) fan alone, to reduce manufacturing costs and improve
their services.

As summarized in Table 1, most studies on HEPA filters focus on air purifiers and
evaluated the effect of installing HEPA filters in IAQ devices on IAQ improvement. One
study measured the pressure drop of an entire HEPA filter and demonstrated the possibility
of finding the optimal replacement frequency intervals of HEPA filters. However, this
was only applicable for radioactive aerosol filtration systems in nuclear power plants. To
the best of our knowledge, only one study has surveyed the IAQ improvement of ERV
air purifiers using HEPA filters, and, as of yet, no studies have surveyed HEPA filter
dust-loading estimation for IAQ devices. IAQ can be significantly improved using HEPA
filters. Nevertheless, no studies have been conducted as of yet estimating HEPA filter dust
loading that provides essential information on maintaining the IAQ at a certain level.

Table 1. Available literature on the IAQ monitoring capabilities of IAQ devices equipped with
HEPA filters.

Year Authors
Target Systems

ERV Air Purifier Others

2022 Choe et al. [24] O
2021 UNDI, G.S.N.V.K.S.N.S. [18] AHU
2021 Elsaid et al. [25] O Air supply system
2021 Cooper et al. [26] O
2021 Li et al. [17] O
2021 Al-Harbi [6] HVAC system
2020 Lee et al. [27] Nuclear plant
2020 Lowther et al. [28] O
2014 Oh et al. [29] O
2011 Du et al. [30] Air conditioner
2009 Xu et al. [19] O O
2008 Araujo et al. [31] O

Hence, in this study, a HEPA filter dust loading prediction model was developed,
based on analyzing the pressure drop of an HEPA filter and the RPM of an SA fan for
standing ERV air purifiers with a general flow path. The development of the model and
the experiment that was conducted to evaluate its performance are discussed.



Sustainability 2021, 13, 13643 3 of 14

2. Materials and Methods
2.1. Target ERV Air Purifier

This study focuses on an ERV air purifier with a rated air flow rate of 400 CMH. A
stand-up type of ERV air purifier was developed in the indoor space to facilitate user
management and direct SA to indoor spaces from outdoor air (OA). The ERV air purifier
used a fabric filter with a minimum efficiency reporting value of 16 (as recommended by
ASHRAE) and an efficient particulate air grade of H13. The HEPA filter was installed
between the ERV unit and SA fan.

The target system operated across two different flow paths for ventilation and air
purification, as shown in Figure 1. In the ventilation mode, OA was supplied to indoor
spaces through the SA fan after it passed through the ERV unit and H13 filter along the
blue line represented in Figure 1a, whereas the return air (RA) was discharged outside
through the exhaust-air fan along the red line. The air purification mode had the flow path
of general air purifiers, whereby RA was supplied to indoor spaces through the SA fan
after it passed through the bypass damper and filter.
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Figure 1. Two different operation modes of the target ERV air purifier. (a) Ventilation mode, (b) Air purification mode.

The SA fan had low, mid, and high rated air flow rates of 150, 250, and 400 CMH,
respectively. These air-flow rates were determined by the motor-speed adjusting voltage
(VSP) value of the SA fan. Depending on the operation mode and air flow rate, the SA
fan had fixed VSP values of 55, 64, and 81 in the ventilation mode and 52, 61, and 79
in the air purification mode at low, mid, and high rated air flow rates, respectively. The
system displayed information on the air flow rate (low, mid, and high) and operation mode
(ventilation or air purification) on the display panel and the current RPM information of
each fan by converting this to the mode set by the administrator.

Figure 2 shows the characteristic curves of the SA fan and system curves of the ERV
air purifier. The x-axis represents the air flow rate of the SA fan. The y-axis on the left
represents the static pressure, and represents the RPM on the right. For clean filters, the
system curve of the ERV air purifier is represented by curve (A), and the operating point of
the SA fan is represented by Q1, ∆P1, and RPM1. If the system curve is represented by curve
(B) due to dust loading in the filter under PM inflow, the air flow rate decreases to Q2, while
∆P and RPM increase to ∆P2 and RPM2, respectively, thereby forming a different operating
point. Here, the fan is capable of variable frequency drive control, which increases the
output power of the motor by changing the VSP to compensate for the decrease in the
air-flow rate. This allows for the easy prediction of the HEPA filter dust-loading levels,
using only the change in the SA fan output for air-flow-rate compensation. In contrast,
the target ERV air purifier uses a general SA fan without control logic. Therefore, the dust
loading status of the filter can only be estimated from the change in the RPM of the SA fan
caused by a change in the filter condition.
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Figure 2. Schematic of changes in SA fan operation characteristics according to the filter conditions
(A→B).

As shown in Figure 2, the RPM and ∆Pfilter of the target ERV air purifier increased
with the dust loading level of the H13 air filter. Data obtained from the air purifier include
the operation mode, VSP, and RPM. Since the operation mode and VSP had constant
values irrespective of the dust loading level of the air filter, two different filter dust-loading
estimation models were constructed, depending on the operation mode. Because the ∆Pfilter
increased due to the increase in the pressure drop caused by dust loading in the H13 air
filter, the changes in the ∆Pfilter were measured by installing manometers in front of and
behind the H13 air filter. Both ∆Pfilter and RPM, which had continuous values, were used
as continuous variables. Based on the characteristics of the target system under air filter
dust loading, the data that can be used to predict the dust loading level in the ERV air
purifier are summarized in Table 2.

Table 2. Variables used for developing air filter dust loading models.

Variables Detection Description

RPM (SA fan) Mainboard Continuous variable
VSP (SA fan) Mainboard Categorical variable

∆Pfilter Measurement device Continuous variable

2.2. Prediction Method for Filter Dust Loading Level

Since the filter dust loading caused by the inflow of PM increases the filter-pressure
drop, an artificial pressure drop was induced by attaching a tape to the surface of the filter
through which the airflow stream passed. The ratio of the blocked area to the entire filter
passage area was defined as the filter-covering factor (CF), which is expressed through
Equation (1).

CF =
Acover

Afilter
, (1)

where Afilter (m2) is the initial area of the filter and Acover (m2) is the area artificially blocked
by the tape. The Acover is always smaller than or equal to Afilter, and the CF cannot exceed
1 in actual specimens.

The CF expresses the physical dust-loading level of the filter. It does not represent the
actual dust load (g) of the filter. If the CF of the filter used in a system is 0.5, the concept of
equivalence can be applied, whereby this filter will be considered the same as a clean filter,
with 50% of its area artificially blocked. Therefore, filter samples with different CF values
were applied to the target system during the experiment, and the VSP, RPM, and ∆Pfilter of
the SA fan were measured to obtain the required datasets.

Figure 3 shows the process of constructing and testing models from the experimental
stage; 50% of the datasets obtained from the experiment were used for modeling, and the
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remaining 50% were used for testing the constructed data-driven models. The ∆Pfilter was
measured using Testo 400, and the RPM of the SA fan motor was measured at 60 Hz and
220 V.
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To estimate the air filter dust-loading level, the models in this study were derived
using regression analysis. Regression analysis is typically employed for estimating the
relationship between one dependent variable and one or more independent variables
through statistical analysis [32]. This analysis is conducted based on several assumptions
and is generally known to provide increasingly accurate estimations as the number of
datasets increases [33]. As only two to three variables were available in the target system,
including the VSP and RPM of the SA fan, as well as the ∆Pfilter, depending on the case, and
the required number of contaminated filter samples could not be secured, only 30 datasets
were collected from the lab-scale test to derive the models. Therefore, models were derived
via regression analysis by curve fitting alone of the actual and estimated values.

The proposed models were derived in three forms, as summarized in Table 3, and
the results were compared. The model type in case A was available when both the ∆Pfilter
and RPM could be measured, and, for case B, was only available when the RPM could be
measured. Case B was used for most products without manometers in their models, so as
to reduce the cost of these mass-produced products. The form of case C was similar to that
of case B in that only the RPM could be measured in both, but different from case B in that
the ∆Pfilter was estimated using the RPM, and the estimated ∆Pfilter was used again as a
variable to estimate the CF. Case C was proposed as a model type to improve the prediction
accuracy of case B.
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Table 3. Three formalisms for developing filter dust loading prediction models.

Models Formalisms

A CF = f (∆Pfilter, RPM)
B CF = f (RPM)
C CF = f (∆Pfilter = g(RPM), RPM)

3. Results
3.1. Experimental Results

Figures 4 and 5 show the changes in the ∆Pfilter and RPM with increasing CF.
Figures 4a–d and 5a–d show the data measured in the ventilation and air purification
models, as shown in Figure 1, respectively. Figures 4a,c and 5a,c show the relationship
between the ∆Pfilter and CF in the ventilation and air purification modes, respectively, and
Figures 4b,d and 5b,d show the relationship between the RPM and CF. The x-axis of each
graph represents the VSP value of the SA fan, determined for each of the ventilation and
air purification modes. In general, the VSP value was used to set the desired air flow rate
by adjusting the RPM of the fan motor. Unless a fan motor control algorithm was used, the
VSP would have produces a unique value for each rated air-flow rate.
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Figure 4. Changes in ∆Pfilter with increasing CF ((a,b): ventilation mode; (c,d): air purification mode).
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Figure 5. Changes in RPM with increasing CF ((a,b): ventilation mode and (c,d): air purifica-
tion mode).

While constructing a regression model, the changes in the measurements of the
variables, caused by the increase in the air filter dust-loading level of the system should
be clearly indicated. As shown in Figures 4 and 5, the changes in ∆Pfilter and RPM of the
system, which occurred due to the changes in the CF, were more evident when the rated
flow rate was “high” than when it was “low” and were more apparent in the air purification
mode than in the ventilation mode; the latter is related to the flow path of the OA in the
ERV unit. In the ventilation mode, OA passed through the duct and ERV unit since the ERV
flow path opened to the outdoor atmosphere. Accordingly, the SA fan needed to cover the
pressure drop that occurred when the outdoor airflow passed through the duct and ERV
unit. Additionally, the flow path of the ERV unit in the air purification mode was a closed
circuit, that only circulated indoor air, and the pressure drop occurred only in the HEPA
filter. Accordingly, the change in the air purification mode was more pronounced than that
in the ventilation mode. In addition, as shown in Figures 4b,d and 5b,d, the increment of
the ∆Pfilter followed a gradual and clear increasing trend in the entire section. However,
the increment in the RPM made it difficult to distinguish the rated air flow rates, based
only on observing changes in the measured values for CF ≤ 50%. It was only valid for
CF ≥ 70% and showed a rapidly increasing trend when the rated flow rate was “high”.
This indicated that the mode of the rated air flow rate had to be determined in advance to
obtain significant results when the RPM was used as an independent variable. Therefore,
the VSP, which determines the rated air flow rate, was used as a categorical variable to
distinguish the low, mid, and high rated air flow rates in all of the three models listed in
Table 3.
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3.2. Test Results with the Proposed Regression Model

Tables 4–6 describe regression models that include either or all some of the following
as input variables: VSP, ∆Pfilter, and RPM as; and CF as the output variable. Since the
flow path of the system was different for each operation mode, the results were presented
separately for the ventilation and air purification modes and separately according to the
rated air flow rates (low, mid, or high). Irrespective of the modes, the regression models
for the filter dust-loading level estimation were classified as A, B, or C, according to the
input variables that were used. Apart from the VSP, which was included in the models A,
B, and C as a categorical variable, ∆Pfilter and RPM were used as independent variables
in model A, and RPM alone was used in models B and C, as summarized in Table 4. For
each model, Equations (2)–(5) were used. The ventilation and air purification modes were
distinguished, and coefficients a, b, and c as well as VSP were used, as summarized in
Tables 5 and 6.

Table 4. Correlation of the dust loading prediction models for the three cases, A, B, and C.

Cases Models Equations

A CF = f (∆Pfilter, RPM) CF = a0 + a1VSP + a2∆Pfilter + a3RPM + a4(∆Pfilter)2 + a5RPM2 + a6(∆Pfilter·RPM) (2)

B CF = f (RPM) CF = b0 + b1VSP + b2RPM + b3(VSP·RPM) (3)

C
CF = f (∆Pfilter = g(RPM), RPM) CF = a0 + a1VSP + a2∆Pfilter + a3RPM + a4(∆Pfilter)2 + a5RPM2 + a6(∆Pfilter·RPM) (4)

∆Pfilter = g(RPM) ∆Pfilter = c0 + c1VSP + c2RPM + c3VSP2 + c4(VSP·RPM) + c5RPM2 (5)

Table 5. Coefficients of the equations in Table 4 for the ventilation and air purification modes.

i
ai bi ci

Ventilation Air Purification Ventilation Air Purification Ventilation Air Purification

0 7.7592 × 10−1 2.7834 6.9624 6.2443 3.877 × 102 2.111 × 102

1 3.3098 × 10−2 −1.7218 × 10−2 −1.8137 × 10−1 −1.5289 × 10−1 1.101 × 10 3.863 × 10
2 4.6533 × 10−2 3.9422 × 10−2 1.3951 × 10−3 6.6956 × 10−4 −9.116 × 10−1 −2.109
3 −4.3098 × 10−3 −4.7847 × 10−3 4.2284 × 10−5 4.1662 × 10−5 −5.918 × 10−1 −1.276
4 1.8318 × 10−5 8.9173 × 10−6 - - 4.024 × 10−2 9.214 × 10−2

5 1.2284 × 10−6 2.3912 × 10−6 - - −4.417 × 10−4 −1.333 × 10−3

6 −2.4598 × 10−5 −2.2817 × 10−5 - - - -

Table 6. VSP values according to the rated airflow rates in Table 4 for the ventilation and air
purification modes.

Rated Airflow Rate Ventilation Mode Air Purification Mode

Low 55 52
Mid 64 61
High 81 79

Of the overall measured data of the regression models, 50% were used for modeling.
Figure 6 shows the fitting of the regression models for the data used in their construction.
The x-axis in each graph shows the actually measured CF value, and the y-axis represents
the estimated CF value derived using the regression model. RMSE stands for the root mean
square error, which can be calculated using Equation (6). RMSE is the mean error between
the CF values estimated by the model, and the actual CF values:

RMSE =

√
1
n

n

∑
i=1

(CFPrediction.i −CFMeasurement.i)
2, (6)
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where n is the number of datasets, CFPrediction.i represents the prediction values by the
regression models, and CFMeasurement.i represents the measured CF values. A lower RMSE
value indicates a higher prediction accuracy of the model.
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Figure 6. Results of the filter dust loading levels estimated by the proposed models for operation modes and rated flow
rates; (a–c) represent the ventilation modes and (d–f) represent the air purification modes. (a,d) are “Low”, (b,e) are “Mid”,
and (c,f) are “High”.

For all the models, i.e., A, B, and C, RMSE values were lower when the rated air flow
rate was “high” than when it was “low”. Model A, which used ∆Pfilter and RPM as input
variables, exhibited lower RMSE values than models B and C. Model B, which used only
RPM as an input variable, showed the highest RMSE value. Model C, which compensated
for the absence of ∆Pfilter with RPM, exhibited 0.9 to 1.5% lower RMSE values than model B.

Case A exhibited the highest prediction accuracy as it showed RMSE values close to
10%, even when the rated airflow rate was “low”. However, the model that was developed
based on case A overestimated the predicted CF (%) when the measured CF was 0–30%,
and it underestimated the predicted CF (%) as the measured CF became larger. These
observations and the RMSE were reduced when the rated airflow rates were higher. Thus,
the model must be implemented for an airflow rate with a high operation mode.

Figure 7 shows the predicted performances of the models listed in Table 4 and pre-
sented in Figure 6, using the remaining 50% of the measurement data that were not used
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during the construction of the regression models. As observed in Figure 6, the model-
prediction accuracy was higher when the rated airflow rate was “high” than when it was
“low”; model A generally exhibited higher prediction accuracy than models B and C.
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Figure 7. Test and verification results of the models for operation modes and rated flow rates. (a–c) represent ventilation
modes and (d–f) represent air purification modes; (a,d) are ‘Low’, (b,e) are ‘Mid’, and (c,f) are ‘High’.

As shown in Figure 6, the RMSE increased for model, A except in case (f); however,
the RMSE decreased for both models B and C. In cases (b), (c), (e), and (f), the RMSE of
model C was found to be lower than that of model A. In general, the prediction accuracy of
a regression model increases with the number of input variables. The prediction accuracy
for the verification data that were not used during the construction of the model was lower
than that for the training data used during the construction of the model. However, the
RMSE values of models B and C in the six cases, shown in Figure 7, were lower than in the
six cases represented in Figure 6, and the RMSE of model C was lower than that of model
A. This appears to be because the error was reduced by chance, considering that sufficient
data were not used.

The RMSE values of models B and C, which used only RPM as a variable, were
found to be lower in the air purification mode than in the ventilation mode. The RPM
noises caused by the static-pressure difference between indoor and outdoor occurred in the
ventilation mode because the flow path of the ERV system was connected to the outside



Sustainability 2021, 13, 13643 11 of 14

through the OA duct. However, in the air purification mode, a stable RPM could be
maintained, owing to the elimination of the RPM noises. That is because the flow path is
independent of indoor and outdoor static-pressure differences in the air purification mode.
Thus, the RMSE values of models B and C were lower in the air purification mode than in
the ventilation mode. When dust-loading levels were estimated using only the RPM of the
SA fan, a method to estimate the dust loading level of the air filter in the air purification
mode was necessary to reduce the influence of static pressure fluctuations. Nevertheless, it
is highly recommended that at least the ∆Pfilter should be used as a variable to improve the
accuracy of estimating the air filter dust loading, as seen from Figure 8.
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4. Conclusions

Owing to the rising global interest in improved IAQ, the demand for ERVs equipped
with HEPA filter (ERV air purifiers) has been increasing. Therefore, existing ERV air
purifier manufacturers have recently developed ERV air purifiers that can be used as home
appliances. However, it is crucial to implement appropriate management measures so that
users can sufficiently recognize the need for regularly replacing their air filters, and the
need to use their systems effectively.

In this paper, a method for estimating the HEPA filter dust-loading level for a home
appliance type ERV air purifier was proposed, using data-driven models, and the prediction
performances of the models were analyzed. The dust loading of the fabric HEPA filter was
simulated using the CF (%) of the filter. The RPM of the SA fan and the ∆Pfilter, based on
the CF of the filter, were measured to realize regression models that used ∆Pfilter and RPM
as the input variables and CF as the output value. The dust loading of the fabric HEPA
filter was simulated using the CF (%) of the filter. The following conclusions were drawn.

• The presented models exhibited the highest prediction accuracy when the rated airflow
rate was high, and the error produced by the model that used ∆Pfilter and RPM as
variables was lower than those produced by the models that used RPM alone as a
variable. This indicated that the highest prediction accuracy could be expected for air
filter dust-loading estimation when the rated airflow rate was high, and through the
use of several input variables.

• When RPM is used alone as a variable, without measuring the ∆Pfilter, higher accuracy
can be expected for air filter dust-loading estimation if performed in the air purification
model, which can secure a stable RPM. However, when only RPM is used, it is difficult
to expect higher prediction accuracy and stability than that obtained when both the
∆Pfilter and RPM are used as variables.
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• If the dust loading levels are measured for a filter replacement alarm rather than
through continuously showing the status of air filters, developing and applying a
model for the “high” airflow rate in the air purification mode would be more effective.

For the accurate estimation of the status of an HEPA filter, it is necessary to collect
more extensive and diverse datasets by constructing a sensor network. Nevertheless, the
dust loading level of filters in embedded systems can be estimated using the ∆Pfilter and
RPM as variables, within simple regression models.

In this study, the dust loading of a HEPA filter was simulated using CF (%). However,
whether the results of this study are comparable to the results obtained using an actually
contaminated air filter should be examined. In the future, it will be necessary to secure
experimental samples of air filters contaminated in an actual use environment over a
considerable course of time and compare the corresponding results obtained with the
results of this study. Furthermore, the prediction performance of the models must be
verified in an actual use environment.
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Abbreviations

AHU Air handling unit
CF Covering factor
HVAC Heating, ventilation, and air conditioning
RMSE Root mean square error
RPM Revolutions per minute
VSP Motor speed adjusting voltage

Nomenclatures

Acover Covering area of HEPA filter
Afilter Surface area of HEPA filter
ai Correlation coefficient
bi Correlation coefficient
ci Correlation coefficient
f Function
g Function
n Number of datasets
∆Pfilter Pressure difference of HEPA filter
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