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Abstract: Reverse logistics planning plays a crucial role in supply chain management. Stochasticity in
different parameters along with time horizon can be a challenge in solving reverse logistics problems.
This paper proposes a multi-stage, multi-period reverse logistics with lot sizing decisions under
uncertainties. The main uncertain factors are return and demand quantities, and return quality.
Moment matching method was adopted to generate a discrete set of scenarios to represent the
original continuous distribution of stochastic parameters. Fast forward selection algorithm was
employed to select the most representative scenarios and facilitate computational tractability. A case
study was conducted and optimal solution of the recursive problem obtained by solving extensive
form. Sensitivity analysis was implemented on different elements of stochastic solution. Results sow
that solution of recursive problem (RP) outperforms the solution obtained from the problem with
expected values of uncertain parameters (EEV).

Keywords: stochastic programming; reverse logistics; lot-sizing; scenario generation; scenario reduction

1. Introduction

Reverse logistics problem is one of the most challenging problems in supply chain
management (SCM) which aims to address collecting used, refurbished, or defective
products from customers or primary markets and then carrying out some recovery and
disposal activities Govindan et al. [1]. According to American Reverse Logistics Executive
Council, reverse logistics is defined as “The process of planning, implementing, and
controlling the efficient, cost effective flow of raw materials, in-process inventory, finished
goods and related information from the points of consumption to the point of origin for the
purpose of recapturing value or proper disposal”. Another report shows 7 million tonnes
E-waste were generated across world annually ([2]). The amount of waste generated across
the world increases the importance of reverse logistics systems in decreasing waste rate
and return the leftover(s) to supply chain.

By reviewing body literature of the reverse logistics in deterministic and stochastic
environments and review papers ([1,3,4]) the following gaps are recognized: Firstly, little
attention has been paid to multi-echelon, multi-period stochastic reverse logistics with lot
sizing. Secondly, multi-stage stochastic programming models for reverse logistics problem
has not been investigated. Thirdly, to the best of our knowledge, the solution techniques
introduced to solve stochastic reverse logistics problems are not efficient to solve large-
scale instances which include large number of scenarios, stages, and decision variables.
Stochasticty of several parameters of the problem along with time horizon complexity,
makes multi-stage stochastic programming a good choice as a solution method for the
mentioned gaps.

This study proposes a multi-stage stochastic program for multi-echelon, multi period
reverse logistics program with lot sizing. Scenario generation and scenario reduction
methods were employed to generate a representative set of discrete scenarios for underlying
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distribution of stochastic parameters. Extensive form of problem was used to solve the
problem and stochastic solution was evaluated by implementing sensitivity analysis on
recursive problem’s parameters.

2. Literature Review

Reverse logistics has been gaining popularity in recent years. A great portion of reverse
logistics literature has been devoted to deterministic reverse logistics problems. Ref. [5]
formulated a multi-stage reverse logistics network for product recovery as a mixed integer
linear programming model. The authors validated the model with a used refrigerator
recovery network. Ref. [6] developed a nonlinear mixed-integer linear programming
model for a reverse logistics network which makes decisions on the number and locations
of centralized return centers. They proposed a genetic algorithm to solve the formulated
model. Ref. [7] proposed a mathematical model for a multi-stage, multi-product reverse
logistics network. The authors developed a hybrid heuristic based on genetic algorithm
for solving the introduced model. Ref. [8] studied a reverse logistics network for a
company located in Brazil. They developed a returnable packaging model which decreases
material consumption by 18% compared to disposable packaging model. In addition, they
concluded that returnable packaging model is the best alternate in terms of environmental
concerns since it has less environmental impacts compared to disposable packaging models.
Ref. [9] addressed a reverse logistics network for end-of-live vehicles in Turkey. The authors
proposed a mixed-integer linear programming model for the network. Solving the model
led to the optimal number of facilities to be located. Ref. [10] formulated a reverse logistics
network for a case of household appliance in the Gulf Cooperation Council (GCC) region
with 68 cities. The authors developed a genetic algorithm with running time reduction up
to 38 times compared to GMAS in solving the problem. Ref. [11] studied a multi-echelon
capacitated reverse logistics network with location-routing, and time window constraints.
The authors formulated the problem as a bi-objective mathematical programming model
and proposed a non-dominated sorting genetic algorithm II (NSGA II) to obtain Pareto
frontier solutions.

Compared to traditional forward logistics, more activities are involved in reverse
logistics planning which makes it more challenging. One of the challenges in designing
reverse logistics network is the presence of several uncertain factors such as return and
demand quantities, and return quality. Therefore considering uncertainty and designing
a robust decision making framework are crucial for reverse logistics design. Ref. [12]
combined queuing models with traditional reverse logistics models to incorporate lead
time and inventory positions in an uncertain environment. This combination led to a mixed
integer nonlinear programming model. The authors solved the formulated model by a
genetic algorithm with the technique of differential evolution. While most of the studied
models in reverse logistics are case based, ref. [13] proposed a generalized model consider-
ing capacity limits, multi-product management, and uncertainty in demand and return
quantities. They solved the formulated model by standard branch and bound techniques.
Ref. [14] studied a risk-averse, two-stage stochastic programming approach reverse logistic
network design problem. They considered return quantity and price as two sources of
uncertainty. Ref. [15] focused on a reverse logistics problem with decisions on inventory
control and production planning. They considered return and demand quantities as two
stochastic parameters and modelled them using fuzzy trapezoidal numbers. The authors
developed a two phase fuzzy mixed integer optimization algorithm to solve the formu-
lated model. Ref. [16] studied a reverse logistics network with three uncertainty sources:
return quantity, return quality, and transportation cost. They formulated the problem
as a two-stage stochastic programming model and validated it by a real world case for
waste of electrical and electronic equipment recycling center in Turkey. The authors used
sample average approximation method to solve the model. Ref. [17] proposed a dynamic
location and allocation model for reverse logistic problem and formulated it as a two stage
stochastic programming model. Also, they developed a heuristic solution method based
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on sampling to solve the model. Ref. [18] studied a multi-period reverse logistics network
under return and demand uncertainty with lot sizing and formulated it as a two-stage
stochastic programming model. They used scenario generation and scenario reduction
methods to generate sets of discrete scenarios to approximate underlying probability distri-
butions. The authors used a case of consumer company in Europe to validate the proposed
model. Ref. [19] designed an International Reverse Logistics (IRL) network under uncer-
tainty. Authors used Japanese case study to formulate a resilient and efficient IRL model
to minimize the total cost of system subject to resilience constraints. Ref. [20] designed
a two-stage stochastic programming model for eco-efficient reverse logistics problem to
minimize landfilling activities and maximize expected profit. In their study, recycling
rates and the quantity of generated waste are considered as two main sources of uncertain-
ties. Authors implemented Sampling Average Approximation process and ε-constrained
method to solve the formulated problem. They used a wood waste recycling case study in
province of Quebec in Canada. Ref. [21] designed a reverse logistics network for recycling
construction and demolition wastes. They proposed a multi-objective, multi-period mixed
integer programming model for this network design problem. Authors included two
uncertain factors in this reverse logistics network: rate of investment and recycled products
demand. Risk averse two-stage stochastic programming model was used to solve the model
under uncertainty. Ref. [22] present a stochastic mixed integer programming model for
designing and planning a generic multi-source, multi-echelon, capacitated, and sustainable
reverse logistics network for WEEE management under uncertainty. Their model takes
into account both economic efficiency and environmental impacts in decision-making, and
the environmental impacts are evaluated in terms of carbon emissions. Authors employed
a multi-criteria two-stage scenario-based solution method for generating the optimal solu-
tion for the stochastic optimization problem. Ref. [23] models the electrical and electronic
equipment (EEE) reverse logistics process as a bi-objective mixed-integer programming
model under uncertainties. Their mathematical model investigates two objectives: an
economic objective and an environmental objective. The first is minimizing cost, while the
second is maximizing the environmental score by reverse logistics processes in recovering
and recycling. The parameters of demand and WEEE return rate which is obtained from
the customer were considered as two uncertain parameters. Ref. [24] identifies reverse
logistics barriers through (1) an extent literature review, (2) advice from Bangladeshi in-
dustry experts under the Delphi study, and (3) ranking reverse logistics barriers using the
fuzzy analytical hierarchy process. The results indicate that, of the barriers investigated,
the ‘knowledge and support’ category seems to be most critical. A lack of interest and
support from top-level management—related to ‘knowledge and support’ issues—appears
to be the major obstacle for reverse logistics implementation in the Bangladeshi leather
footwear industry. Ref. [25] applied Interpretive Structural Modeling (ISM) technique to
diagnose significant barriers and proposed a hierarchical framework for investigating the
relationships among them. They used MICMAC (Matriced’ Impacts Croisés Multiplication
Appliquée á unClassement) analysis to classify the barriers based on the driving power
and dependence among them.

The reminder of this paper is organized as follows: Section 3 provides describes
reverse logistics network problem with lot-sizing and under uncertainty and proposes a
multi-stage stochastic programming model for this problem. Section 4 conducts a case
study and Section 5 discusses computational results and sensitivity analysis. Section 6
provides conclusions and proposes future research directions.

3. Problem Statement

In the reverse logistics network considered in this research, returned products flow
from primary markets as upstream level to sorting centers. After screening products at
sorting centers, the products are sorted to three groups. The products with good quality
are transported to warehouses to meet secondary markets’ demand. The products with
lower quality level that are recyclable will be transported to recycling centers. The rest
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of the returned products will be transported to disposal centers. During these processes,
return and demand quantities, and quality level are the main sources of uncertainty. In
this study, we formulate and solve multi-echelon, multi-period reverse logistics problem
as a multi-stage stochastic programming model. In fact, this study provides a diagram
for decision makers to make the optimal decisions on (1) locating facilities such as sorting
centers, recycling centers, and disposal centers; (2) the amount of products should be
transported between different facilities and from facilities to secondary markets as final
customers; (3) inventory, outsourcing, backorder, and shortage levels. Structure of network
is illustrated in Figure 1.

Primary market

Warehouse

Sorting center

Recycling center

Disposal center

Secondary market

Figure 1. Network structure.

3.1. Model Formulation

This section introduces the proposed multi-stage stochastic programming model.
Assumptions are listed as follows:

• Inventory in sorting centers, recycling centers, and disposal centers are not allowed.
• Initial inventory is not allowed in warehouses.
• End of each period is set to measure inventory level of warehouses.
• Fulfilling of secondary markets’ demand can be delayed or ignored since backorders

and shortages are allowed.
• Transportation between the same kind of facilities are not allowed (e.g., transportation

between warehouses is prohibited).

The notations of the model formulation are as following.

3.1.1. Objective Function

The objective function minimizes the total expected costs of network including estab-
lishment costs (Z1), transportation costs (Z2), inventory costs (Z3), backorder costs (Z4),
shortage costs (Z5), and outsourcing costs (Z6) over the planning horizon. Equations (1)–(7)
present the objective function and its elements:
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Min F = Z1 +Z2 +Z3 +Z4 +Z5 +Z6 (1)

Z1 = ∑
c∈SC

esclc + ∑
w∈W

ewwgw + ∑
r∈R

errzr + ∑
d∈D

eddyd (2)

Z2 = ∑
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ps
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)
(3)

Z3 = ∑
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∑
t∈T

∑
w∈W

psht
w Its

w (4)

Z4 = ∑
s∈S

∑
t∈T \T

∑
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i Bts

i (5)
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s∈S

∑
i∈SM

psscp
i BTs

i (6)

Z6 = ∑
s∈S

ps

(
OC
(

∑
t∈T

∑
c∈SC

sots
mc + ∑

t∈T
∑

w∈W
wots

cw + ∑
t∈T

∑
r∈R

rots
cr + ∑

t∈T
∑

d∈D
dots

cd

))
(7)

In Equation (2), the four terms include all first stage decision variables and represent
location cost for sorting centers, warehouses, recycling centers, and disposal centers,
respectively. Equation (3), with five terms, calculates transportation costs of primary
markets to sorting center, sorting centers to warehouses, sorting centers to recycling centers,
sorting centers to disposal centers, and warehouses to secondary markets, respectively.
Equation (7) includes outsourcing costs for sorting centers, warehouses, recycling centers,
and disposal centers.

3.1.2. Constraints

This section discusses constraints in detail.

∑
m∈PM

αts
mc ≤ CSclc c ∈ SC, t ∈ T , s ∈ S (8)

∑
c∈SC

θts
cr ≤ CRrzr r ∈ R, t ∈ T , s ∈ S (9)

∑
c∈SC

λts
cd ≤ CDdyd d ∈ D, t ∈ T , s ∈ S (10)

∑
c∈SC

βts
cw ≤ CWwgw w ∈ W , t = 1, s ∈ S (11)

∑
c∈SC

βts
cw = CWwgw − I(t−1)s

w w ∈ W , t ∈ T \ 1, s ∈ S (12)
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Constraints (8)–(12) are related to capacities of facilities and transportation amount
between the facilities. These constraints prohibit product flows between facilities that are
not established. Meanwhile, capacities for the facilities can not be exceeded.

∑
c∈SC

(αts
mc + sots

mc) = qts
m m ∈ PM, t ∈ T , s ∈ S (13)

Constraints (13) state that the amount of return products from primary markets include
transported products to sorting centers and the amount of returned products which exceed
sorting centers’ capacity.

∑
m∈PM

rrtαts
mc = ∑

r∈R
(θts

cr + rots
cr) c ∈ SC, t ∈ T , s ∈ S (14)

∑
m∈PM

drtαts
mc = ∑

d∈D
(λts

cd + dots
cd) c ∈ SC, t ∈ T , s ∈ S (15)

∑
m∈PM

(1− rrt − drt)αts
mc = ∑

w∈W
(βts

cw + wots
cw) c ∈ SC, t ∈ T , s ∈ S (16)

Constraints (14)–(16) calculate the transported amount of products from sorting centers
to recycling centers, disposal centers, and warehouses, respectively. At the same time, these
constraints calculate the amount of products exceeding the capacities of these facilities.

∑
m∈PM

sots
mc ≤

(
∑

m∈PM
qts

m
)
lc c ∈ SC, t ∈ T , s ∈ S (17)

∑
c∈SC

rots
cr ≤

(
∑

m∈PM
qts

m
)
zr r ∈ R, t ∈ T , s ∈ S (18)

∑
c∈SC

dots
cd ≤

(
∑

m∈PM
qts

m
)
yd d ∈ D, t ∈ T , s ∈ S (19)

∑
c∈SC

wots
cw ≤

(
∑

m∈PM
qts

m
)

gw w ∈ W , t ∈ T , s ∈ S (20)

Constraints (17)–(20) state outsourcing is not allowed from facilities that are not established.

Its
w ≤ β

[t]s
cw w ∈ W , t ∈ T , s ∈ S (21)

Its
w = ∑

c∈SC
βts

cw − ∑
i∈SM

µts
wi w ∈ W , t = 1, s ∈ S (22)

Its
w = I(t−1)s

w + ∑
c∈SC

βts
cw − ∑

i∈SM
µts

wi w ∈ W , t ∈ T \ 1, s ∈ S (23)
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Constraints (21)–(23) determine the inventory level at each warehouse.

∑
i∈SM

µts
wi ≤ ∑

c∈SC
βts

cw w ∈ W , t = 1, s ∈ S (24)

∑
i∈SM

µts
wi ≤ I(t−1)s

w + ∑
c∈SC

βts
cw w ∈ W , t ∈ T \ 1, s ∈ S (25)

∑
w∈W

µts
wi ≤ dts

i + B[t]s
i i ∈ SM, t ∈ T , s ∈ S (26)

Constraints (24)–(26) determine the amount of product transported to each secondary market.

∑
w∈W

µts
wi = 0 i ∈ W , t ∈ T , s ∈ S (27)

Constraints (27) state transportation flows between warehouses are not allowed.

Bts
i = d[t]si − ∑

w∈W
µ
[t]s
wi i ∈ SM, t ∈ T , s ∈ S (28)

Constraints (28) calculate backorder level for each secondary market.
Figure 2 shows the different decision making stages and their associated decision

variables in the problem.
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Figure 2. Decision making process in different stagesFigure 2. Decision making process in different stages.
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4. Case Study

To validate the proposed multi-stage stochastic programming model, a case study
adapted from [26] was applied. Ref [26] developed a deterministic mixed integer linear
program for the case of a European consumer goods company. This study extended their
work by proposing multi-echelon, multi-period, and multi-stage stochastic program for
reverse logistics network.

The network logistics of this case consists of 38 nodes distributed in different European
countries including five primary markets, six potential candidates for sorting centers, three
potential candidates for warehouses, three potential candidates for recycling centers, three
potential candidates for disposal centers, and eighteen secondary market nodes.

Table 1 reports the facilities capacities and establishment costs. Table 2 lists the unit
holding cost, unit backorder cost, and unit shortage cost. Quantities of returned products
from the primary markets and demand of secondary markets are assumed to follow normal
distributions (Abdallah et al. (2012)). Four moments of return and demand quantities
distributions are reported in Tables 3 and 4 , respectively. Return quantities in different time
periods are assumed independent from each other. Demand quantities are also independent
from each other in different time periods. The rates of recyclable and disposable products
are the other stochastic parameters with five possible outputs listed in Table 5. The planning
horizon for this research problem is considered to be three months and outsourcing cost
per unit of product for all facilities is assumed to be 30 rmu.

Table 1. Establishing cost (EC) and Capacity (Cap).

Sorting Center Warehouse Recycling Center Disposal Center

Node Cap EC Cap EC Cap EC Cap EC
UK 8000 40,000
FR 10,000 32,500 9500 25,000 1500 20,000 1500 6000
SE 7000 22,500
ES 9500 20,000
AT 6000 15,000
BE 7500 25,000
NE 6000 12,000
IT 8000 15,000 1500 11,500 2200 5400
DE 2000 15,000 2500 6500

Table 2. Costs of holding, backorder and shortage per unit of product.

Secondary Market

Holding Cost Backorder Cost

Shortage Cost#Period #Period

1 2 3 4 5 1 2 3 4 5

IT 1.28 1.31 1.32 1.28 1.30 0.46 2.52 1.36 1.16 - 7.46
UK 3.54 1.28 0.22 0.26 - 6.89
FR 0.99 1.03 1.03 0.99 1.00 2.00 2.68 2.40 0.54 - 8.98
ES 0.60 2.94 2.5 2.90 - 4.53
IE 0.76 2.36 1.52 1.40 - 6.12
SE 1.76 3.30 0.54 0.76 - 5.07
GR 0.52 2.22 3.18 3.42 - 7.85
NL 1.13 1.16 1.15 1.13 1.14 2.56 3.36 3.06 3.06 - 7.91
FI 1.04 0.16 0.76 3.58 - 6.24

DK 1.78 3.80 3.20 1.82 - 4.28
CH 3.38 3.96 3.04 3.88 - 9.28
BE 1.04 2.48 2.66 0.46 - 8.96
PT 3.96 2.46 3.30 1.74 - 9.77
NO 0.68 1.94 3.52 1.32 - 6.58
DE 3.64 3.86 1.70 3.54 - 7.20
AT 0.58 3.50 1.88 2.52 - 8.88
TR 0.54 2.76 0.9 0.12 - 5.23
PL 2.84 1.08 2.24 3.52 - 4.42
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Table 3. Return properties.

Properties

Primary Market PDF Mean Variance Skewness Kortusis

UK Normal 2338.27 132,986.03 0 3
FR Normal 2605.81 184,908.17 0 3
BE Normal 2102.58 76,003.87 0 3
IT Normal 2027.70 92,385.29 0 3

NO Normal 1375.71 15,104.41 0 3

Table 4. Demand properties.

Properties

Secondary Market PDF Mean Variance Skewness Kortusis

UK Normal 351.33 2777.24 0 3
ES Normal 348.00 2724.84 0 3
IT Normal 317.67 2270.57 0 3
FR Normal 310.00 2162.25 0 3
SE Normal 299.67 2020.54 0 3
IE Normal 233.00 1221.50 0 3
NL Normal 348.00 2724.84 0 3
GR Normal 332.00 2480.04 0 3
DK Normal 317.33 2265.71 0 3
FI Normal 551.33 6839.20 0 3
PT Normal 443.00 4415.60 0 3
BE Normal 462.00 4802.49 0 3
CH Normal 571.33 7344.41 0 3
NO Normal 546.33 6715.72 0 3
AT Normal 529.33 6304.28 0 3
DE Normal 518.00 6037.29 0 3
PL Normal 495.00 5513.06 0 3
TR Normal 461.33 4788.57 0 3

Table 5. Rate of recycling and disposal.

Possible Output rr(t) dr(t)

1 0.02 0.02
2 0.05 0.05
3 0.10 0.08
4 0.15 0.10
5 0.20 0.13

5. Results and Analysis

The most effective method to solve small to medium size stochastic programs is to
generate the deterministic equivalent of the problem so-called extensive form. Extensive
form specifies all scenarios in one single mathematical model.

Section 3 provided extensive form mathematical model of the introduced problem. To
solve the problem in extensive form, discrete scenarios are generated by moment match-
ing method and then the total number of scenarios is reduced by fast forward selection
algorithm. Scenario generation and scenario reduction were implemented in GAMS 23.5
to create the most representative scenarios for the stochastic problem. The scenarios data
files for the problem was generated by Matlab R2020b and stochastic program was coded
in Python 3.7 to solve and find the optimal solution. Optimal solution for a relatively
small-scale instance with 5 scenario is listed in Tables 6 and 7. Figure 3 shows the objective
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function value of extensive form for cases with 10 to 500 scenarios. As it can be seen from
this figure, the total cost is gradually converging by increasing number of scenarios from
50 up to 500. For analyzing experimental results the case with 300 scenarios is considered.
Figure 4 shows the run time of the cases with different number of scenarios. As expected,
the run time increases by increasing number of scenarios.

Table 6. First stage decision variables values.

Sorting Center Warehouse Recycling Center Disposal Center

Node l EC g EC z EC y EC

UK 0 40,000
FR 0 32,500 0 25,000 0 20,000 0 6000
SE 0 22,500
ES 0 20,000
AT 1 15,000
BE 1 25,000
NE 0 12,000
IT 1 15,000 1 11,500 1 5400
DE 0 15,000 0 6500

Table 7. Extensive form results (|S| = 5).

Scenarios

Cost #1 #2 #3 #4 #5

Stage 1 71,900.00 71,900.00 71,900.00 71,900.00 71,900.00
Stage 2 6129.75 6129.75 6129.75 6129.75 7417.03
Stage 3 71,256.69 71,256.69 71,256.69 71,256.69 66,741.04
Stage 4 6129.75 6129.75 6129.75 7417.03 4115.00
Stage 5 71,256.69 71,256.69 71,256.69 66,741.04 90,576.36
Stage 6 6129.755 5205.69 7417.03 6129.75 6129.75
Stage 7 71,256.69 93,332.62 66,741.04 71,256.69 71,256.69

Total cost 304,059.34 325,211.21 300,830.97 300,830.97 318,135.89

Probability 0.4036 0.0793 0.1705 0.1889 0.1577

Stochastic OFV 306,796.27

Figure 3. Total cost of the system.
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Figure 4. Run time for different number of scenarios.

To evaluate the quality of stochastic solution, the model is solved for EV (Expected
Value), EEV (Expected problem of Expected Value solution), and RP (Recourse Problem)
are solved. EV problem assigns fixed values to stochastic parameters. The fixed value
is the mean of distribution for each stochastic parameter. In other words, EV problem
ignores stochasticity but stochasticity exists and what will happen in reality (EEV solution)
is different from the optimum solution of EV. EEV problem solves the formulation by
fixing first stage variables with the solution obtained from EV problem. Table 8 shows the
solutions obtained by solving EV, EEV, and RP. The value of stochastic solution (VSS) is
the difference between EEV and RP which in this case is 12,516.7 indicating RP solution
outperforms EEV solution.

Table 8. EV, EEV, and RP problems results.

First Stage Variables

Sorting Centers Warehouses Recycling Centers Disposal Centers

Problem UK FR SE SP AT BE NE IT FR FR GR IT FR GR IT
Total Cost

EV 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 226,398.8
EEV 0 0 0 0 0 1 0 1 0 0 0 1 0 0 1 325,917.4
RP 0 0 0 0 1 1 0 0 1 0 0 1 0 0 1 313,400.7

In the next step we do a sensitivity analysis in outsourcing cost (OC) which is one
the important elements in total cost of system. Figure 5 shows the change in total cost
by decreasing or increasing OC. Linear relationship between OC and objective function
value indicates no change in other cost elements of objective function which means optimal
solution is not changing by change in OC. Since total demand of secondary markets is
less than total return of primary markets, final solution always includes outsourced extra
returned items.
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Figure 5. Sensitivity Analysis on Outsourcing Cost (OC).

6. Conclusions

Traditional supply chain design considers product flow from suppliers to customers.
However in reverse logistics problem as a supply chain problem, the product flow starts
from customers(primary markets) and end at manufacturers(secondary markets). Decision
making in such environments face several uncertainty factors. Recently, designing a
reverse logistics network involved in stochastic environment has attracted more attention
in the literature.

In this paper, we design a reverse logistics network by formulating it as a multi-
stage stochastic programming model. Uncertainty sources in this problem include return
quantity in primary markets, demand quantity in secondary markets, recycling rate, and
disposal rate. The first two uncertainty sources have normal distribution. Hence, moment
matching method was used as a scenario generation approach to create discrete scenarios.
Then fast forward selections was applied to decrease the number of scenarios. Finally
extensive form of the formulation was solved to find the optimal solution of stochastic
problem and sensitivity analysis was implemented to get managerial insights. Scenario
reduction algorithm reduced run time while quality of solution is reasonable. Also, RP
solution outperforms EEV solution which shows applicability of multi-stage stochastic
programming approach for similar environments. This study is subject to to a few limita-
tions which suggest some future research directions. First, considering return quality as a
continuous variable would be desirable in finding the optimal solution. Second, usually
real-life cases might be in a large-scale form. So, developing exact and heuristic algorithms
to solve the large-scale problems can be appealing. Last but not the least, developing
valid inequalities is crucial in decreasing the time complexity of the problem for large
scale instances.
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Abbreviations

Sets
PM Primary markets
SC Candidate locations for sorting centers
W Candidate locations for warehouses
SM Secondary markets
WS Union of warehouses and secondary markets, WS = W ∪ SM
R Candidate recycling centers
D Candidate disposal centers
T Time periods
S Set of scenarios
Parameters
ps Probability of scenario s
esc Cost of establishing a sorting center in location c
eww Cost of establishing a warehouse in location i
ezr Cost of establishing a recycling center in location r
eyd Cost of establishing a disposal center in location r
qts

m Return quantity of primary market m in period t under scenario s
tpsmc Cost of transportation for one unit of product from primary market m to

sorting center c
tswcw Cost of transportation for one unit of product from sorting center c to

warehouse w
tsrcr Cost of transportation for one unit of product from sorting center c to

recycling center r
tsdcd Cost of transportation for one unit of product from sorting center c to

disposal center d
twsij Cost of transportation for one unit of product from node i ∈ WS to node

j ∈ WS
ht

w Holding cost for one unit of product in warehouse w in period t
bt

i Cost of backorder for one unit of product for secondary market i in period t
sci Cost of shortage for one unit of unmet demand of secondary market i
OC Cost of outsourcing for one unit of product
dts

i Demand of secondary market i in period t under scenario s
drts Ratio of disposal in period t under scenario s
rrts Ratio of recycling in period t under scenario s
CSc Sorting center c’s capacity
CWw Warehouse w’s capacity
CRr Recycling center r’s capacity
CDd Disposal center d’s capacity
Decision Variables
lc 1 if sorting center c established, 0 otherwise
gw 1 if warehouse w is established, 0 otherwise
yd 1 if disposal center d is established, 0 otherwise
zr 1 if recycling center r is established, 0 otherwise otherwise
αts

mc Amount of products transported from primary market m to sorting center
under scenario s in period t

βts
cw Amount of products transported from sorting center c to warehouse w under

scenario s in period t
θts

cr Amount of products transported from sorting center c to recycling center r
under scenario s in period t

λts
cd Amount of products transported from sorting center c to disposal center d

under scenario s in period t
µts

wi Amount of products transported from warehouse w to secondary market i
under scenario s in period t
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Its
w Inventory level of products in warehouse w under scenario s in period t

Bts
i Backordered demand for secondary market i under scenario s in period t

sots
mc Outsourced products of shipment from primary market m to sorting center c

(because of capacity exceeding in sorting center c) under scenario s in period t
rots

cr Outsourced products of shipment from sorting center c to recycling center r
(because of capacity exceeding in recycling center r) under scenario s in period t

dots
cd Outsourced products of shipment from sorting center c to disposal center d

(because of capacity exceeding in disposal center d) under scenario s in period t
wots

cw Outsourced products of shipment from sorting center c to warehouse w
(because of capacity exceeding in warehouse w) under scenario s in period t

d[t]si Cumulative total demand of secondary market i over t periods under scenario

s,
(
d[t]si = ∑t′=t

t′=1 dt′s
i
)

µ
[t]s
wi Cumulative total shipment transported from warehouse w to secondary market

i over t periods under scenario s,
(
µ
[t]s
wi = ∑t′=t

t′=1 µt′s
wi
)

B[t]s
i Cumulative total backorder for secondary market i over t periods under scenario

s,
(

B[t]s
i = ∑t′=t

t′=1 Bt′s
i
)

β
[t]s
cw Cumulative total shipment transported from sorting center c to warehouse w over

t periods under scenario s,
(

β
[t]s
cw = ∑t′=t

t′=1 βt′s
cw
)
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