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Abstract: The application of deep learning (DL) for solving construction safety issues has achieved 

remarkable results in recent years that are superior to traditional methods. However, there is limited 

literature examining the links between DL and safety management and highlighting the contribu-

tions of DL studies in practice. Thus, this study aims to synthesize the current status of DL studies 

on construction safety and outline practical challenges and future opportunities. A total of 66 influ-

ential construction safety articles were analyzed from a technical aspect, such as convolutional neu-

ral networks, recurrent neural networks, and general neural networks. In the context of safety man-

agement, three main research directions were identified: utilizing DL for behaviors, physical condi-

tions, and management issues. Overall, applying DL can resolve important safety challenges with 

high reliability; therein the CNN-based method and behaviors were the most applied directions 

with percentages of 75% and 67%, respectively. Based on the review findings, three future oppor-

tunities aiming to address the corresponding limitations were proposed: expanding a comprehen-

sive dataset, improving technical restrictions due to occlusions, and identifying individuals who 

performed unsafe behaviors. This review thus may allow the identification of key areas and future 

directions where further research efforts need to be made with priority. 

Keywords: construction safety; unsafe behaviors; physical safety management; safety management 

issues; deep learning 

 

1. Introduction 

Construction is a large, dynamic, and complex field offering a large number of job 

opportunities for millions of people worldwide [1]. In addition, construction sites also 

contain various risks (e.g., struck-by accidents [2] and fall accidents [3]), and the accident 

rate continues to rise over time. According to global statistical data, the construction in-

dustry’s accidental death and injury rates are three and two times higher than those of 

other industries, respectively [4]. The number of fatal injuries in this industry in the 

United States increased by 16%, from 781 in 2011 to 908 in 2014 [5], and its injuries and 

accidents in 2015 were 50% higher than those in any other industry [3]. These percentages 

reached 40% of the total accidents in Japan, 25% in the United Kingdom, and 50% in Ire-

land [6]. Although various countries have put effort into construction safety-related laws, 

regulations, and management systems over the past decades, their safety performance in 

construction is still unsatisfactory [7]. Thus, it is essential to apply an appropriate method 

to assist safety management in the construction industry. 

To prevent occupational accidents, Sarkar and Maiti (2020) [8] investigated and re-

ported several existing approaches, such as survey-based qualitative analysis, conven-

tional statistical analysis, and data-driven machine-learning-based analysis. By reviewing 
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publications examining the application of machine learning (ML) approaches in accident 

analysis, they also illustrated that ML outperforms its traditional counterpart, owing to 

its several potential benefits, including the capability to deal with large dimensional data, 

flexibility in recreating data generation structures regardless of complexity, and predic-

tive and interpretive potential by extracting relationships/rules among attributes in data 

[8]. In support of this observation, Xu and Saleh (2021) [9] argued that ML has the potential 

to provide new insights and opportunities to address critical challenges in safety applica-

tions. However, one of the challenges of ML is that ML problems become extremely diffi-

cult for high-dimensional data [10]. Compared to traditional ML, deep learning (DL) al-

gorithms can deal with high-dimensional input data, and they become highly efficient in 

resolving the issue of data sources such as images and videos when equipped with con-

volutional layers [9]. Moreover, the rapid development of graphics processing units 

(GPUs) has dramatically improved the computing capacity for processing ML algorithms, 

leading to an increase in the number of DL applications [11]. Therefore, Xu and Saleh 

(2021) [9] emphasized that in all applications to date, DL has considerably outperformed 

shallow ML algorithms. In this context, researchers in the construction industry have 

made considerable efforts to keep up with the pace of DL applications [12]. The amount 

of research on DL in construction has grown exponentially over the past few years, and 

the applications have spread over many construction areas since their inception [13]. For 

example, Akinosho et al. (2020) [12] proved that DL was applied to prevalent construction 

challenges, such as structural health monitoring, construction site safety, building occu-

pancy modeling, and energy demand prediction [12]. In the context of construction safety, 

DL has also proven its potential for safety management. DL can be used to extract differ-

ent types of data such as images, videos, text, and signals to reduce construction accident 

cases by detecting on-site damage conditions [14], detecting unsafe behaviors [15], and 

analyzing construction safety documents [16]. 

DL is a subset of ML, and can theoretically deal with all categories of ML [9]. For 

example, different types of DL techniques used in real-time object detection help develop 

new helmet detection systems with higher accuracy and less training time [17]. Zhong et 

al. (2020) [18] demonstrated that DL can be used to automatically extract unstructured 

safety data from accident reports. As a result, managers become better positioned to make 

informed and timely decisions about how to ensure construction safety [18]. With these 

prominent and widespread applications of DL in construction safety, researchers need to 

understand what typical types of data can be used for different methods (e.g., convolu-

tional neural networks, recurrent neural networks, etc.) for gaining high performance. 

Moreover, with the extremely rapid advancement of DL algorithms, the review of recent 

literature can play an important role in understanding the research status of DL studies 

and exploring an opportunity of its application for further enhancement of construction 

safety. However, there is limited literature examining the theoretical links between DL 

and safety management. For example, several review studies, such as [19,20], have mainly 

focused on construction safety without the detailed review on DL techniques. Hou et al. 

(2021) [21] carried out a review of the relevant papers on applications of DL for safety 

management in the architecture, engineering, and construction (AEC) industry; however, 

a comprehensive linkage between safety and DL methods (e.g., data types and quantities, 

DL algorithms and their performance, safety factors) was not fully investigated. Moreo-

ver, how the results of DL studies can be applied in safety management practice was not 

clearly presented and discussed by Hou et al. (2021) [21]. By addressing those issues, re-

searchers and managers in the field of construction safety may better understand what 

type of method has achieved highly accurate results along with the type and amount of 

data has been used for a certain safety task, as well as the actions managers can take from 

the result of DL models for improving safety management. This study aims to fill these 

gaps by comprehensively reviewing DL studies in the construction safety area. 

Specifically, this literature review is performed to (1) identify and summarize the 

current status of recent DL studies in the construction safety area for showing how DL 



Sustainability 2021, 13, 13579 3 of 38 
 

could be applied in previous studies; (2) analyze the links of data type and quantity, and 

DL models applied and newly proposed with three main research directions of construc-

tion safety (e.g., behaviors, physical conditions, and management issues) for understand-

ing how to apply DL models in different safety-related tasks; (3) review the contributions 

of DL results in safety management practice; and (4) outline practical challenges and fu-

ture opportunities associated with the applications for improving and fully exploiting the 

DL contributions in safety. This review may thus allow the identification of key areas and 

future directions where further research efforts need to be made with priority. The re-

mainder of this paper is organized as follows. The paper firstly presents the research 

methodology used in this review (Section 2). An overview of DL algorithms commonly 

used for construction safety is then presented from a technical aspect (Section 3). Subse-

quently, this paper summarizes the current status of safety-related papers for an in-depth 

understanding of DL applications for safety management (Section 4). Along with a com-

prehensive review, this study discusses the contributions, practical challenges, and future 

opportunities of applying DL approaches to practice (Sections 5 and 6). Finally, the major 

findings are summarized to present the significance of this study (Section 7). 

2. Research Methodology 

With the purpose of analyzing the current status of DL studies in safety performed 

to understand how well the DL methods have been applied for safety management as well 

as how distinct DL models could address safety issues with different specific types of data, 

this study adopts a content-analysis-based review method, a systematic and structured 

technique “for compressing many words of text into fewer content categories based on 

explicit coding rules” to identify key research themes for literature review [22]. Content 

analysis is a research tool utilized to determine the presence of certain words, themes, or 

concepts within several given qualitative data (i.e., text). Using content analysis, research-

ers can analyze and quantify the presence, meanings and relationships of certain words, 

themes, or concepts [23]. This method has been well-recognized and widely used for re-

viewing and synthesizing literature, and rationalizing outcomes in the research field of 

engineering/construction management [22,24–26]. The review process based on this 

method consists of three phases: literature search, title- and abstract-based literature se-

lection, and full-paper-based literature selection, as described in Figure 1. In the literature 

search, an exhaustive search was carried out with keywords regarding DL and construc-

tion safety that aimed to find all articles related to the field of review. The title- and ab-

stract-based literature selection was then conducted to filter papers applying DL to handle 

safety issues based on reading titles and abstracts. After that, an overall screening was 

performed in the phase of full-paper-based literature selection that aimed to identify the 

articles relevant only to construction safety and DL by reading the full paper. Therefore, 

the most significant DL studies on construction safety were collected and reviewed to 

guarantee the provision of fit and quality research materials for this study. 
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Figure 1. Research methodology. 

2.1. Literature Search 

The first step of the review was an exhaustive search in Scopus and Google Scholar. 

Keywords and Boolean operators, AND and OR, were used to ensure that all relevant 

literature was captured from 2014 to 2021. According to Akinosho et al. (2020) [12], DL 

became popular with the achievements of CNNs in the 2012 ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC2012), and its applications in the construction industry 

have achieved significance since around 2014. Thus, the chosen dates were based on the 

DL revolution. The search strings used were “deep learning” OR “computer vision” OR 

“CNN” OR “RNN” OR “neural networks” AND “construction safety” OR “construction 

hazard” OR “construction accident” OR “safety management”. Initially, 387 documents 

were identified. To limit the scope of the search results, these documents were further 

screened by including only journal articles published in English and the remaining 145 

papers. Moreover, we chose articles with the highest level of relevance to the research 

scope, namely, engineering, computer science, materials science, and management. After 

this screening, a total of 126 documents, including articles and conference papers, were 

selected as the literature sample. 

2.2. Title- and Abstract-Based Literature Selection 

This stage of document screening was conducted to identify articles relevant to con-

struction safety and DL for further analysis. These documents from the literature search 

were manually screened by reading and exploring the titles and abstracts to identify and 

extract relevant articles. Publications that did not include keywords regarding construc-

tion safety and deep learning in titles or abstracts were screened out. The total number of 

documents remaining after this phase was approximately 98. 

2.3. Full-Paper-Based Literature Selection 

This phase aims to remove irrelevant papers by examining the contents of the articles. 

The remaining documents from the previous phase were screened by reading the full pa-

per to identify articles relevant only to construction safety and DL. For example, articles 

(e.g., [27]) that only mentioned “deep learning” but did not focus on DL methods, were 

removed. Several articles, such as [28], were also removed, as they did not focus on safety 

in construction, although the term “construction safety” was found in its abstract. Similar 
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articles that applied DL in manufacturing, structural assessment, and crack and defect 

detection were removed as they did not focus on safety issues in the construction industry. 

After the third screening, a total of 66 papers remained for an in-depth review and analy-

sis. 

2.4. Results 

According to the final paper selection, a total of 66 papers in journals shown in Figure 

2 were identified for further analysis. Figure 3 shows the number of publications by year, 

which proves the development of DL applications in construction safety in recent years. 

The number of studies using DL increased from 2018 to 2021 and is likely to continue to 

rise in the coming years. Figures 4–7 present an overview of the reviewed papers. In ad-

dition to extracting information related to DL models and safety factors, which is the pur-

pose of this study, we also present the type of data and accident types to provide a com-

prehensive overview of what types of accidents researchers have attempted to reduce. 

Overall, these figures show that the CNN-based method and behaviors were the most 

applied directions with percentages of 75% and 67%, respectively; images were the most 

used data in these models (73%), and struck-by and other general accidents were two 

types of accidents DL studies have focused on with the percentages of 36% and 38%, re-

spectively. 

 

Figure 2. Publications by journals. 
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Figure 3. Publications by years. 

 

Figure 4. Percentage of methods in total cases. 
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Figure 5. Percentage of publications by safety factors. 

 

Figure 6. Percentages of publications by data. 

 

Figure 7. Percentages of publications by accident types. 
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3. Overview of Deep Learning Architectures 

DL is a set of ML algorithms that attempt to learn features at multiple levels with 

different levels of abstraction [29]. The grades in these learned models correspond to dif-

ferent levels of concepts, where the same lower-level concepts can support many higher-

level concepts [29]. Thus, a DL architecture can be defined as an artificial neural network 

(ANN) with two or more hidden layers to enhance prediction accuracy [29,30]. Three im-

portant reasons for the popularity of DL today are the drastic increase in the abilities of 

chip processing (e.g., GPU units), the significant increase in the size of data used for train-

ing, and the recent algorithm advances in ML and signal/information processing studies 

[29,31]. These advances have enabled DL methods to exploit complex, compositional non-

linear functions, and effectively use both labeled and unlabeled data [29]. Therefore, un-

like the architectures of shallow ML, DL networks are capable of processing nonlinear 

information [32] and provide training for both supervised and unsupervised categories 

[33]. With the outstanding ability in processing various types of data, including images, 

videos, text, speech, and signals, DL networks and techniques have been implemented 

widely in various fields such as image classification [34], object detection [35], object track-

ing [36], activity recognition [37], information extraction [38], text classification [39], and 

speech recognition [40]. 

According to Khallaf and Khallaf (2021) [13], DL is called “deep” due to the number 

of layers available in the network model. Generally, the DL architecture is composed of 

three types of layers: an input layer, hidden layers, and an output layer; the typical archi-

tecture of DL is shown in Figure 8. Data are received in an input layer, features are ex-

tracted from the datasets via hidden layers depending on the purpose of their application, 

and the resulting features are passed to the output layer for prediction. In the network, 

the output of the previous layer is used as the input of the next layer. There are different 

types of DL architectures [13], and for safety management, the most commonly used types 

of DL include convolutional neural networks (CNNs), recurrent neural networks (RNNs), 

and general neural networks (GNNs). 

 

Figure 8. Typical deep learning architecture with three types of layers: an input layer, hidden layers, and an output layer. 

3.1. Convolutional Neural Networks 

For DL, the term “deep” is derived from the many hidden layers in the ANN struc-

ture [41]. Unfortunately, this structure is receptive to translation and shift deviation, 

which may adversely affect the performance of classification [42]. To eliminate these 
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drawbacks, an extended ANN version, the CNN, was developed, which can ensure spa-

tial translation and shift invariance [43]. The CNN is a supervised DL architecture mainly 

used for image analysis applications [30,44,45]. Similar to the ANN, the network consists 

of multiple hidden layers between an input layer and an output layer (Figure 9). However, 

the hidden layers comprise convolutional, pooling, and fully connected layers. The con-

volution filter acts as a feature extractor by learning hidden patterns from different input 

signals [41] and generating relevant feature maps through kernels or filters [30]. The cal-

culation of convolution is defined as 

1 1 1

, , , ,

0 0 0

inC K K

x y x s i y s j i j x y

c j i

O I w b
− − −

+  + 

= = =

=  +  (1) 

where ,x s i y s jI +  +  is the value of the input feature at the point of (x + s × i, y + s × j), Cin is 

the number of input channels, K is the kernel size, s is the stride of convolutional layer, 

,i jw is the weight in the kernels, ,x yb is the bias, and ,x yO is the value of the output feature 

at the point of (x, y). This convolutional layer thus allows the detection of low-level fea-

tures, such as lines and edges, as well as high-level features such as shapes and objects 

[46]. In this process, the convolutional layer can enhance the input data features and re-

duce noise [32]. The convolutional layer is likely connected to a pooling layer with a non-

linear mapping function (e.g., rectified linear unit (ReLU)) [47]. The appropriate pooling 

layer has a positive effect on reducing the input dimension without losing information 

[47]. Different types of pooling methods exist, such as global pooling, average pooling, 

and max pooling [30]. In particular, for extracting features from images, the performance 

of the maximum pooling method is better than that of average pooling [48]. Maximum 

pooling splits the input image into multiple rectangular regions based on the size of the 

filter, and its output is the maximum value for each region [49]. The output of the max 

pooling layer can be calculated as 

, ,
, [0, 1]

( )out in

x y x m y n
m n i

N Max N + +
 −

=  (2) 

where the max pooling layers take the maximum value from the region i × i of input as 

the output, ,

in

x m y nN + + is the value of the input at the point of (x + m, y + n), and ,

out

x yN is the 

value of output at the point of (x, y). This process is known as downsampling or subsam-

pling [30]. After these layers, the fully connected layer commonly connects all neurons 

from the previous layer to every single neuron [32]. Thus, this layer sets a weighted sum 

of all the previous layer outputs to determine a specific target output [41]. 
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Figure 9. A typical CNN architecture. 

The variations of CNN methods include region-based CNN (R-CNN), fast R-CNN, 

faster R-CNN, and you only look once (YOLO). As discussed above, DL methods with 

convolutional networks are widely used for image processing tasks. Among the various 

applications of CNNs, object detection frameworks combining both classification and lo-

calization to detect and draw boxes around objects in images have markedly developed 

in recent years [50]. According to Koirala et al. (2019) [50], early object detection frame-

works based on CNN used a sliding window approach at evenly spaced locations over 

the image, where many patches are generated to classify each patch as containing an ob-

ject or not. Thus, feeding all available patches for multiscale detection to a CNN slowed 

the object detection framework [50]. R-CNN replaced the sliding window method by us-

ing a group of boxes for the image and then analyzing each box if either of the boxes 

contained a target [51]. The entire target identification method through R-CNN uses the 

following three models: a linear SVM classifier for object identification, CNN employed 

for characteristic extraction, and a regression model required to tighten the bounding 

boxes [52]. Therefore, the drawbacks of R-CNN are multiple stages of training, taking up 

disk space and training time consuming cumbersome steps [53]. Therefore, a fast R-CNN 

was developed to improve the detection speed of R-CNN [50]. In place of using three 

different models of R-CNN, fast R-CNN [54] employs a model to extract characteristics 

from different regions. However, the drawback of the fast R-CNN method is that it is 

based on a selective search [55]; for example, 2000 sections are excerpted per image [52]. 

Thus, this approach may increase the running time of the fast R-CNN method [52]. In 

contrast, faster R-CNN creatively utilizes the convolution network to create the proposed 

box and shares the convolution network with the object detection network, which reduces 

the number of proposed frames, for example, from approximately 2000 to approximately 

300 [56]. However, despite the speed of faster R-CNN-based detection model being im-

proved compared to that of fast R-CNN, it is still too slow to apply to real-time video 

streaming [50]. To address this limitation, YOLO was developed to generate a one-step 

process involving detection and classification [57]. YOLO’s idea differs from other tradi-

tional systems in that bounding box predictions and class predictions are performed sim-

ultaneously [57], making YOLO one of the fastest object detection methods [50]. 
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3.2. Recurrent Neural Networks 

The neurons of a fully connected network or a CNN are fully connected in different 

layers but disconnected in the same layer; each layer processes signals independently and 

then propagates to the next layer [48]. In this regard, this architecture cannot resolve the 

problem of relationships between input data [32]. RNNs can be considered as another 

class of DL networks that are used for sequential data for supervised and unsupervised 

learning [29]. An RNN can “remember” past information and utilize the knowledge 

learned from the past to make its present decision [58]. In RNNs, the output of the previ-

ous step is stored and utilized to calculate the current output (Figure 10), which means 

that the network’s input contains both the data from the input layer and the output of the 

previous hidden layers [32]. The output of the RNN model can be calculated as 

1( )t t t hh f Ux Wh b−= + +   (3) 

( )t t oO softmax Vh b= +   (4) 

where U is the weights matrix of the input xt to the hidden layers, W is the duplicated 

recurrent weight matrix, V represent sts the hidden to output weight matrix, f is a nonlin-

ear activation function, and bh and bo are the biases added to the hidden and output layers, 

respectively. Thus, the RNN is extremely powerful for modeling sequence data (e.g., 

speech or text) [29]. 

 

Figure 10. A typical RNN architecture. 

Despite the promising performance of RNN, vanishing gradient is a significant prob-

lem in the conventional RNN because it makes the gradient easily vanish (e.g., the previ-

ous information is lost through multiple layers), and the model learning process becomes 

much more difficult [59]. One solution to solve this problem is to use long short-term 

memory (LSTM) networks, which can store sequences for a long time, as well as using 

gated recurrent units (GRUs) [60,61]. The LSTM algorithm combines a memory block with 

three gates: input, output, and forget gates [41]. The input gate determines what new in-

formation is saved and updated in the cell state, the output gate determines what infor-
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mation is utilized based on the cell state, and the forget gate is used to delete the unim-

portant information from the cell state. Thus, the difference from RNN is that LSTM can 

determine what information is useful through the cell, which can avoid the disappearance 

of the gradient to some extent [48]. The learning capacity of the LSTM cell is also superior 

to that of a conventional recurrent cell [62]. However, additional parameters increase the 

computational burden [62]. To reduce the number of parameters, the GRU combines the 

input and forget gates of the LSTM model into an update gate, and the output gate in the 

LSTM model is called a reset gate [63]. Thus, the GRU is an extension of LSTM, which 

achieves a performance comparable to that of LSTM but uses fewer parameters and makes 

training faster [64]. 

3.3. General Neural Networks 

In addition to the two common methods of DL (i.e., CNN and RNN), bidirectional 

encoder representations from transformers (BERT) [39] (Figure 11) and other deep learn-

ing models for natural language processing (NLP) (Figure 12) and computer vision (CV) 

[65] (Figure 13) have also been applied in safety management. Unlike recent language 

representation models, BERT is designed to pretrain deep bidirectional representations 

from unlabeled text by jointly conditioning on both left and right contexts in all layers 

[66]. BERT’s execution for tasks consists of two phases: pretraining for language under-

standing and fine-tuning for a specific task such as text classification and text summariza-

tion [67]. A pretrained language model can be defined as a black box containing previous 

knowledge of natural language [68]. The BERT by Devlin et al. (2018) [66] used encoders 

in a transformer as a substructure for pretraining models for NLP tasks. Specifically, the 

BERT-based model is pretrained using two unsupervised tasks: (1) the masked language 

model (LM) predicts some randomly masked tokens in the input to train the bidirectional 

encoder and (2) next sentence prediction (NSP) predicts the following sentence of the in-

put sentence to understand sentence relationships, so the pretrained BERT model can be 

more suitable for other NLP applications [69]. BERT can be fine-tuned using a dense layer 

of neural networks for different classification tasks [68]. The advantages of BERT include 

its ability to address contextual information extraction owing to its bidirectional ability 

and faster training capabilities [67]. With the above characteristics, the BERT model 

demonstrated state-of-the-art performance in many NLP tasks [70]. BERT is known to 

achieve exceptional results in 11 natural language understanding (NLU) tasks [66]. How-

ever, BERT still has specific drawbacks, including the use of BERT-large, made up of 24-

layered transformer encoder blocks, and producing a total of 340 million parameters, 

which may tend to be computationally expensive [67]. 

 

Figure 11. An example of BERT architecture. 
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Figure 12. General NLP model based on DL. 

 

Figure 13. General CV model based on DL. 

4. Deep Learning Applications for Construction Safety Management 

According to Reason’s model [71], on-site safety management is the last layer of man-

agement for preventing accidents and requires considerable emphasis. In this context, we 

focus on construction safety aspects based on a safety management system (SMS). An SMS 

integrates activities and functions to identify accidents and manage risks in the workplace 

[72]. Construction safety management can be divided into preconstruction and construc-

tion phases [73]. In the preconstruction phase, the potential safety accidents are normally 

identified based on the experience of safety officers or project managers and eliminated 

through safety training and safety planning [74]. During construction, hazards are pre-

vented by monitoring workers and the environment at construction sites [75]. Therefore, 

in general, a safety management system approach focuses on three main aspects: behav-

iors, physical conditions, and management issues [76,77]. Figure 5 shows the percentage 

of publications based on these safety factors. The common types of behaviors on construc-

tion sites identified [77,78] are (1) pose and gesture, (2) action, (3) interaction, (4) activity, 

and (5) personal protection equipment (PPE) and safety compliance. We then presented 

factors that influence the physical conditions on construction sites [76], including (1) site 

condition (SC), (2) work environment (WE), and (3) site layout (SL). Finally, management 

issues were discussed [79,80] based on the following subcategories: (1) safety manage-

ment plan, (2) accident investigation and analysis, and (3) hazard identification and risk 

management. The general applications of DL in construction safety are shown in Figure 

14. 
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Figure 14. DL applications in construction safety. 

4.1. Behaviors 

Unsafe worker behavior is a significant cause of workplace accidents [81]. It has been 

proven that 88% accidents are caused by workers’ unsafe behavior [82]. According to Fam 

et al. (2012) [83], unsafe behavior occurs when an employee fails to respect safety rules, 

standards, instructions, procedures, and specified project criteria. In general, unsafe be-

haviors are factors related to workers’ awareness, unsafe actions, and noncompliance at-

titudes that cause dangerous consequences (e.g., injury). Due to the varying levels of ab-

straction and complexity of human behaviors, Edwards et al. (2016) [78] proposed a five-

level classification system for workers’ behaviors, which included pose, gesture, action, 

interaction, and activity. Likewise, Guo et al. (2021) [77] proposed a six-level hierarchical 

framework of safety behavior with the contribution of the safety compliance factor. Ac-

cording to a series of these studies and based on the applications of DL in construction 

safety, the unsafe behaviors causing accidents in construction are categorized as (1) pose 

and gesture, (2) action, (3) interaction, (4) activity, and (5) personal protection equipment 

(PPE) and safety compliance. Table 1 summarizes the DL studies on behaviors in the con-

struction industry. 
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Table 1. Construction safety studies about behaviors. 

Categories 
Type of 

Data 

Numbers of Data 

Training–Validation–

Testing 

Method Accuracy Value Object/Action  
Accident 

Type 

Refer-

ences 

Pose and ges-

ture 

Images 4483–641–1281 CNN Accuracy: 0.93 Excavator’s pose (Struck-by) [84] 

Images  N/A–N/A–3241 CNN 

Accuracy: 0.94  

Precision: 0.96  

Recall: 0.98 

Worker’s standing, 

walking, squatting, 

sitting, or bending. 

(Struck-by) [85] 

Images  2116–235–1008 RNN Accuracy: 0.96 Ergonomic postures WMSDs [86] 

Images  10,000–N/A–N/A CNN Accuracy: 0.91 
Workers’ and excava-

tors’ status 
Struck-by [87] 

Images N/A CNN Accuracy: 0.83 

Workers’ standing 

still, bending, ladder-

climbing/step-

ping/standing  

Fall [88] 

Videos N/A 
CNN + 

RNN 
F1-score: 0.83 Ergonomic postures WMSDs [89] 

Signal 
2196 (training and test-

ing) 
RNN 

Accuracy: 0.99  

F1-score: 0.99 
Ergonomic postures WMSDs [90] 

Signal 32,396 (60%–N/A–40%) RNN Accuracy: 0.95 

Workers’ standing, 

bending, squatting, 

walking, twisting, 

kneeling, and using 

stairs 

WMSDs [91] 

Images N/A CNN Accuracy: 0.96 Ergonomic postures WMSDs [92] 

Action 

Videos 160–N/A–40  
CNN + 

RNN 
Accuracy: 0.92 

Ladder-climbing ac-

tions 
Fall [15] 

Images 1461–N/A–450  CNN 
Precision: 0.75  

Recall: 0.9 

Worker traversing 

supports 
Fall [93] 

Interaction 

Videos 10 (80%–10%–10%) RNN N/A  
Worker–equipment 

interactions 
Struck-by [94] 

Videos 5 (70%–10%–20%) RNN Accuracy: 0.9 

Excavators and dump 

truck interactions dur-

ing earthmoving tasks 

Struck-by [95] 

Images 
2169 (training and valida-

tion)–241  
CNN Precision: 0.87 

Worker–equipment 

interactions 
Struck-by [96] 

Images 3652–N/A–913 CNN 
Precision: 0.66  

Recall: 0.65 

Worker–tool interac-

tions 

General acci-

dent 
[97] 

Images 4114–N/A–398 CNN Precision: 0.91 
Worker–equipment 

interactions 
Struck-by [98] 

Images  6000–N/A–N/A CNN 
Precision: 0.96 

Recall: 0.93 

Worker–excavator in-

teractions 
(Struck-by) [99] 

Images  523,966–N/A–50,000 CNN 

Accuracy: 0.96 

Precision: 0.98  

Recall: 0.98 

F1-score: 0.98 

Worker–equipment 

interactions 
Struck-by [2] 

Images N/A CNN Recall: 0.5 
Components’ or 

crews’ relationships 

General acci-

dent 
[100] 

Videos 8000–N/A–2000  RNN Accuracy: 0.95 
Worker–equipment 

interactions 
Struck-by [37] 

Videos 210–70–84 
CNN + 

RNN 
Accuracy: 0.93 

Hand signals for in-

structing tower crane 

operations 

(Struck-by) [101] 

Images N/A CNN  
Precision: 1  

Recall: 0.82 

Worker–equipment 

interactions 
Struck-by [102] 
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Activity 

Images 96–N/A–N/A CNN 

Precision: 0.52  

Recall: 0.45  

F1-score: 0.48 

Mixed activities of 

workers and equip-

ment 

General acci-

dent 
[35] 

Images 703–235–N/A CNN Accuracy: 0.86 Scaffolding activity Fall [103] 

Videos 7–N/A–3  
CNN + 

RNN 
mAP: 0.73 Earthmoving activity (Struck-by) [36] 

Images N/A CNN Accuracy: 0.84 Concrete pouring 
(General acci-

dent) 
[104] 

Safety compli-

ance 

Images 944–240–288  CNN mAP: 0.72 PPE (hard hat, vest) 
Fall and 

struck-by 
[105] 

Images 81,000–N/A–19,000  CNN 
Precision: 0.96  

Recall: 0.95 
PPE (hard hat) 

Fall and 

struck-by 
[106] 

Images 6029–N/A–6000  CNN 
Precision: 0.94  

Recall: 0.83 

PPE (hard hat, glasses, 

dust mask, safety belt) 

Fall and 

struck-by 
[107] 

Images 1587–N/A–1587 CNN mAP: 0.84 PPE (hard hat) 
(General acci-

dent) 
[108] 

Images 2583–N/A–726  CNN Accuracy: 0.9 PPE (hard hat, vest) 
Fall and 

struck-by 
[109] 

Images N/A CNN 
Precision: 0.9  

Recall: 0.93 

PPE (hard hat, har-

ness, anchorage) 
Fall [110] 

Images 693–N/A–130 CNN 
Precision: 0.99  

Recall: 0.95 
PPE (harness) Fall [111] 

Images 8000–N/A–N/A CNN 
Precision: 0.83  

Recall: 0.83 

Noncertified work of 

workers 

(General acci-

dent) 
[112] 

Images  1366–N/A–N/A CNN mAP: 0.55 PPE (hard hat) Struck-by [113] 

Images 7000–N/A–200 CNN 
Precision: 0.91  

Recall: 0.9 
PPE (hard hat) 

(General acci-

dent) 
[114] 

Images 64,115–2693–N/A CNN mAP: 0.86 PPE (hard hat) 
Fall and 

struck-by 
[115] 

Images 1587–N/A−1587 CNN mAP: 0.87 PPE (hard hat) 
(General acci-

dent) 
[116] 

Images 100,000–N/A–N/A CNN mAP: 0.89 PPE (hard hat, vest) Struck-by [117] 

Images 9800–N/A–9000 CNN 

Accuracy: 0.94  

Precision: 0.96  

Recall: 0.96 

PPE (hard hat) Struck-by [118] 

Images 13,000–N/A–1300  CNN mAP: 0.93 PPE (hard hat) 
Fall and 

struck-by 
[119] 

Images 20,554–N/A–1501 CNN mAP: 0.94 PPE (hard hat) 
(General acci-

dent) 
[120] 

Images 5000–N/A–1000  CNN mAP: 0.96 PPE (hard hat) 
(General acci-

dent) 
[121] 

Images N/A CNN mAP: 0.58 PPE (hard hat) Fall [122] 

Note: The mAP represents mean average precision, and WMSDs represent work-related musculoskeletal disorders. The 

accident types in parentheses were judged by the authors’ assessment and not specified in the paper. 

4.1.1. Pose and Gesture 

Posture-related safety risks have been a significant concern in construction projects 

that need to be addressed [90]. Pose and gesture are defined as the spatial arrangement of 

a human body at a single temporal instance, or a temporal pose series or action primitives 

on a subaction scale [77]. The worker’s safety risk level can be assessed based on the 

worker’s current posture by calculating the similarity of the workers’ posture to the iden-

tified hazardous postures [88]. Several methods can be employed to represent human pos-

ture: images, text descriptions, or skeleton data [88]. The goal of human pose estimation 

is to specify the position of human joints from images or skeleton data provided using 



Sustainability 2021, 13, 13579 17 of 38 
 

motion-capturing hardware [123]. Text description is a user-friendly way to facilitate hu-

man understanding, but it removes the objective and quantitative features of the postures 

[88]. Based on this, researchers have utilized DL methods for detecting unsafe postures 

using different types of data (e.g., videos [92], images [86], and signals [91]). 

DL has been widely and successfully applied for detecting unsafe workers’ postures 

with different typical statuses, including standing still, climbing down, standing on the 

ladder, and bending. For example, based on posture-location fusion evaluation, Chen et 

al. (2019) [88] proposed deep CNN architectures to extract human skeletons from sensor 

images for evaluating the ladder-climbing posture of construction workers with an accu-

racy of 83%. Likewise, Son et al. (2019) [85] illustrated the ability to accurately and rapidly 

detect workers in construction sites under different poses in image by using a CNN-based 

model with an accuracy of 94.3%. In addition, with the development of RNN-based DL, 

Kim and Cho (2020) [91] obtained the best-performing accuracy of 82.39% from the model 

using the LSTM network when compared with other conventional ML algorithms in the 

motion recognition of workers, including standing, bending, squatting, etc. Among these 

gestures, recent research has focused on ergonomic posture, which poses the highest risk 

for musculoskeletal disorders (MSDs). For example, Yang et al. (2020) [90] investigated 

the feasibility of identifying varying physical loading conditions by analyzing the lower 

body movements of workers while moving concrete bricks. With a high accuracy of 98.6%, 

the findings contribute to the literature on classifying ergonomically at-risk workers and 

preventing work-related musculoskeletal disorders (WMSDs) in physically demanding 

occupations, thus enhancing the health and safety of the construction workplace. Simi-

larly, Zhao and Obonyo (2020) [89] and Yu et al. (2019) [92] proposed a DL-based ergo-

nomic assessment tool to provide automatic and detailed ergonomic assessments of work-

ers based on images. 

According to Luo et al. (2020) [84], similar to human poses, the posture of construc-

tion machines can be represented by key points. Thus, in addition to the worker’s pos-

tures, DL was also applied to detect the poses of construction machines. For example, Luo 

et al. (2020) [84] developed a CNN-based model to automatically estimate the poses of 

excavators in images captured at construction sites. The experimental results demon-

strated the promising performance of the proposed methodology framework for automat-

ically evaluating different full-body poses of construction equipment with high accuracy 

and fast speed. Likewise, Luo et al. (2020) [87] developed a real-time smart surveillance 

system based on the YOLOv2 detection approach that can detect people and the status of 

excavators in hazardous areas. The results proved that the developed systems could pro-

vide immediate feedback concerning unsafe behavior and thus enable appropriate actions 

to be taken to prevent reoccurrence. 

4.1.2. Action 

Falls are highly frequent accidents in the construction industry, and occupational in-

juries and fatalities caused by falls from height pose a severe public problem worldwide 

[124]. According to prevention strategies for falling accidents in construction proposed by 

Huang and Hinze (2003) [3] and Chi et al. (2005) [125], fatal occupational falls on-site were 

closely associated with serious on-site risk factors, including poor work practices and bod-

ily actions. Thus, it is essential to achieve and improve unsafe action recognition to ensure 

the safety of construction. In the study by Guo et al. (2021) [77], action is defined as a series 

of gestures that form a contextual event, or more specifically, action in construction is a 

single activity executed by a subject, such as ladder-climbing, walking, and running. In 

particular, the actions’ pattern and pace vary from individual to individual as well as from 

time to time [126]. Thus, it can be determined that different action categories can have 

similar postures, and one action category can have a variety of postures [127]. According 

to Gong et al. (2011) [127], action is classified as either action at a single moment as de-

picted in an image or action in a time period as shown in a sequence of images. Based on 

this, studies have used DL to recognize actions on construction sites from images/videos. 
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Ding et al. (2018) [15] developed a new hybrid DL model that integrates a CNN and LSTM 

to automatically recognize workers’ unsafe actions from videos. By extracting the visual 

features from videos using a CNN model and sequencing the learning features using 

LSTM models, the results revealed that the accuracy of the model exceeded the current 

state-of-the-art descriptor-based methods for the detection of safe/unsafe actions con-

ducted by workers on-site. Likewise, an automatic computer-vision approach that utilizes 

an R-CNN-based model was proposed by Fang et al. (2019) [93] to detect individuals trav-

ersing structural supports from photographs during construction. By automatically iden-

tifying the presence of people and recognizing the relationship between people and con-

crete/steel supports, the results demonstrated that the developed model could accurately 

detect people traversing concrete/steel supports during construction; thus, the proposed 

approach could be used by site managers to automatically identify unsafe behavior and 

provide feedback to individual workers about their likelihood of falling from heights. 

4.1.3. Interaction 

In several cases, whether an action is safe depends on the status of other objects [77]. 

As a proof of this concept, Zhang et al. (2020) [99] proved that constant interaction and 

the state of random movement increase the risks of worker injury [99]. One of the acci-

dents caused by inappropriate interactions between entities on construction sites is struck-

by accidents, which led to 804 fatalities from 2011 to 2015 [37]. Therefore, to recognize 

unsafe behavior, current researchers not only recognize involved objects (e.g., workers, 

crane, and load) in terms of their identity, location, and movement direction, but more 

importantly, attempt to understand the interactions between these objects. Interaction is 

a pairwise or reciprocal action committed by two or more entities. In the concept of con-

struction safety, entities can be defined as human (workers, managers, etc.) or objects (ex-

cavators, dump trucks, etc.). Each entity has a single action that reflects its state compared 

to the other entity. For example, earthmoving activities involve interactions between 

dump trucks and excavators. 

Recognizing ongoing activities and related working groups is crucial as it allows the 

comprehension of jobsite context, which in turn enables the interpretation of worker in-

tentions, their movement prediction, and the detection of inappropriate interactions that 

are counterproductive and may cause harmful consequences [37]. To consider the appli-

cations of DL in the interaction assessment of on-site entities, there are three different in-

teraction types: human-to-human interaction, human-to-object interaction, and object-to-

object interaction. Human-to-human interaction is an action committed by two people or 

groups of people (workers and managers), human-to-object interaction is an action com-

mitted directly by people to an object or multiple objects, and object-to-object interaction 

is an action committed by two objects or groups of objects. The interaction between con-

struction workers and equipment is a crucial reason for on-site safety hazards [96]. There-

fore, the risks posed by this interaction have received significant attention in current DL 

studies. For example, various studies have identified and evaluated the spatial relation-

ship between construction workers and equipment to prevent struck-by hazards from im-

ages based on DL algorithms such as faster R-CNN [97,99,102] and YOLO [2]. Moreover, 

by extracting information from images, studies proposed CNN-based models for not only 

automatically predicting potential safety hazards by detecting construction workers and 

equipment and identifying hazardous zones [96], but also tracking and analyzing spatial-

temporal interactions on construction sites for real-time detection [98]. Likewise, to 

demonstrate that the sequence-to-sequence method could better predict trajectories and 

avoid error accumulation compared to conventional predictions, Cai et al. (2020) [94] and 

Cai et al. (2019) [37] proposed an LSTM method using construction videos that integrates 

both personal movement and workplace contextual information (e.g., movements of 

neighboring entities, workgroup information, and potential destination information). 

Studies have also focused on monitoring the equipment’s interactions and crew relation-

ships using DL methods. For example, based on data of historical motion from camera 
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videos and activity attributes, Luo et al. (2021) [95] proposed an RNN framework, called 

GRU, for predicting future construction excavator and truck poses and monitoring when 

either one-to-one or group interactions of construction machines exist during earthmov-

ing tasks. Similarly, Xiong et al. (2019) [100] developed an automated hazard identification 

system (AHIS) based on the CNN method to detect visual relationships between objects, 

including site components or crews. The results demonstrated that the proposed visual 

relationship detection method had the potential to enrich the semantic representation of 

operation facts, which could lead to better automation in construction hazard detection. 

4.1.4. Activity 

The information on basic actions may not be sufficient for safety analysis and sched-

ule assessment; therefore, in recent years, researchers have attempted to recognize actions 

with a higher level of abstraction and complexity [77]. Guo et al. (2021) [77] showed that 

various on-site human activities are characterized by a complex spatial and temporal com-

position of objects and actions. According to the definition proposed by Turaga et al. 

(2008) [128], activity is a complex series of actions performed by several people who could 

interact with each other in a constrained manner over longer durations compared to ac-

tion. Therefore, activity in construction safety can be defined as a group of actions and/or 

interactions that are executed to describe high-level work such as roofing, formwork, and 

scaffolding activities. Each action and interaction can be considered as a subactivity event 

in such scenarios [78]. In the context of construction safety, DL has been applied in activity 

recognition with different events such as scaffolding activity [103], earthmoving activity 

(27), and concrete pouring activity [104]. 

Scaffolding-related falls are an important potential threat at the job site, causing a 

significant number of accidents annually [129]. According to Khan et al. (2021) [103], the 

fatality rate due to falls from scaffolds, ladders, working platforms, and roof edges, was 

60%. Therefore, the detection of unsafe activities during scaffolding activities has received 

attention from researchers. For example, in a study conducted by Khan et al. (2021) [103], 

a deep neural network, mask R-CNN, was proposed for monitoring mobile scaffold safety 

and detecting workers’ unsafe behaviors from image dataset, including 703 training and 

235 validation data with an overall accuracy of 0.86. DL was also applied to monitor other 

construction activities. By using the temporal and spatial CNN for recognizing basic ac-

tions during concrete pouring tasks, a hierarchical statistical method proposed by Luo et 

al. (2019) [104] proved the ability to recognize workers’ activities with an average accuracy 

of 0.84. Similarly, Lin et al. (2021) [36] analyzed consecutive image sequences to automat-

ically identify irregular operations during earthmoving work and its visualization. 

Therein, faster R-CNN was adapted with transfer learning to detect workers and pieces 

of construction equipment on the jobsite, and a hybrid model integrating CNN and LSTM 

was employed for action recognition. The results illustrated that the proposed framework 

could aid field managers in efficiently identifying potential abnormal activities, providing 

opportunities for further investigations and appropriate adjustments. 

4.1.5. PPE and Safety Compliance 

Safety rules are intended to outline safety guidelines for people and activities occur-

ring in the workplace to ensure construction safety. Safety compliance involves following 

these rules in construction, adhering to safety procedures, and carrying out work safely. 

One of the regulations on construction sites is the use of protective equipment. Personal 

protective equipment, also termed as “PPE”, is equipment designed to protect people 

against personal injury while performing tasks at the workplace. PPE includes helmets for 

avoiding head injuries, hand gloves for hand protection, safety glasses for eye protection, 

vests, boots, harnesses, and respirators [130]. A survey conducted by the US Bureau of 

Labor Statistics (BLS) suggested that 84% of workers who had suffered head injuries were 

not wearing head protection equipment [131]. Fang et al. (2018) showed that 75.1% of de-

cedents from fall from height did not use personal fall arrest systems (PFAS) [110]. The 
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“fatal four” (i.e., fall, struck-by object, electrocution, and caught-in/between) accounted 

for nearly 60% of all fatalities in construction in 2017, and the majority of these fatalities 

could have been prevented by wearing appropriate PPE [109]. However, there are often 

cases in which construction workers ignore regulations [113], and not all construction 

workers are aware of the importance of wearing hard hats [106]. In practice, many work-

ers tend to take off their hard hats because of religious values [132] or discomfort due to 

weight and to cool off at high temperatures [106]. In addition, some frequent accidents are 

closely related to workers who are not certified to perform specific tasks. To support this 

observation, Fang et al. (2018) [112] showed that fewer accidents occur when workers are 

qualified and their qualifications are appropriately certified. 

Previous studies have utilized DL methods to detect behaviors that do not follow 

construction safety rules, thereby preventing serious injuries. As discussed above, one of 

the most significant actions in noncompliance with construction safety regulations is the 

failure to wear appropriate PPE. In this regard, detecting workers with non-PPE has re-

ceived considerable attention in recent studies. For example, by extracting information 

from images, various researchers have proposed PPE detection algorithms to identify the 

proper use of hard hats on human objects using DL methods such as faster R-CNN 

[106,111,114], YOLO [105,107,115,117,119–122], and CNN-based algorithms 

[109,110,113,118]. In addition, according to Wu et al. (2019) [108], the colors of hard hats 

can signify different roles on construction sites, providing an accessible way to improve 

construction safety management. Thus, in addition to detecting hard hats, researchers 

identified their corresponding colors that can achieve a mean average precision (mAP) of 

at least 0.84 [108,116]. Moreover, accidents are less likely when workers are qualified and 

their qualifications are properly certified [133]. Hence, DL was also applied to check 

whether a site worker is working within the constraints of their certification [112]. A faster 

R-CNN model was used to detect common objects based on the latest face detection and 

face recognition methods. The experimental results demonstrated the reliability and ac-

curacy of the DL-based method to detect workers carrying out work for which they are 

not certified to facilitate safety inspections and monitoring. 

4.2. Physical Conditions 

According to the accident causation model [82], unsafe conditions and unsafe actions 

are considered as two direct causes of accidents. Therefore, safety performance can be 

improved if one can moderate people’s unsafe behavior and improve their work condi-

tions [134]. According to Li et al. (2018) [25], a hazardous working environment is a work-

place with unusual hazards that violate the prevailing safety standards, thus being con-

sidered unsuitable for work [25]. In the context of construction safety, unsafe conditions 

can include poor lighting, temporary structure instability, unsecured equipment, etc., 

which can cause unfortunate accidents at construction sites. According to the extant liter-

ature [76], the common types of physical conditions identified include: (1) site condition 

(SC), (2) work environment (WE), and (3) site layout (SL). These conditions were also re-

search directions of previous DL studies, and a summary of these studies is presented in 

Table 2. 
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Table 2. Construction safety studies about physical conditions. 

Categories 
Type of 

Data 

Numbers of Data 

Training–Validation–Test-

ing 

Method Accuracy Value Object/Action 
Accident 

Type 

Refer-

ences 

Work environ-

ment (WE) 

Images 4000–N/A–667 CNN Accuracy: 0.97 Guardrail Fall [14] 

Images N/A CNN Accuracy: 0.9 Crane cracks 
(General ac-

cident) 
[135] 

Signal N/A CNN N/A 
Diaphragm wall de-

formation 

(General ac-

cident) 
[136] 

Signal 55–N/A–15  RNN N/A 

Brake pedal aperture 

for automatic wheel 

loader 

(General ac-

cident) 
[137] 

Images 10,000–N/A–N/A CNN 
Accuracy: 0.95 

Precision: 0.76 

Construction ma-

chines at nighttime 
Struck-by [138] 

Site layout 

(SL) 

Images 240 (90%–N/A–10%) CNN mAP: 0.99 
Dense multiple con-

struction vehicles 

(General ac-

cident) 
[139] 

Images N/A GNN Accuracy: 0.95 

Safety-rule violations 

of complex construc-

tion scenes  

(General ac-

cident) 
[65] 

Site condition 

(SC) 
Signal 600 (80%–N/A–20%) RNN Accuracy: 0.99 

Prediction of water in-

flow into drill and 

blast tunnels  

(General ac-

cident) 
[140] 

Note: The mAP represents mean average precision. The accident types in parentheses were judged by the authors’ assess-

ment and not specified in the paper. 

4.2.1. Work Environment (WE) 

The nature of the construction working environment poses both health and safety 

risks to workers. According to a report by the Occupational Safety and Health Admin-

istration (OSHA), approximately 40% of all construction fatalities are caused by falls from 

heights, followed by struck-by objects, electrocution, and caught-in/between [141]. To 

support this, Kolar et al. (2018) [14] showed that “fall protection, construction” was at the 

top of the list of the most frequently violated OSHA standards. In addition, the results 

from the study of Arditi et al. (2007) [142] indicated that the safety risks at nighttime could 

be five times higher than those in the day time due to several significant factors, including 

the lower illumination conditions and the fatigue of workers and machine operators. 

Therefore, managing, monitoring, and improving the work environment, including 

guarding systems, structural defects, functional defects, lighting, and noise, etc., play an 

important role in reducing accidents at construction sites. Passive falling prevention ap-

proaches, such as guardrails, warning lines, and fall arrest systems, often act as on-site 

measures for reducing the risk of falling [14]. 

With the development of DL, researchers have developed models for monitoring 

construction safety under different work environments. For example, Kolar et al. (2018) 

[14] developed a safety guardrail detection model based on a CNN to check whether the 

guardrail system is set up appropriately. The results showed that the proposed model 

could obtain a high accuracy of 0.97, so their model has the potential to improve construc-

tion site situations. Similarly, studies have also demonstrated that the CNN-based model 

can reduce the number of injuries and fatalities by detecting structural defects such as 

crane cracks [135] and concrete diaphragm wall (CDW) deflections [136]. In addition, by 

considering the poor lighting conditions that can affect the visibility of monitoring con-

struction safety, Xiao et al. (2021) [138] proposed a vision-based method for automatically 

tracking construction machines at night by integrating DL illumination enhancement. The 

results showed that with a multiple-object tracking accuracy (MOTA) of 0.95 and a multi-

ple-object tracking precision (MTOP) of 0.76, the proposed methodology could also be 
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used to help accomplish automated monitoring tasks during construction at nighttime to 

improve safety performance. 

4.2.2. Site Layout (SL) 

Construction is characterized by its dynamics, such as multiple construction workers, 

diverse types of equipment and materials, and continuously changing working environ-

ments [19]. Quickly changing and complex workplace conditions were identified as the 

direct cause of more than 30% of construction accidents [143]. Therefore, proper site layout 

management, including arrangement, storage, and positioning of agents (e.g., construc-

tion vehicles, heavy machines, materials, etc.), is an urgent requirement to avoid hazard-

ous issues such as site congestion and failure to properly locate utilities. However, activi-

ties involving multiple pieces of equipment and workers taking place often in a unique, 

complex, and dynamic environment always create challenges for monitoring proper site 

layout. Thus, the development of DL has proven the ability to assist in effectively manag-

ing safe layout in construction sites. For example, Wang et al. (2019) [65] used a DL-based 

approach for automatic safety assessment based on object relationships learned from la-

beled images of complex construction scenes with safety rule violations. Similarly, Guo et 

al. (2020) [139] proposed a CNN-based end-to-end approach for precisely detecting dense 

multiple construction vehicles using images from unmanned aerial vehicle (UAV). The 

results illustrated that the proposed method was of great significance to ensure the safety 

of construction sites by accurately identifying many dense vehicles with an AP of 0.99. 

4.2.3. Site Condition (SC) 

Site conditions, including weather, temperature, and geographical conditions, con-

siderably affect safety during the construction process. Awolusi et al. (2018) [144] showed 

that both health and safety risks of workers are posed by the construction work environ-

ment. This is partly because most of the activities are performed outdoors, significantly 

exposing workers to weather elements [144]. In addition, Mahmoodzadeh et al. (2021) 

[140] proved that other natural environmental conditions, such as groundwater inflows 

during tunnel construction, were among the most common and challenging issues faced 

by constructors and designers in karst regions. The sudden and unexpected significant 

water inflow at the heading often damages construction machinery and leads to worker 

fatalities [140]. For example, a large-scale water inflow accident occurred in the Yesanguan 

tunnel of the Yichang–Wanzhou railway in China on 5 August, 2007 [145]. Therefore, ap-

plying DL to the prediction of the influence of natural conditions has made important 

contributions to safety management. For example, by proposing an LSTM-based predic-

tion model, Mahmoodzadeh et al. (2021) [140] proved that their proposed model could 

predict water inflow into tunnels with higher accuracy than other ML techniques; thus, 

this model could ensure safety and help with scheduling during the underground con-

struction process. 

4.3. Management Issues 

Safety management, a method of applying on-site safety policies, procedures, and 

practices convolving a construction project, is one of the most frequently used techniques 

to regulate construction activities and control risks [146]. Various studies related to con-

struction safety confirmed that most accidents at construction sites could have been re-

duced and prevented by establishing a proper and consistent safety management process 

or program of planning, education/training, and inspection [147]. In general, common 

safety management activities in the construction industry include monitoring, controlling 

safety rules, planning, training, and managing the practice process to ensure safety at the 

construction site. According to the extant literature [79,80] and based on the context of 

considering DL applications on construction safety, the categories of safety management 

identified include (1) safety management plan, (2) accident investigation and analysis, and 
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(3) hazard identification and risk management. Table 3 lists previous studies regarding 

applications of DL in handling safety management issues in the construction industry. 

Table 3. Construction safety studies about management issues. 

Categories 
Type of 

Data 

Numbers of Data 

Training–Validation–Test-

ing 

Method Accuracy Value Object/Action 
Accident 

Type 

Refer-

ences 

Safety man-

agement plan 

Images 10,000–N/A–1500 CNN Accuracy: 0.95 
Workers and excava-

tors 

(General ac-

cident) 
[148] 

Images 19,404–4000–18,264  CNN mAP: 0.55 

Moving object detec-

tion (workers and 

equipment) 

Struck-by [149] 

Images 2324–26–231  CNN 
Recall: 0.86  

mAP: 0.83 

Construction equip-

ment 
Struck-by [150] 

Images 34,510 (66%–17%–17%) 
CNN + 

RNN 

Precision: 0.99 Re-

call: 1  

F1-score: 0.99 

Construction activity 

scenes 

(General ac-

cident) 
[151] 

Videos 4–N/A–8 
CNN + 

RNN 
Accuracy: 0.79 

Recognizing people’s 

identity 

(General ac-

cident) 
[152] 

Images 2094–523–654  CNN mAP: 0.91 
Construction equip-

ment 
(Struck-by) [153] 

Accident in-

vestigation 

and analysis 

Text 95–N/A–50  RNN F1-score: 0.84 
Information extraction 

from accident reports 

General ac-

cident 
[38] 

Text 2624–N/A–657  GNN 

Accuracy: 0.87  

Precision: 0.51  

Recall: 0.54 

Text classification of 

near-misses safety re-

ports 

General ac-

cident 
[39] 

Text 3000  CNN 

Precision: 0.8  

Recall: 0.68  

F1-score: 0.71 

Hazard record analy-

sis 

General ac-

cident 
[154] 

Text 90,000 (90%–N/A–10%) RNN F1-score: 0.87 
Automatically learn-

ing injury precursors 

General ac-

cident 
[16] 

Text 2000  CNN 
Precision: 0.65 

Recall: 0.61 

Classifying and visu-

alizing accident narra-

tives 

General ac-

cident 
[18] 

Images  2000–N/A–N/A CNN 
Precision: 0.89  

Recall: 0.93 

A gate scenario and 

an earthmoving sce-

nario 

General ac-

cident 
[155] 

Hazard identi-

fication and 

risk manage-

ment 

Images 40,000 CNN N/A Identifying hazards 
General ac-

cident 
[156] 

Images 6000–N/A–1000  CNN Accuracy: 0.93 
Worker localization 

and hazard detection 

General ac-

cident 
[157] 

Note: The mAP represents mean average precision. The accident types in parentheses were judged by the authors’ assess-

ment and not specified in the paper. 

4.3.1. Safety Management Plan 

With the presence of cost and time pressures and the frequent need to perform un-

planned work (e.g., rework), people tend to take risks to make their work more efficient 

[158–160]. The upshot of this case is that people tend to commit unsafe actions, especially 

when they know they are not being supervised [152]. Therefore, safety management plans 

regarding publishing safety policies, objectives, and requirements; proposing plans; mak-

ing decisions; and monitoring safety play an important role. The purpose of health and 

safety monitoring is to ensure effective measurement and management of construction 

workers’ safety practices against existing safety plans and standards [19]. Visual infor-

mation related to construction activity scenes is becoming increasingly important for con-
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struction management [161,162]. The scene of construction activity in images can be de-

fined as an integral overview of the activity in pictures that synchronously contain objects 

(e.g., workers, equipment, and materials), their interrelationships (e.g., cooperation be-

tween objects or coexistence of objects), and other vital scenario elements (e.g., earthmov-

ing and concrete pouring) [151]. Thus, with the development of DL, automatically mani-

fested construction activity scenes [151] provide managers with information for making 

decisions and safety management plans [148]. 

Recent research has focused on providing site managers the status of construction 

sites by detecting construction objects to assist in planning safety management at con-

struction sites. For example, various studies proposed DL models such as faster R-CNN 

[148,149], YOLO [150], LSTM [151], and the CNN-based method [153] to provide supervi-

sors with more insight into the real-time status of large-scale construction jobsites so they 

could assist supervisors in inspecting construction safety and processes [148,150,153]. In 

addition, as discussed above, workers sometimes have the proclivity to commit unsafe 

actions, especially when they know they are not being supervised [152], so it is important 

to provide direct feedback to people committing unsafe actions so that they can modify 

their future behavior. In a notable study by Wei et al. (2019) [152], a novel DL approach 

was developed to automatically determine a person’s identity, which can be utilized by 

site managers to automatically recognize individuals engaging in unsafe behavior; there-

fore, it can be used to provide immediate feedback about their actions and possible con-

sequences. 

4.3.2. Accident Investigation and Analysis 

Accidents and incidents should be analyzed for better implementation and continu-

ous improvement of safety management systems [79]. Collecting and organizing accident 

reports, regulations, and laws, and then presenting them publicly, are considered good 

practices for improving the safety management of construction sites [38]. Safety reports 

are an extremely valuable information source that can be used by site managers to learn 

about the conditions and events contributing to the occurrence of accidents [158,163]. 

Therefore, it enhances managers’ safety awareness and urges them to prevent accidents 

or related construction work issues [38]. Nowadays, using DL, accident documents are 

processed to provide useful information for safety management under two main tasks: 

information extraction and text classification. Information extraction is the task of finding 

structured information from unstructured or semistructured text [164], which is essential 

for handling continuously growing data published on the online, especially in the Big 

Data era [165]. For example, Feng and Chen (2021) [38] adopted the BiLSTM-CRF model 

to automatically extract information from accident reports, so this model could help to 

raise workers’ security awareness and prevent hazards and accidents. Similarly, Baker et 

al. (2020) [16] compared two state-of-the-art DL architectures, CNN and hierarchical at-

tention networks (HAN) based on GRU, to automatically learn injury precursors from raw 

construction accident reports. The results illustrated that HAN outperformed CNN al-

most everywhere with a mean performance of 0.87; thus, the HAN model can extract use-

ful information, which not only allows the exploration of empirical relationships for post-

analysis and project statistics, but can also be used proactively during typical work plan-

ning, job risk analyses, prejob meetings, and audits. Another application of DL is text clas-

sification, which is a fundamental task in the natural language processing area where one 

needs to assign one or multiple predefined labels to a text sequence [166]. For example, 

previous studies proposed DL-based models to classify and analyze the narrative sur-

rounding accidents and to better understand their causal nature from accident reports 

[18,39,154]. In addition, Xiao et al. (2021) [155] proposed a DL-based method for the col-

lection and automatic generation of video highlights from construction videos. The pro-

posed CNN-based approach was validated through two case studies: a gate scenario and 

an earthmoving scenario. With a score of 0.89 for precision and 0.93 for recall, the pro-

posed model proved that it could offer potential benefits to construction management in 
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terms of significant reduction in video storage space and efficient indexing of construction 

video footage, which was beneficial for project management tasks such as safety control. 

4.3.3. Hazard Identification and Risk Management 

Dynamic and complex construction environments have caused significant risks dur-

ing construction. Unfortunately, studies across the world have reported that a substantial 

portion (approximately 50%) of hazards remain unrecognized [167–169]. These unrecog-

nized hazards expose construction workers to unanticipated risks and potential injuries 

[168]. Therefore, identifying hazards and managing risks play an important role in con-

struction safety management. DL has been used to identify risks with notable achieve-

ments. For example, Fang et al. (2020) [156] integrated computer vision algorithms with 

ontology models to develop a knowledge graph that can automatically and accurately 

recognize hazards while complying with safety regulations, even when they are subjected 

to change. Therein, mask R-CNN was adopted in their research for entity detection. The 

results showed that the proposed approach could successfully detect falls from height 

(FFH) hazards in varying contexts from images. Similarly, a mask RCNN-based frame-

work was developed by Jeelani et al. (2021) [157] for an automated system that detects 

hazardous conditions and objects in real-time with over 93% accuracy; therefore, this 

model can assist workers and safety managers in identifying risks in complex and dy-

namic construction environments. 

5. Overall Research Trends in Safety Management: Summary of Contributions and 

Limitations 

In this study, three safety management factors, including behaviors, physical condi-

tions, and management issues, were identified in the context of applying DL models to 

construction safety. This section provides an overview of the research trends from tech-

nical and managerial aspects (e.g., data types, algorithms, and safety issues) (Figures 15 

and 16). Table 4 shows the accuracy of the studies using DL for construction safety. Over-

all, a CNN is the most commonly used method applied in these studies from the major 

data of the images, and unsafe behaviors is the main research direction with high perfor-

mance, gaining a variety of contributions to safety management. 

 

Figure 15. The link between types of data, methods, and safety factors. 
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Figure 16. The link between types of data and safety factors. 

Table 4. Accuracy of DL studies. 

Safety Factors Methods 
Accuracy 

Value 
(Min–Max) Value Mean Value References 

Behaviors 

CNN 

Accuracy 0.83–0.96 0.91 [2,15,84,85,87,88,92,101,103,104,109,118,148] 

Precision 0.52–0.99 0.88 [2,35,85,93,96–99,102,106,107,110–112,114,118] 

Recall 0.45–0.98 0.84 
[2,35,85,93,97,99,100,102,106,107,110–

112,114,118] 

F1-score 0.48–0.98 0.76 [2,35,89] 

mAP 0.55–0.96 0.81 [36,105,108,113,115–117,119–122] 

RNN 

Accuracy 0.90–0.99 0.95 [15,37,86,90,91,95] 

F1-score 0.83–0.99 0.91 [89,90] 

mAP  0.73 [36] 

Physical condi-

tions 

CNN 

Accuracy 0.9–0.97 0.94 [14,135,138] 

Precision  0.76 [138] 

mAP  0.99 [139] 

RNN Accuracy  0.99 [140] 

GNN Accuracy  0.95 [65] 

Management is-

sues 

CNN 

Accuracy 0.79–0.95 0.89 [148,152,157] 

Precision 0.65–0.99 0.83 [18,151,154,155] 

Recall 0.61–1.0 0.82 [18,150,151,154,155] 

F1-score 0.71–0.99 0.85 [151,154] 

mAP 0.55–0.91 0.76 [149,150,153] 

RNN 

Accuracy  0.79 [152] 

Precision  0.99 [151] 

Recall  1 [151] 

F1-score 0.84–0.99 0.90 [16,38,151] 

GNN 

Accuracy  0.87 [39] 

Precision  0.51 [39] 

Recall  0.54 [39] 

mAP: mean average precision. 
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5.1. Recognition of Unsafe Behavior 

The advancement of DL has opened up significant opportunities for examining un-

safe behaviors in construction. Among the five categories of behaviors that DL has focused 

on, construction workers (21 of 44 papers) and PPE (17 of 44 papers) are the main objects 

of interest. For objects, different algorithms (e.g., object detection algorithms [35], object 

tracking [36], and activity recognition [37]) have demonstrated good performance in de-

tecting and tracking workers. For example, by using DL-based object detection architec-

tures, previous studies detected workers and PPE successfully with an accuracy exceeding 

0.90 [85,87,107,111,118]. In addition, recognizing equipment operations (e.g., dump trucks 

and excavators) has also attracted much attention from researchers for mainly examining 

the interaction between entities. For example, researchers proposed DL-based models to 

monitor and analyze the interaction between workers and equipment with an accuracy 

range of 0.65 to 1.00 [2,97–99,102]. 

As various DL methods that use a CNN, RNN, and GNN have been applied, different 

formats of data (e.g., videos, images, and signals) have been used to detect those repre-

senting unsafe behaviors in the data. In particular, detection and tracking of unsafe be-

haviors were performed mainly using videos and images (85%). The reason for this phe-

nomenon is partly because collecting videos and images at construction sites is easier and 

more common than other types of data (e.g., signals). According to Daniel and Chen (2003) 

[170], along with digital camcorders, video conferencing, digitized movies, and video 

emails that are making their way into everyday life, it is almost certain that the use of 

video data will multiply by multiple times in the coming years. Moreover, nowadays, 

there are various publicly available data sources such as Microsoft’s Common Objects in 

Context (MS COCO) [171], ImageNet [172], Pascal VOC [173], etc., which researchers can 

easily access. 

From an algorithmic perspective, recent neural networks, especially CNNs, have 

achieved considerable success in various areas, including image/video understanding, 

processing, compression, etc. [174]. The trained CNN can be used to handle classification, 

recognition, and prediction tasks on test data with highly efficient adaptability [174]. 

Therefore, CNN was dominantly applied in detecting unsafe behaviors using image data 

sources (34 of 44 papers). For videos and other sequence data such as signals (e.g., time-

series data), RNNs, designed for sequence learning [175], were also used with high per-

formance. For example, various studies have utilized RNN models to detect unsafe be-

haviors from videos with an accuracy exceeding 0.9 [15,37,95]. 

5.2. Physical Condition Identification 

Previous research on unsafe physical conditions have focused mainly on structural 

defects and site layout status at construction sites. The main objects of interest in such 

research include structures (e.g., guardrails and diaphragm walls) and equipment (e.g., 

cranes, wheel loaders, and construction vehicles). For example, various studies proposed 

CNN-based methods to detect structural defects such as guardrail defects [14], crane 

cracks [135], and diaphragm wall deformations [136] from images and signals with an 

accuracy of up to 0.97. In addition, to evaluate whether the site layout is appropriate, en-

tities in the construction sites need to be detected precisely. Therefore, in a construction 

environment involving a wide range of heavy equipment (e.g., tower cranes, dump trucks, 

and excavators), recognizing equipment operations has also attracted much attention 

from researchers (50% of the total number of papers regarding physical conditions), and 

these DL studies can gain accuracy of over 0.9 [135,137–139]. 

For detecting unsafe physical conditions, image was the most used type of data in 

DL models (62.5% of total papers). By applying the image classification task, the status of 

physical conditions regarding guardrails [14], the surface of crane cracks [135], and dense 

multiple construction vehicles [139] were detected and located to ensure safety at con-

struction sites. Moreover, because of the growing interest in CNNs, the most common tool 
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used for image analysis and image classification [34], they have been applied the most in 

handling issues related to physical conditions. In addition, to predict other physical con-

ditions such as diaphragm wall deformation [136] and water flow [140] during the under-

ground construction process, time-series data was used to describe properties related to 

deformation and inflow over time. For this application, an RNN is commonly used to deal 

with such issues with a high accuracy, reaching 0.99 [136,140]. 

5.3. Safety Management 

DL has been used effectively to support construction safety management. By using 

image datasets, the CNN method was utilized the most (8 of 14 papers) to provide man-

agers with real-time statuses of large-scale construction jobsites, so this can assist in im-

proving their decision-making regarding safety and planning [148–151]. These studies 

mainly focused on workers (six of eight papers) and equipment (e.g., pump trucks, exca-

vators, rollers, and tower cranes) (seven of eight papers). For example, various studies 

applied CNN models to detect workers and construction equipment from images with an 

accuracy range of 0.55–1.0. In addition, to minimize safety risks in construction, data are 

recorded in various formats (e.g., video, photographs, and safety reports), which research-

ers have used to monitor safety [134]. Thus, various studies have used videos and images 

(64%) and accident reports (36%) to aid the investigation and analysis of risks at construc-

tion sites. For example, previous studies applied DL models for NLP tasks (e.g., text clas-

sification and information extraction) with high accuracy, ranging from 0.54 to 0.87 

[16,18,38,39,154]. 

Besides recognizing individuals committing unsafe actions from images, identifying 

the person’s identity also plays an important role in supporting safety management. Once 

a person’s identity can be determined, site managers can provide specific feedback re-

garding their unsafe behaviors [152]. However, very little research has focused on this 

issue (one of 66 papers). In a notable study conducted by Wei et al. (2019) [152], a DL 

model was applied to determine a person’s identity by computing the c between the iden-

tity feature with previously saved features of other people’s identities; however, this 

study reported practical limitations such as the limited number of activities (e.g., people 

walking), and the possibility of delay in recognizing a person’s identity in real-time be-

cause of the computation requirements placed on the attention network to extract repre-

sentations from videos. 

5.4. The Summary of Contributions and Limitations of Deep Learning on Safety Management 

This study reviewed the contributions and limitations specified in previous papers 

and reports the key contributions with limitations, as summarized and outlined in Table 

5. In terms of contributions, by detecting unsafe physical conditions, construction workers 

and equipment, as well as their behaviors, the multiple contributions of DL models in-

clude monitoring safety and proactively preventing hazards, evaluating proactive safety 

risk levels, strategizing effective training solutions, designing effective hazard recognition 

and management practices, and applying operator assistance systems in construction ma-

chinery to achieve active safety. The investigation and analysis of safety reports can not 

only be used proactively during typical work planning, job hazard analyses, prejob meet-

ings, and audits, but also raise the safety awareness of workers and professionals. How-

ever, applying DL in construction safety still has challenges such as the limitation of the 

dataset, the influence of performance due to the presence of occlusions, blurriness, and 

background patches, and the lack of consideration of an individual’s identity during ac-

tion recognition. 
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Table 5. The summary of contributions and limitations of DL in safety management. 

Purposes  Contributions  Limitations  References 

Detecting workers and 

equipment, estimating, rec-

ognizing, and analyzing 

their behaviors. 

DL models can support monitoring safety 

and proactively preventing hazards by send-

ing early warning information combined 

with the on-site alarm equipment to the 

management staff so they can provide in-

stant feedback concerning unsafe behavior, 

and appropriate actions can be put in place 

to prevent reoccurrence. 

The training dataset was limited. 

[2,15,35,84,91,93,94,96

,98,99,103,111,148,149,

151,152,156,157] 

The accuracy of the method is af-

fected by the presence of occlu-

sions, confusion with background 

patches, poor illumination, and 

blurriness. 

[84,87,97,105,107,110,

148,155,156] 

They do not associate any personal 

identification with the output for 

verification. 

[105,106,118,156,157]  

Not mentioned. 

[37,86,95,101,102,108,

109,112–117,119–

122,150,153] 

Proactive and automatic safety risk level can 

be analyzed and evaluated for making deci-

sions on risk management. 

The dataset was limited. [36,89,94,99] 

Cases of the on-site experiment 

failed due to visual obstacles. 
[92] 

Not mentioned. [85,86,88,90,104] 

DL models support strategizing effective 

training solutions and designing effective 

hazard recognition and management prac-

tices. 

The dataset was limited. [93,99,100]  

The accuracy of the method is af-

fected by the presence of occlu-

sions. 

[93] 

Individual workers need to be 

identified. 
[157] 

The proposed method can be applied to op-

erator assistance systems in construction ma-

chinery to achieve active safety. 

The dataset was limited. [2] 

Detecting unsafe physical 

conditions. 

DL models can support monitoring safety 

and early warning, so managers can provide 

the appropriate solutions to prevent or con-

trol risks. 

The dataset was limited. [14,140] 

Occlusion was not addressed. [14] 

Not mentioned. [65,135–139] 

Before the predicted deformation reaches the 

threshold limit, control strategies can be im-

plemented to avoid excessive deformation 

and the corresponding risks to the engineer-

ing project and surrounding environment. 

Not mentioned. [136] 

Investigating and analyzing 

safety reports. 

The results can be used proactively during 

typical work planning, job hazard analyses, 

prejob meetings, and audits. 

Not mentioned [16,39] 

DL models raise the security awareness of 

workers and professionals to better under-

stand and prevent hazards and accidents, 

and aid in educating workers about “what 

not to do” and “what to do”. 

The dataset was limited. [18,38,154] 

Not mentioned. [16,39] 

6. Future Research Directions 

Despite recent technical advances in DL, there are still challenges in its practical ap-

plications. Based on the limitations identified and summarized, directions for future re-

search are discussed to resolve these issues and further expand their applications. These 

directions include (1) expanding a comprehensive dataset, (2) improving technical re-

strictions due to occlusions, and (3) identifying individual who performed unsafe behav-

iors. 
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6.1. Expanding a Comprehensive Dataset 

In a dynamic and complex construction environment involving many human re-

sources, diverse types of equipment, as well as many types of actions of humans and 

equipment, larger and more comprehensive datasets are important for improving the per-

formance of DL models. According to Ding et al. (2018) [15], some worker actions could 

not be recognized due to the training sample size and the limited number of unsafe actions 

considered. Therefore, with larger datasets, the model may further improve and provide 

more accurate results. However, there is currently no comprehensive and common da-

taset publicly available, not only for specific tasks such as object detection, pose detection, 

and activity recognition but also for a variety of construction sites, different viewpoints, 

lighting, and occlusion conditions. Although several studies such as Xuehui et al. (2021) 

[149] presented the Moving Objects in Construction Sites (MOCS) image dataset for de-

tecting objects at construction sites, its use may be limited by the size and type of the da-

taset. Therefore, further research is needed to generate and share a comprehensive dataset 

for the research community. Potential solutions may include generating publicly available 

datasets by developing a DL-based methodology to automatically create safety reports in 

natural language based on construction site imagery and using models to collect and 

amalgamate reports across the industry through continuous updates as new data arrive. 

In a study on DL in generating radiology reports, Monshi et al. (2020) [176] reported that 

CNNs used for image analysis could be integrated alongside RNNs for NLP and natural 

language generation (NLG), generating radiology coherent paragraphs in the medical 

field. Thus, once this DL application is applied in construction, creating automatic safety 

reports based on construction site images increases the number of datasets. A platform 

then needs to be built for public access so that researchers can easily share and upload 

datasets. 

6.2. Improving Technical Restrictions Due to Occlusions 

In dynamic and continuously changing construction environments, as images and 

videos data are mostly used, DL models have faced challenges such as occlusion [84], poor 

illumination and blurriness [105], and background clutter [97]. For example, Fang et al. 

(2019) [93] reported that the DL model could not detect all people traversing structural 

supports due to the presence of occlusions. However, previous studies often ignored oc-

clusions by assuming no occlusion (e.g., the guardrail is always visible for detection in 

[14]). To handle these issues, potential solutions may include the following. First, a 

method is needed to search and identify the optimum placement of cameras (e.g., position 

and distance of a camera, the effect of occlusion, and lighting conditions) where full or 

maximum coverage of resources (e.g., workers, materials, and machines) can be achieved. 

Second, to handle the self-occlusion of projected objects in a 2D vision, reconstructing the 

3D bounding boxes of these objects can be conducted using DL models to estimate depth 

and reconstruct depth scenes as a global 3D model from monocular images. Finally, an-

other method for coping with occlusions is to combine vision-based approaches with sen-

sor-based methods (e.g., the global positioning system), which can provide the location 

and motion of objects. 

6.3. Identifying Individuals Who Performed Unsafe Behaviors 

Providing feedback to individuals regarding the likelihood of their unsafe actions 

can result in immediate behavior modification and targeted safety training [93]. Therefore, 

in addition to identifying unsafe actions at construction sites, it is necessary to identify 

who performed these unsafe actions. Based on this, site managers can automatically iden-

tify unsafe behavior in real time and provide feedback to individuals about their unsafe 

behaviors. However, previous studies have not focused on the identification of workers 

(e.g., [156,157]). To achieve this goal, several solutions can be used in the future. First, 
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sensors can identify a person’s identity and location [177]. Thus, future research can com-

bine the results of an individual’s identity from sensors and action monitoring of the DL 

model to identify those who do not perform unsafe actions. Second, this issue can be ad-

dressed by developing a DL approach to identify individuals from videos by integrating 

temporal and spatial information. Wei et al. (2019) [152] provided an example of this ap-

proach. This DL approach focuses on using the spatial attention network for extracting 

spatial feature maps, temporal attention networks for extracting temporal information, 

and computing the distance between features to recognize a person’s identity. In addition, 

a person’s identity can also be recognized by face recognition models based on a CNN 

[178], so future research can combine face recognition and action recognition to identity 

workers performing unsafe behaviors. 

7. Conclusions 

This study synthesized and reviewed the current DL studies applied to safety man-

agement in the construction industry. It was found that DL studies had paid attention to 

three main research directions, including behaviors, physical conditions, and manage-

ment issues. By providing detailed summaries of DL applications in each category, this 

paper aims to support researchers and managers in the field of construction safety with a 

specific overview regarding what type of method has achieved highly accurate results, 

along with the type and amount of data that has been used for a certain safety task, as 

well as the actions managers can take from the result of DL models for improving safety 

management. In general, detecting unsafe behaviors was the main research direction of 

previous studies (67%) with high performance, which has contributed to safety manage-

ment in the construction industry. Moreover, the results indicated that CNN modeling 

was the most common method used in these studies (75%) and achieved high accuracy, 

which could reach up to ~1.0, from the primary data of images (73%). In addition to 

providing the overall trends of DL applications, this literature also presents limitations 

and future directions for applying DL in construction safety. In a dynamic and complex 

construction environment involving many human and equipment resources, expanding 

larger and more comprehensive datasets is important for improving the DL model per-

formance. In addition, the presence of occlusions causing challenges for DL studies using 

image and video data should be addressed in future studies. Another direction is to iden-

tify individuals who performed unsafe behaviors for immediate behavior modification 

and targeted safety training. DL is an emerging area of construction safety and is still de-

veloping, so outlining key challenges and corresponding proposal research can aid in de-

veloping DL applications in the future. We expect that this paper will provide not only 

new lines of advanced methods for researchers working on safety management but also 

opportunities to apply DL in practice. 
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