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Abstract: This study investigated whether mobile payment services could drive post-COVID-19
pandemic recovery in the ‘experience goods’ sector (e.g., tourism) utilising Bandura’s self-efficacy
or social cognitive theory. It explored the factors influencing the intention to continue using mobile
payment services and the intention to recommend these to others. An empirical survey was conducted
to assess the study variables, and the data obtained therefrom were analysed using the industry-
standard Cross-Industry Standard Process for Data Mining method. The study results suggest
that personal innovativeness and perceived trust influence consumers’ intention to continue using
mobile payment services and that perceived trust, personal innovativeness and outcome expectancy
influence consumers’ intention to recommend the use of such services to others. The research findings
have filled a research gap in emerging markets and can serve as the basis for formulating a winning
marketing and operational strategy for nascent technologies such as mobile payment services. It
would be naïve to extract findings from mature markets such as East Asia, the European Union and
the United States and to apply these to developing markets. In addition, this study’s investigation
of the variables that can influence the intention to continue using mobile payment services and to
recommend the use of these to others goes into the heart of the sustainability issue because the
study’s findings can help mobile payment service providers sustain the use of their applications and
thus also sustain the advantages as such.

Keywords: mobile payments; CRISP-DM method; domestic tourism; COVID-19

1. Introduction

Digital technologies have facilitated the access to and convenient use of services
(i.e., anytime, anywhere) through various portable and wearable devices, including cell
phones and smartwatches. Among these services, mobile payments occupy a crucial
position in the financial and payment landscape and in promoting a digital banking culture.
For example, consumers need not visit bank branches and can just conveniently and
easily download mobile payment applications on their internet-enabled cell phones to
conduct various value-added and traditional banking and payment services, such as mobile
shopping, fund transfer, utility bill payments, making donations, checking one’s bank
balance and even locating the nearby ATMs (automated teller machines).

The socioeconomic consequences of the COVID-19 (coronavirus disease 2019) pan-
demic on the tourism industry to date have been catastrophic [1]. To minimise the damage
caused by the pandemic to such industry, several governments in developing and devel-
oped countries and several international organisations have implemented a two-pronged
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strategy. First, governments and international travel agencies have started promoting
domestic or local tourism [2]. Second, non-cash transactions through mobile payment
services have been promoted to minimise COVID-19 contamination. Consequently, the
tourism and hospitality sectors have witnessed a wider use of contactless mobile pay-
ment technologies [3]. This change in the business and payment landscape has provided
a much-needed boost to the local tourism industry, which has suffered much from the
widespread flight and booking cancellations since the start of the pandemic. The aforemen-
tioned ‘disruptive’ technology has opened new business avenues for banks, other financial
institutions and fintech start-ups and has thus prodded them to develop and allow access
to cashless mobile payment services using proximity (near-field communication [NFC])
or remote (Net) mechanisms. That is, proximity or contactless payments can be made
simply by activating the NFC or Bluetooth option on one’s cell phone or smartwatch and
placing the cell phone or smartwatch near the point-of-sale terminal, whether using a PIN
(personal identification number) or not using one [4,5]. Android Pay and Samsung Pay
are famous examples of NFC payment systems. Remote payments can be made from the
home or office using these and other mobile payment applications.

Research [6–11] has defined mobile payment applications as any digital payment
applications where a mobile device is used to initiate, authorise and confirm an exchange
of money with goods and services, and consider these ‘star’ or ‘killer’ applications that
can increase the financial inclusion in many developing regions. The revolutions in mobile
technologies and the availability of low-cost internet/broadband connections have blurred
the difference between the developed and developing countries and has reduced the
gap between banked and unbanked or remote consumers. Anyone with a cell phone
or any portable smart device with internet (Wi-Fi) or GSM (Global System for Mobile
communication) connection can access a host of banking and payment services.

Earlier, cell phones were used only for texting and calling. Apple then introduced
smartphones in 2007, which disrupted the traditional mobile-technology-based business
models and provided new business opportunities. Companies introduced several down-
loaded mobile applications providing a host of value-added services and cashless payment
options. The tourism sector is one of the subsectors of the economy that have benefited
the most from these developments. For example, earlier, electronic tickets came to be
commonly used in the tourism and leisure sector [12]. The mobile revolution then fur-
ther modernised the shopping and payment mechanisms and provided better consumer
experiences. Moreover, as tourism products and services are perishable, experiential, het-
erogeneous, and information intensive in nature, they are ideal for digital distribution,
such as by using a mobile device [13].

A theoretically sound model based on self-efficacy or the social cognitive theory
(SCT) [14] and the trust theory linking the antecedents and outcomes of use continuance
intention in the mobile-payment-application context was empirically tested in this study
and is presented herein. There was a valid purpose for supplementing SCT with the trust
theory. Here, we support the idea [15] that SCT alone cannot explain the intention to
continue to use mobile payment applications. This is due to the digital and remote nature
of such applications, the distance separating the consumers and the service providers
and the absence of human interactions [16]. Thus, trust (including e-trust) in the service
provider and in the e-payment application are of paramount importance.

This study was conducted to come up with a conceptual model that predicts mobile
payment application usage continuance intention and its relationship with intention to
recommend mobile payments as a second key dependent variable. The study participants
included domestic travellers and tourists in Kazakhstan who have been using mobile
payment applications during their tour. To make the study objectives more explicit, the
research questions below were formulated.

RQ1: What are the salient factors determining domestic travellers’ mobile payment
application usage continuance intention and intention to recommend mobile payments?
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RQ2: How do the SCT constructs (outcome expectancy, self-efficacy) and social influ-
ence and perceived trust correlate with mobile payment application usage continuance
intention?

RQ3: How does mobile payment application usage continuance intention promote or
increase the consumer’s intention to recommend mobile payments?

Kazakhstan and the domestic travellers and tourists therein were selected as the
context of this study for four major reasons. Firstly, Kazakhstan is a highly collectivistic
society [17] as it has a strong family system characterised by trust, harmony, and close
ties between the family members and thus a strong familial influence. Social events
and gatherings are also regularly arranged, and local travels are frequently undertaken.
Secondly, the international travel restrictions that have been put in place globally due to
the COVID-19 pandemic have promoted and increased the volume of domestic travel and
tourism activities during holidays and on weekends in several countries [2,18], including
Kazakhstan. Thirdly, such domestic travelers and tourists use mobile payment services
frequently [19] as they consider these safer and more convenient than cash transactions
while travelling with their family and friends to their dream destinations domestically.
Lastly, the phenomenon of the use of mobile payment applications by domestic travellers
and tourists coincides with the efforts of the government and other organisations to
motivate the citizens to abandon or minimise cash transactions and to instead adopt remote
or digital payment systems, including mobile payment systems.

Next, we present the theoretical background of the current study, and in Section 3, the
research hypotheses that were formulated for empirical testing are presented. Section 4
describes the field research method that was adopted for this study: The Cross-Industry
Standard Process for Data Mining (CRISP-DM) method. The study findings are presented
and discussed in Section 5. The paper concludes with a discussion of the key findings,
contributions and limitations of the study.

2. Theory
2.1. The Use of Mobile Payment Services in the Tourism Sector

The hospitality and tourism sector is considered a significant revenue-contributing
sector for a country [20]. This sector consists of airline companies, tour operators, hotels,
the sharing economy (e.g., Airbnb), car rentals, tourist attractions, shopping malls and
restaurants [21]. In the wake of the pandemic, [22] introduced a ‘new normal’ consisting of
new standards and protocols to promote tourism and safe travel. Aside from improved
hygiene and social distancing, these included the use of contactless mobile payment
systems. It has been widely acknowledged, however, that the slow growth in mobile
commerce, including mobile payment services, can harm the hospitality and tourism
sector and impede its growth. According to the 2021 Hospitality Industry Trends report
released by [23], contactless payment systems and their widespread use are indispensable
to the hospitality and tourism industry’s survival and growth. This is because of such
systems’ added efficiency and effectiveness and the useful innovation they introduced in
the aforementioned sector [24].

In the aforementioned reports, a strong correlation is found between the hospitality
and tourism sector and mobile commerce. Mobile commerce, of which mobile payment is
an integral component, is essential to the growth of tourism, and this direct relationship
became more stringent after the COVID-19 debacle.

2.2. Social Cognitive and Trust Theory

The theoretical model that was developed in this study and is proposed herein is
partially rooted in the well-known SCT proposed by [14] and the trust theory proposed
by [25]. SCT, with self-efficacy as one of its components, extends the technology acceptance
model by providing a more comprehensive understanding of the behavioural intention
to adopt technology, system or innovation [26]. In his SCT, Bandura divided the affective
and behavioural outcomes into self-efficacy and outcome expectancy. SCT considers self-
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efficacy a functional value. It explains how much effort and time consumers are willing to
invest in accomplishing a specific task in the face of various obstacles [27].

Since the early 1950s, trust has played a significant role in everyday dealings between
consumers or users and companies or service providers. After the advent of e-commerce,
m-commerce and other remote or internet-based service and delivery options that blurred
or almost eliminated personal interactions, trust appeared as a game changer, a disruptive
force. It came to occupy a central position in the development and deployment of new
business models. Trust is crucial in digital transactions such as mobile payments, which are
traditionally considered highly risky and uncertain. Trust has been extensively examined
in the sociology, psychology, economics and management fields [28].

2.3. Antecedents of Usage Continuance Intention
2.3.1. Self-Efficacy/Personal Innovativeness

According to prior research [29,30], self-efficacy is one of the key drivers of user
activity and has direct and indirect impacts on the intention to use and the actual use of
different technologies and systems, including mobile payment systems. Self-efficacy (and
self-efficacy expectancy) is considered akin to ‘personal innovativeness’ and ‘perceived
ease of use’ [31] and ‘perceived behavioral control’ [32]. Ref. [14] defined the term as
‘[the] belief in one’s capabilities to organise and execute the courses of action required to
produce given attainments’ (p. 3) and as the ‘judgments of how well one can execute [the]
courses of action required to deal with prospective situations’ [27]. Ref. [33] claim that past
interactions and experiences and current exposure to a certain technology, system or service
contribute to one’s self-efficacy, and according to [34], self-efficacy directly or indirectly
influences consumers’ financial and payment service usage continuance intentions.

There are a few misconceptions about self-efficacy that need clarification for a better
understanding of the theory’s context. For example, self-efficacy does not consider what
people have done in the past concerning the acceptance and usage of a specific technology,
service or system. Instead, it considers and makes judgements about what people can do in
the future [34,35]. The self-efficacy theory involves people’s perception and understanding
of how well they can perform a task [36].

2.3.2. Outcome Expectancy

A plethora of earlier studies in the fields of physical activity or health research [37] and
education research [38,39] have considered using the variable ‘outcome expectancy’. The
examination of outcome expectancy is rare in the management field. Researchers [40,41]
have defined outcome expectancy as an individual’s belief that the desired outcome can be
attained by accomplishing a task. Ref. [32] have defined the term as the belief that if one
engages in a certain behaviour (e.g., contactless payment), a corresponding outcome will
follow (e.g., reduction of COVID-19 infections).

The social cognition models have given much attention to the role of self-efficacy
and significantly less attention to ‘outcome expectancy’ [32]. However, self-efficacy has
a direct impact on outcome expectancy. The latter is also used as a multi-dimensional
variable. In their study on blog sharing, ref. [42] investigated the antecedents of continuous
blog sharing. They used outcome expectancy as one of the independent variables in their
study and defined it as consisting of three aspects: financial capital, knowledge capital and
social capital. Similarly, ref. [43] examined the effects of hedonic and utilitarian outcome
expectations on the intention to continue playing online games.
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2.3.3. Social Influence

Social influence is one of the important constructs used in the unified theory of accep-
tance and usage of the technology model [44]. In the consumer context, refs. [45,46] defined
social influence as the extent to which users or consumers perceive that other important
people believe they should use a particular technology, system or service. Social influence is
akin to social pressure from subjective norms and is considered an important motivation for
adopting and using a new technology or system [47], such as the mobile payment system.
Unlike individualist societies mostly found in the Western or developed regions of the
world, collectivist societies rely heavily on the suggestions and recommendations of family
and friends. Thus, in the latter societies, peer-to-peer communications and social networks
play a significant role in people’s adoption, continuance use or even abandonment of an
application, a service or a system.

2.3.4. Perceived Trust (Including Online Trust)

As technologies and information systems evolved and were extensively adopted and
used in consumers’ everyday lives, virtual connections and interactions became the modus
operandi. Physical interactions or interactions requiring face-to-face contact have become
near extinct in the developed world, and the developing world is catching up fast in this
regard. Trust appears to be one of the most critical aspects of this transition. In other words,
developing and keeping a trustworthy relationship with the consumers in the virtual world
is of paramount importance. Ref. [48] defined trust in the relevant context as a person’s
readiness to be open to the actions of another party or service provider. Trust deficiency can
severely damage a firm’s reputation and can lead to the discontinuation of the service or
system. Trust is considered an important factor especially under conditions of uncertainty
and risks, and it develops over time through good interpersonal relationships [49].

Online trust or e-trust refers to trust in a digital environment. According to [50], online
trust is the phenomenon in which a firm’s stakeholders rely on the firm to efficiently and
effectively conduct business activities through an electronic medium (its website). Online
trust exists in an environment where there is no direct physical contact, where the perceived
social and moral pressures are different and where digital devices come into play in place
of human interaction [51].

2.3.5. Intention to Recommend

The intention to recommend the adoption or use of a service, technology or system
is based on several factors, including both commercial and non-commercial ones. For
example, according to [52], when choosing a holiday destination, tourists rely on non-
commercial sources of information, including the recommendations they receive from their
family and friends and from their followers on social media. Therefore, considering its
significance in the tourism literature, intention-to-recommend behaviour is an important
research area [53]. Intention to recommend is akin to word of mouth (WOM) and is
considered a post-adoption behaviour [54], which is in line with the scope of this research,
where the continuance intention to use technology was examined.

3. Conceptual Model and Research Hypotheses

As shown in Figure 1, the conceptual model that was used in this study included nine
hypotheses (outcome expectancy [H1a,b], social influence [H2a,b], personal innovativeness
[H3a,b] and perceived trust [H4a,b]) directly related to the consumer’s mobile payment
technology usage continuance intention and leads to the intention to recommend (H5)
mobile payments.
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Figure 1. Theoretical Model.

3.1. Relation of Outcome Expectancy to Usage Continuance Intention and Intention
to Recommend

In the first study hypothesis, we intended to examine how outcome expectancy is
directly and positively related to mobile payment technology usage continuance intention
and intention to recommend mobile payments. This was in line with the past research,
where the relationship between outcome expectancy and usage continuance intention
was established. For example, [55], while examining the motivational factors influencing
consumers’ intention to continue using web applications, found that consumers’ web
application usage continuance intention is directly correlated with their satisfaction with
the application and their internet self-efficacy and outcome expectations. Ref. [42] used
outcome expectancy as a multi-dimensional construct (financial capital, knowledge capital
and social capital). They examined its relationship with blog-sharing continuance intention
and found that outcome expectancy for knowledge and social capital encourages usage
continuance intention but outcome expectancy for financial capital does not. Ref. [43]
examined the relationship between hedonic and utilitarian outcome expectations and their
effects on the intention to continue playing online games and found that continuance
intention is predicted by utilitarian and hedonic outcome expectations.

Outcome expectancy comes very close to performance expectancy [56]. In a previous
study on the acceptance and use predictors of wearable fitness technologies [57], direct
relationships were found between performance expectancy, usage continuance intention
and intention to recommend. As such relationships were established in the technology
context (i.e., wearables, online blogs, online games), they may also be true for mobile
payment technologies. Thus, the hypotheses below were formulated.

Hypothesis 1a (H1a). Outcome expectancy is positively related to usage continuance intention.

Hypothesis 1b (H1b). Outcome expectancy is positively related to intention to recommend.
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3.2. Relation of Social Influence to Usage Continuance Intention and Intention to Recommend

The relationship between social influence (similar to subjective norms) and the in-
tention to continue using and to recommend certain products, services or technology
is well established in the tourism, information technology and business literature. For
example, [58], in their study that aimed to determine the effect of destination image and
subjective norms on the intention to visit Lombok Island in Indonesia, found a significant
relationship between social influence or subjective norms and tourists’ intention to visit. In
the context of sustainable rural tourism, ref. [59] found that subjective norm has a signif-
icant positive effect on intention to visit rural tourism sites. Ref. [60] examined Chinese
consumers’ intention to continue using online social networks and found a significant
positive relationship between social influence and usage continuance intention. In addi-
tion, [61], while examining the factors influencing the intention to continue using Web 2.0,
found that social factors have a significant direct impact on usage continuance intention.
In the context of mobile payment, it was found in a study [62] that subjective norms,
risk, perceived usefulness, customer brand engagement and trust are the most significant
antecedents of intention to continue using contactless mobile payment systems. In another
study [63], a direct relationship was found between subjective norms and intention to
recommend. We thus formulated the hypotheses below.

Hypothesis 2a (H2a). Social influence is positively related to usage continuance intention.

Hypothesis 2b (H2b). Social influence is positively related to intention to recommend.

3.3. Relation of Personal Innovativeness to Usage Continuance Intention and Intention
to Recommend

In recent decades, individual psychological factors such as personal innovativeness
have attracted increasing attention in mobile contexts [64]. Ref. [65] found a direct relation-
ship between consumer innovativeness and intention to continue using online check-in
services. Ref. [64] also found that personal innovativeness remains an important determi-
nant of usage continuance intention. The relationship between personal innovativeness or
self-efficacy and intention to recommend has rarely been examined, but we nonetheless
posit that innovative consumers with a predisposition to try out new services, technologies
and systems will also be in a better position to recommend or discourage the use of a
new product or service, including mobile payment services. Thus, we formulated the
hypotheses below.

Hypothesis 3a (H3a). Personal innovativeness is positively related to usage continuance intention.

Hypothesis 3b (H3b). Personal innovativeness is positively related to intention to recommend.

3.4. Relation of Perceived Trust to Usage Continuance Intention and Intention to Recommend

Reference [66] found a direct relationship between perceived trust and the intention
to continue using social networking sites such as Facebook. A similar direct and significant
relationship between perceived trust and usage continuance intention was also found
by [67] in the context of web-based online banking services. Reference [68] found that
customer trust is positively associated with consumers’ intention to continue using mobile
payment systems in China. Moreover, the correlation between perceived trust and intention
to recommend or positive WOM can also be found in the literature. For example, ref. [69],
while examining the effects of perceived justice on recovery satisfaction, trust, WOM and
revisit intention in an upscale hotel, found that trust is positively associated with WOM
and revisit intention. Given these significant findings, we formulated the hypotheses
shown below.
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Hypothesis 4a (H4a). Perceived trust is positively related to usage continuance intention.

Hypothesis 4b (H4b). Perceived trust is positively related to intention to recommend.

3.5. Relation of Usage Continuance Intention to Intention to Recommend

The early adopters of any new technology, system or service can influence the success
or failure of the technology, system or service by making recommendations in relation to
such. Consequently, usage continuance intention is influenced by intention to recommend.
Earlier findings have endorsed and established this direct relationship between the two
variables. For example, ref. [70] found a direct relationship between the intention to
continue using smart fitness wearables and the intention to recommend their use. Similar
findings were reported by [57] in the context of social networking platforms. We thus came
up with the hypothesis below.

Hypothesis 5 (H5). Usage continuance intention has a direct and positive influence on intention
to recommend.

4. Field Research Method

The CRISP-DM method was used for the empirical analysis of the adoption of the
mobile payment technology in an emerging market (See Figure 2).
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CRISP-DM is preferred by industry particularly because its iterative steps are well-
suited for deep and exploratory investigation of business problems. As Big Data Architect
Anshul Roy states (https://www.linkedin.com/pulse/chapter-1-introduction-crisp-dm-
framework-data-science-anshul-roy/, accessed on 14 September 2021): The CRISP-DM
methodology provides a structured approach to planning a data mining project. It is a robust and
well-proven methodology. The procedures that were used in this study for data collection and
pre-processing are briefly described below.

4.1. Empirical Survey, Sampling, and Data Collection

A questionnaire was developed to assess the respondents’ behavioural attitudes to-
ward the variables relevant to the current study. A list of questions was created through
an extensive literature review to assess each composite factor (outcome expectancy, social
influence, personal innovativeness, perceived trust, usage continuance intention and inten-
tion to recommend), resulting in a 21-item questionnaire with a Likert-scale-type response
scheme that captures behavioral intention.

The survey was pre-tested on a group of university students in Almaty, Kazakhstan.
The survey was modified on the basis of the feedback received from the pilot test partici-
pants. The web-based Webropol application was used to construct the final online survey
instrument and to collect data through it. Webropol provides the most versatile, scalable
and secure platform for developing and conducting online surveys. One of the study
co-authors came from Kazakhstan and understood the local culture and network therein.
The link to the survey was shared with university students, faculty and staff members and
with others outside universities. A purposeful sampling technique was used to recruit the
respondents. The inclusion criteria were as follows: had used mobile payment applications
for the last 6 months or more, had gone on local or domestic tours in Kazakhstan one or
more times during the COVID-19 pandemic and had used mobile payment applications
during such tours.

Appendix A contains the survey instrument that was used for data collection. The
data were collected from May to September 2020, when COVID-19 was officially declared
a pandemic and was already shattering the world economy, including the tourism sector.
At that time, the people had already started to support local or domestic tourism, which
provided sufficient motivation and a valid ground for this study.

There were four classifiers and two targets. To assess the inter-item reliability, the
Cronbach’s alpha coefficient was calculated for the items measuring each variable. All the
Cronbach’s alpha coefficients were in the range of 0.85–0.93, indicating the high internal
consistency of the questionnaire. The descriptive statistics and the demographic details of
the respondents are shown in Table 1. They do not indicate a biased or skewed sample.

4.2. Data Pre-Processing

The dataset had a few missing values. To address these, the dataset was sent back
to its original transcriber, who supplied the missing values. The dataset also had a few
values that were considered improbable. These were replaced by computing for the mean
of all the other responses to the question. Two sub-datasets were created from the available
data. The first dataset contained the itemised scores based on each item in the survey
questionnaire. The second dataset contained the composite score for each question based
on the items asking about it in the survey questionnaire. As the data were in seven-point
Likert scale format, there was no need to encode them. In addition, data normalisation
was not required because all the values were on the same scale. For ease of reference,
Online Annex B contains a Data Dictionary of the Dependent, Independent and Composite
Variables used in the data analytics.

https://www.linkedin.com/pulse/chapter-1-introduction-crisp-dm-framework-data-science-anshul-roy/
https://www.linkedin.com/pulse/chapter-1-introduction-crisp-dm-framework-data-science-anshul-roy/
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Table 1. Demographic profile of the respondents.

Demographic Categories Frequency Percentage (%)

Gender 400 100
Male 136 34
Female 264 66

Age group 400 100
≤18 years 79 19.75
19–24 years 182 45.5
25–34 years 36 9
35–44 years 52 13
45–54 years 31 7.75
≥55 years 20 5

Experience 400 100
01–03 months 96 24
04–06 months 116 29
07–12 months 89 22
13–24 months 99 25
≥25 months 00 00

Frequency 400 100
01–03 times 63 16
04–06 times 31 8
07–12 times 121 30
13–24 times 96 24
≥25 times 89 22

Profession 400 100
Student 232 58
Employee/professional 50 12.5
Entrepreneur

(self-employed) 65 16.25

Retired 31 7.75
Unemployed 19 4.75
Out-of-bound values 3 0.75

Education 400 100
High school 39 9.75
Bachelor 255 63.75
Master 74 18.5
Ph.D. 32 8

Annual income (tenge) 400 100
Less than 200,000 247 61.75
200,001–400,000 84 21
400,001–600,000 42 10.5
600,001–800,000 25 6.25
More than 800,001 2 0.5

4.3. Computing Correlations (Composite Independent Variables)

The pandas Python library was used to compute Pearson’s correlation coefficients
among the composite independent variables (See Table 2).

4.4. Generating a Correlation Matrix for the Itemised Values of Intention to Recommend and Usage
Continuance Intention

The pandas Python library was next used to find the correlations between the itemised
values of intention to recommend (IR) and usage continuance intention (CI). Table 3 shows
that most of the correlations are strong and suggests consistency among and between IR
and CI.
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Table 2. Correlation Coefficients of Composite Independent Variables.

Variables (1) (2) (3) (4)

(1) Outcome expectancy 1 0.71 0.70 0.73
(2) Social influence 1 0.74 0.68
(3) Personal
innovativeness 1 0.73

(4) Perceived trust 1

* R2: −0.1379

Table 3. Correlation Coefficients of the Itemized Dependent Variables.

Variables (1) (2) (3) (4) (5)

(1) CI future 1 0.73 0.68 0.64 0.58
(2) CI daily 1 0.67 0.53 0.55
(3) CI frequency 1 0.69 0.66
(4) IR recommendation 1 0.86
(5) IR subscribe 1

4.5. Conducting Regression Analysis

The stats models Python library was used to conduct ordinary least squares (OLS)
regression analysis on the dataset. Occupation, age group and duration of use were first
used as control variables for the regression analysis. Data on occupation were taken from
the dataset, and occupation was categorised as either employed or unemployed. Age
group was categorised as less than 24 years, 24–44 years or above 44 years. Lastly, usage
was classified as less than 6 months, 6–24 months or more than 24 months. OLS regression
analysis was conducted to determine if there are correlations between the independent
variables and the target. To test for potential endogeneity, the Wu-Hausman test was also
conducted during the regression analysis. For this, the linear models Python library was
used. The Wu-Hausman test was conducted to determine if there are correlations between
the independent variables and the error terms. Occupation, age group and duration of use
were also used for this test to maintain consistency (See Table 4).

Table 4. Results of linear regression analysis.

Independent Variables β ρ

Outcome expectancy 0.1626 0.081

Social influence 0.0724 0.937

Personal innovativeness 0.4460 *** 0.000

Perceived trust 0.4396 *** 0.000

Occupation 0.0808 0.488

Age group −0.0337 0.557

Duration of use 0.0507 0.517

R2 0.760

Adjusted R2 0.755

F-value 176.9
*** ρ < 0.001, ** ρ < 0.01, * ρ < 0.05.

On the basis of the regression analysis results, the itemised values for the important
variables (personal innovativeness, and perceived trust for continuance intention; Outcome
expectancy, personal innovativeness and perceived trust for intention to recommend) were
chosen as they were deemed useful for prediction. The significant variables were those
whose p-values were less than 0.05 in the regression analysis. Towards this end, three
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machine learning models were created for each independent variable. These shall be
discussed further in Section 5.

4.6. Splitting the Dataset

The dataset was split evenly into training and test values, with 70% of the values
being for training and 30% for testing the accuracy of the model. The pandas Python
library was then used to load the dataset and to manipulate it whereas the scikit-learn
Python library was used to conduct the experiments on the previously described data (See
Tables 5 and 6). Three ML algorithms used were: (i) Tree-based model: Random forest;
(ii) Bayesian-network-based model: Naive Bayes; and (iii) Neural-network-based model:
Multilayer perceptron (MLP)

(a) Applying three different machine learning models to predict usage continuance intention

Table 5. Comparison of ML Algorithms for the Prediction of Usage Continuance Intention.

Independent Variables Random Forest Bayesian Network Neural Network

Correctly classified instances 101 100 97
Percentage of correctly classified instances 84.16 83.33 80.83

Incorrectly classified instances 19 20 23
Percentage of incorrectly classified instances 15.84 16.67 19.17

Total no. of instances 120 120 120

(b) Applying three different machine learning models to predict intention to recommend

Table 6. Comparison of ML Algorithms for the Prediction of Intention to Recommend.

Independent Variables Random Forest Bayesian Network Neural Network

Correctly classified instances 101 104 101
Percentage of correctly classified instances 84.16 86.67 84.16

Incorrectly classified instances 19 16 19
Percentage of incorrectly classified instances 15.84 13.33 15.84

Total no. of instances 120 120 120

5. Findings

The nature of our business challenge was to understand and then predict if respon-
dents with a given profile would be more likely to continue to use mobile payment services
(CI, continuance intention), and if so, if they would recommend the use of mobile payment
services to others (IR, intention to recommend). Fundamentally, this is a ‘yes-no-maybe’
classification problem. In other words, when given user characteristics such as the depen-
dent variables used in the survey, the classifier needs to predict if a given user will continue
using mobile payment services and/or recommend their use to others.

A description of ML classifiers is beyond the scope of this paper. Mohammad
Waseem (https://www.edureka.co/blog/classification-in-machine-learning/, accessed
on 14 September 2021) provides a practical tutorial on this subject in a recent blog of his.
While industry professionals routinely use several ML algorithms in the training phase and
select the best-performing one among them for prediction purposes, our purpose here was
only to show a consistent trend across the ML models. Among the many ML algorithms
for classification, we used the random forest, naïve Bayesian and artificial neural network
approaches to provide a broad basis for comparison. The strengths of all these algorithms
are that they are accurate/stable, fast and tolerant. Tables 5 and 6 suggest that for the
prediction (classification) of both intention to recommend (IR) and intention to continue
use (CI), all the three aforementioned ML techniques showed above 80% accuracy. The
percentage of incorrectly classified instances ranged from 15 to 20%. This is a generally
acceptable level of performance for ML applications. However, upon probing further
(cf. Online Annex C.5 for Output from Python Scikit), we found that generally speaking,

https://www.edureka.co/blog/classification-in-machine-learning/
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all three ML algorithms performed better (in terms of recall and precision) for the ‘yes’
classifications than for the ‘no’ and ‘maybe’ classifications. In other words, ML better
predicts intention to recommend and continue use than the lack of such intention. This is
confirmed by the F-statistic for the latter, which is less than 0.5, and in some instances, 0.

Our data analytics also explored the factors that influence consumers’ intention to
continue using mobile payment services and to recommend the use of these to others.
Firstly, the study found that the random forest algorithm (with 84.16% accuracy) is the
best for predicting the intention to continue using mobile payment services whereas the
naïve Bayesian algorithm (with 86.67% accuracy) is the best for predicting the intention to
recommend mobile payment services. Not too much should be read into this, however,
as the performance increase is not statistically significant. The point being made here is
that ML is suited for the prediction of the intention to continue using mobile payment
services and to recommend the use of these to others when profiles are constructed using
some of the independent variables shown in Figure 3, such as personal innovativeness
and perceived trust. However, outcome expectancy and social influence are not significant
contributors to or predictors of such intentions.
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Secondly, the regression analysis showed that perceived trust and personal innova-
tiveness are highly correlated with the intention to continue using mobile payment services
whereas social influence and outcome expectancy are not significantly correlated with such.
For the intention to recommend the use of mobile payment services to others, the regression
analysis showed that perceived trust, personal innovativeness and outcome expectancy
are highly correlated with it whereas social influence is insignificantly correlated with it.
Finally, the relationship between use continuance intention and intention to recommend
was found to be significant (see Figure 3).
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6. Discussion and Conclusions

The COVID-19 pandemic and the associated social distancing, quarantine and iso-
lation protocols put many aspiring tourists in a state of limbo, unable to explore their
dream destination since early 2020. The alternatives have been explored, and domestic
tourism including the staycation and holistay appeared to be the best alternative. This
study examined the experiences of those who had taken local or domestic tours during
the pandemic and their experience of using mobile payment applications as their ultimate
payment tools. The study thus explored the factors that influence the intention to continue
using the mobile payment technology during domestic tour and the intention to recom-
mend mobile payments to others. Several implications can be drawn in light of the findings
obtained from the empirical data gathered in the study.

6.1. Theoretical Implications

The regression analysis shows that perceived trust and personal innovativeness are
highly correlated with the intention to continue using mobile payment services. This
coincides with the earlier findings reported by [65–67]. Secondly, social influence and
outcome expectancy were found not to be significantly correlated with usage continuance
intention. This contrasts with the earlier finding reported by [42,55] that there are direct re-
lationships between social influence, outcome expectancy and usage continuance intention.
For intention to recommend mobile payment services, the regression analysis showed that
perceived trust, personal innovativeness and outcome expectancy are highly correlated
with intention to recommend whereas social influence is not significantly correlated with
it. The study also found that the random forest algorithm (with 84.16% accuracy) is the
best for predicting the intention to continue using mobile payment services whereas the
naive Bayes algorithm (with 86.67% accuracy) is the best for predicting the intention to rec-
ommend mobile payment services. Nonetheless, a direct and significant relationship was
found between usage continuance intention and intention to recommend, which coincides
with the earlier finding reported by [70]. The data visualisation revealed this relationship
between the usage continuance and recommendation intentions.

6.2. Managerial Implications

This study’s findings have several managerial implications that can help the industry
in Kazakhstan and beyond formulate a winning marketing and operational strategy for
mobile payment services. First, mobile payments have become an integral part of consumer
life. For this, much credit goes to the pandemic situation and the emergence of the ‘digital
natives’ (i.e., Gen Z and Alpha), who prefer accessing remote services using innovative
mobile payment applications to visiting brick-and-mortar stores. The industry should thus
give more attention to fulfilling the growing needs and demands of the digital natives, who
are considered innovative by nature and eager to try out new things.

Moreover, perceived trust and personal innovativeness appeared to be the most
significant variables in this study driving users’ intention to continue using mobile payment
applications. Perhaps due to the remote nature of mobile payments, the lack of face-to-
face interaction and the nature of the financial transactions, companies must develop
and maintain consumer trust. New regulatory frameworks such as the revised Payment
Services Directive (PSD2) and General Data Protection Regulation (GDPR) implemented in
Europe, and their replication across the globe, have provided much support and comfort to
consumers; the same should be ensured when deploying mobile payment services. After
all, consumer trust in the service and service provider is of paramount importance for
mobile payment applications.

Although unlike other studies conducted on the same topic, this study did not find
correlations between social influence, outcome expectancy and usage continuance intention,
the industry should not overlook these important elements, especially social influence.
Many still seek the opinions of their family and friends, and their decisions are influenced
by what others say, recommend and believe.
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The growing digital divide between the rural (or remote) and urban households
in most developing countries is a greater concern for industry, successive governments,
and policymakers [71]. The lack of digital literacy causes such digital divide [72], which
inhibits technological advancements, including the adoption and use of mobile payment
systems and associated services by a wider segment of the population. With that in
mind, the industry, in collaboration with the policymakers and regulators, should adopt a
two-pronged strategy. Firstly, the industry should improve the digital literacy of the less
privileged segment of society to promote inclusive development and the wider and more
frequent use of mobile payment systems and applications. Secondly, the hospitality and
tourism sector should develop super-mobile applications equipped with several modules,
such as those supporting m-shopping, m-bookings and voice assistance.

6.3. Limitations and Future Research Directions

Among the major limitations of this study was the use of purposeful sampling, which
might have decreased the degree of representativeness of the study sample. The second
major limitation was that the cross-sectional study was conducted at a specific time and
place, making it impossible to establish a true cause–effect relationship. A longitudinal
study involving a longer time duration and a bigger sample size is thus recommended
because mobile payment services are emerging and novel services and the findings on
them from a longitudinal study can reveal various related phenomena [71,72].

It is suggested that the future research strive to expand the scope of the services
offered via mobile payment applications and examine the use of artificial intelligence (AI)
tools and applications in mobile payment applications and how these AI-based mobile
applications navigate consumer behaviour, choices and continuance application usage.
Also, the theoretical model developed and used in this study can be replicated and used
in another context. The implementation of various regulations and standards, such as
GDPR and PSD2, has revolutionised the financial-services landscape; the same should be
examined to understand the level of and changes in consumer trust in these services and
the consumers’ level of awareness of these services.

Another important recommendation is that cross-country studies be conducted within
the mobile-payments field, such as comparing a Western country with a non-Western coun-
try. Opinions regarding the adoption and use of mobile payment services and applications
can also be compared by gender. As consumer trust in remote payment services is crucial,
it thus requires attention. Future studies can examine the trust issue from the perspective
of services and institutions, such as how trust in a mobile payment service provider or
institution is formed and how trust in the mobile payment service provider or institution
operates under general regulatory conditions. Therefore, micro-level (institution) and
macro-level (regulator) trust should be examined in the context of mobile payments.
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Appendix A

Table A1. Constructs and Indicators.

Construct Indicators

Outcome
expectancy

I think that using a mobile payment app will enable me to
accomplish certain tasks more quickly during a tour.
I think that using a mobile payment app during a tour will
increase my productivity.
If I use a mobile payment app during a tour, it will increase my
output for the same amount of effort.

Social influence

The people who are important to me think that I should use a
mobile payment app during domestic tours.
The people who influence my behaviour think that I should use
a mobile payment app during domestic tours.
My family/relatives have influenced my decision to use a
mobile payment app especially during domestic tours.
People who are important to me recommend that I use a mobile
payment app during domestic tours.
People who are important to me view the use of mobile
payment apps as beneficial.
People who are important to me think that it is a good idea for
me to use a mobile payment app during tours.

Self-efficacy or personal innovativeness

If I hear about a new mobile payment app, I will look for ways
to experiment with it.
Among my peers, I am usually the first to explore a new mobile
payment app on my smartphone and/or tablet.
I like to experiment with using new mobile payment apps for
financial services.
In general, I am hesitant to try out new mobile payment apps
for financial services.

Mobile payment application use continuance intention
I intend to continue using mobile payment apps in the future.
I will always try to use mobile payment apps in my daily life.
I plan to continue using mobile payment apps frequently.

Perceived trust

Mobile payment apps can competently and efficiently handle
my financial transactions.
I believe that my use of a mobile payment app will be in my
best interest.
I believe that mobile payment apps can be trusted at all times.

Intention to recommend

I would like to recommend to others that they subscribe to
mobile payment services.
If I have a good experience with a mobile payment app, I will
recommend to my family and friends that they subscribe to the
service.
I will recommend to my family and friends that they subscribe
to an available mobile payment service.
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