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Abstract: Assessing soil quality is considered one the most important indicators to ensure planned
and sustainable use of agricultural lands according to their potential. The current study was carried
out to develop a spatial model for the assessment of soil quality, based on four main quality indices,
Fertility Index (FI), Physical Index (PI), Chemical Index (CI), and Geomorphologic Index (GI), as well
as the Geographic Information System (GIS) and remote sensing data (RS). In addition to the GI, the
Normalized Difference Vegetation Index (NDVI) parameter were added to assess soil quality in the study
area (western part of Matrouh Governorate, Egypt) as accurately as possible. The study area suffers from
a lack of awareness of agriculture practices, and it depends on seasonal rain for cultivation. Thus, it is very
important to assess soil quality to deliver valuable data to decision makers and regional governments to
find the best ways to improve soil quality and overcome the food security problem. We integrated a
Digital Elevation Model (DEM) with Sentinel-2 satellite images to extract landform units of the study
area. Forty-eight soil profiles were created to represent identified geomorphic units of the investigated
area. We used the model builder function and a geostatistical approach based on ordinary kriging
interpolation to map the soil quality index of the study area and categorize it into different classes. The
soil quality (SQ) of the study area, classified into four classes (i.e., high quality (SQ2), moderate quality
(SQ3), low quality (SQ4), and very low quality (SQ5)), occupied 0.90%, 21.87%, 22.22%, and 49.23% of
the total study area, respectively. In addition, 5.74% of the study area was classified as uncultivated area
as a reference. The developed soil quality model (DSQM) shows substantial agreement (0.67) with the
weighted additive model, according to kappa coefficient statics, and significantly correlated with land
capability R2 (0.71). Hence, the model provides a full overview of SQ in the study area and can easily be
implemented in similar environments to identify soil quality challenges and fight the negative factors
that influence SQ, in addition to achieving environmental sustainability.

Keywords: developed soil quality model; GIS; Egypt; NDVI; geomorphologic index

1. Introduction

Globally, there are more than 800 million people who are chronically undernour-
ished [1]. Africa has the highest proportion of people who suffer from chronic hunger [1].
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Assessing and managing soil is considered one of the key ways to achieve food security
by helping to bridge the food demand gap [2]. Political instability in most African coun-
tries affects agricultural practices and leads to underdeveloped and underexploited lands,
having direct consequences for society [3].

In Egypt, agricultural lands are located in the Nile valley and the delta, which represent
about 4% of the total area of Egypt [4]. The agricultural sector in Egypt plays a vital role in
economic growth as it contributes 14.5%, 30%, and 41% of national gross domestic product,
provision of foreign currency, and reducing unemployment, respectively [5].

The definition of soil quality (SQ) is the ability of soil included the ecosystem to supply
plants with the nutrients needed throughout growth stages for the purpose of preserving
crop yield [6–8]. Since SQ supports sustainable soil management as it is linked to soil
productivity, a reliable assessment requires an accurate, multi-faceted quantification [9].
Maintaining soil productivity by soil quality management should be considered earnestly
to ensure sufficient food for the burgeoning world population [10]. Soil quality is influenced
by physical indicators such as bulk density, root depth, and soil texture, and chemical
indicators, such as cation exchange capacity (CEC), electric conductivity (EC), and pH.
There are highly significant correlations between these indictors and soil quality [11,12].
Soil quality could be negatively affected by conversion of land use as soil properties are
significantly influenced by this practice, as it decreases, for example, soil organic carbon
and total nitrogen. In addition, soil contamination by heavy metals may cause risks to
humans and the ecosystem, decrease land suitability for agricultural production, and cause
food insecurity and land tenure problems [13]. Potentially toxic elements have negative
effects on plant growth, crop yield, and quality due to phytotoxicity [14]. Therefore, it is
very important to focus on the sustainable use of agricultural lands to increase the soil
quality [15,16]. To improve soil and water quality, precise measurements and efficient
methods should be conducted [17]. Index indicators are the most appropriate method for
assessing SQ [18]. Developing a soil quality index (SQI) requires selecting an indicator,
scoring it, and then integrating scores into a single value [18]. The weighted additive
index is one of the most used for SQ evaluation based on integrating indicator weights
with corresponding scores [19]. The geometric mean algorism (GMA) and the nth root
of a series of numbers are commonly utilized in assessments of desertification sensitivity
and land suitability [20,21]. The GMA is used to characterize the data average or central
tendency [22]. Analysis of land capability can be used to assess agricultural potential to
face increasing drought impacts [23]. The land assessment concept belongs to the land
performance rate and its capacity for crop production, while land capacity depends on
many factors, such as location and the physical and chemical properties of soil, in addition
to soil potential for agricultural production [24].

Currently, there are many land capability models established to introduce a quantified
procedure to match land with actual and proposed uses, especially for arid and semi-arid
regions, including the study area. An example is the Agricultural Land Evaluation System
for arid and semi-arid regions (ALESarid), developed by Ismail et al. [25]. This model is
combined with Geographic Information System (GIS) software to assess land capability
and could provide a sensible solution given its accuracy, ease of application, and moderate
data required [26]. GIS technology has enabled the spatial variability computation of
different phenomena [27], including investigations of soil properties. Thus, combined GIS
and geostatistical analyses can be very important in assessing the spatial variation of soil
properties and those expected in un-sampled sites [28]. For instance, using variogram
analyses can accurately map the complex spatial relationships between soil data layers [29].
One of the most commonly used interpolation methods is Kriging. This method is based
on the identification of homogeneous subsets of similar yield-limiting factors; thus, it can
sufficiently support precise farming [30,31].

The study area suffers from a lack of awareness of agriculture practices and scarcity
of water as it depends on seasonal rain for cultivation [32]. As the study area is an impor-
tant part of the existent economic activities in Egypt [33], the current study (1) identifies
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geomorphologic units of the study area and (2) quantitatively assesses soil quality using
the developed model based on four indicators, i.e., chemical, physical, fertility, and geo-
morphologic indices. In addition to the GI, the Normalized Difference Vegetation Index
(NDVI) parameter were added as a new factors to reflect the specific soil quality and
categorize it into different classes as accurately as possible. Finally, (3) the results from this
model were validated with the weight additive index and correlated with land capability.
To our knowledge, only few studies assess soil quality in the study area, so this paper
offers valuable data to decision makers and regional governments to find the best ways
to increase soil quality and overcome the food security problem, which is one of the most
important challenges in the 2030 Agenda for Sustainable Development.

2. Materials and Methods
2.1. Study Area Description

The study area is located in the western part of Matrouh Governorate, Egypt. The
studied area, Wadi Al-Halaazin located between longitudes 26◦49′58.0′ ′ to 26◦58′06′ ′ E and
latitudes 31◦13′07′ ′ to 31◦26′36′ ′ N with total area 21369.74 ha (Figure 1). The international
coastal road passes in the middle of it. Arid climate prevails in the study area as the average
temperature reaches 18 ◦C in the winter and autumn but ranged from 18 ◦C to 25 ◦C in
the summer. The range of rainfall is between 100 and 200 mm/year. In the winter and
spring seasons, the vegetation cover changing due to rainfall is active and the natural
vegetation spreads within study area, particularly in the wadis and streams in addition, the
natural vegetation growth during the autumn and summer seasons because of the natural
vegetation spreads on the fine sand stacks that keep rainwater [31] and barley is the main
crop in the study area in addition small areas of some scattered olive trees (Figures 1 and 2).
In the investigated area, the main geological units are Miocene and Quaternary deposits
according to Ministry of Industry and Mineral Resources (MIMIR) [34] (Figure S1). The
range of elevation is between 11 and 212 above sea level. The lowest elevation was noticed
in the areas close to Mediterranean Sea, while the highest elevation located in the southern
parts (Figure 2). [31]. The Normalized Difference Vegetation Index (NDVI) ranged from
low (–0.22) to high (0.73) (Figure S2). The highest values of NDVI (expresses high intensity
of cultivation) [35] were noticed in some small areas of study area (wadi unit) [31].

2.2. Extracting Landforms Units

The input data included: topographic data, information of spectral satellite (sentinel 2
acquired in April/2020), field surveys and stratigraphic characteristics. The NASA Shuttle
Radar Topographic Mission (SRTM) Digital elevation model (DEM) (30 ∗ 30 resolution)
(Figure 2) was chosen for study area. A simple filter by focal neighborhood statistics
was used to decrease errors and noises. These noises occurred due to reclassification of
topographic parameters. For the majority and mean focal statistic values, the largest and
average values of the specified neighborhood pixels were assigned to the canter pixel
of the moving window [36]. Algorithm of Planchon and Darboux [37] to correct DEM
then corrected DEM was used to derive the indices of topographic (slope, aspect, plan
curvature, profile curvature, slope length and steepness, relative slope position, valley
depth, and analytical hill shading; Figure S3) with the SAGA GIS software [38]. By this
method, we were able to identify the different landform units relied on satellite image
visual interpretation and DEM in a 3D visualization mode, a hillshade in addition, field
truth points [39] with the help of previous studies that were done on this area [40] trying to
give the most appropriate nomenclature to landforms.
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2.3. Calculation of NDVI

Calculation of NDVI was done on sentential 2 image (acquired in April 2020) of study
area using raster calculator function in snap (V8) to subtract values of the Red (R) band from
the Near-infrared (NIR) band, then divide by the sum of the R and NIR bands according to
the following Equation (1):

NDVI =
NIR− IR
NIR + IR

(1)

2.4. Collecting Samples and Laboratory Analyses

Forty-eight soil profiles were dug and distribution of them were depends on the
identified geomorphic units of the investigated area (Figure 3). The depth of profiles
is 150 cm or less relies on the hardpan presence. Soil profiles descriptions were done
according to FAO [24]. Classification of soil profile was carried out according to USDA Soil
Survey Staff [41]. The following chemical, physical, and biological properties of soil were
determined: chemical analysis, i.e., salinity, soil reaction (pH), cation exchange capacity
(CEC), and the exchangeable sodium percentage [42–46], physical properties, i.e., bulk
density and the particle size distribution, hydraulic conductivity (HC) and water holding
capacity (WHC) [47] and biological, i.e., soil organic matter content (OM%), available
soil nitrogen (N), phosphorus (P), and potassium (K) [48,49]. Analysis was done in the
accredited soil, water, and plant laboratory at Tanta University’s Faculty of Agriculture in
accordance with ISO/IEC 17,025:2017 requirements.

2.5. Distribution of Soil Properties

Ordinary Kriging (OK) is an advanced geostatistical procedure that can create a
continuous surface from scattered soil samples depending on their characteristics [50]. In
the present study, OK was chosen as the geostatistical model for estimating soil properties
spatial distribution. Z(Xi) is supposed to be a regionalized variable with a variogram
γ(h), which is a function labelling the spatial aggregation field or random process Z(u).
Methods of the exponential, Gaussian, spherical, and circular Equations (2)–(5) were used
as the semi-variance model and choose of the best variogram based on the leave-one-out
cross-validation results.

The exponential function was defined as the following:

Y(h) =

{
0, h = 0

C0 + C
(

1− e−
h
a

)
, h > 0

(2)

The Gaussian function was defined as:

Y(h) =

{
C0 + C

(
1− exp

(
−h2

a2

))
, h > 0

0, h = 0
(3)

The spherical function was defined as:

Y(h) =


C0 + C

(
3h
2a −

1
2 −

(
h
a

)3
)

, 0 < h ≤ a

C0 + C, h > a
0, h = 0

(4)

The circular function was defined as

Y(h) =


C0 + C(1− 2

π cos−1 h
2 +

√
1− (h2/a2 ), 0 < h ≤ a

C0 + C, h > a
0, h = 0

(5)
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In these equations, a is the actual ranges for the spherical, circular, exponential, and
Gaussian functions, respectively. h is the spatial lag, C0 is the nugget, and C is the partial sill.
The spatial variation of the soil samples for these variograms was isotropic. Traditional OK
can introduce equitable estimates with minimum error. The OK function was expressed as:

Z(x0) =
n

∑
i=1

λi(x0)Z(xi) (6)

where: ∑ni = 1λi(x0) = 1; Z × (x0) is the predicted value of variable z at location x0; Z(xi) is
the measured data; λi(x0) refers to the weights linked with the measured values; and n is
the number of predicted values within certain neighbor soil samples. The OK was applied
utilizing the Create Fishnet tool in ArcGIS (Version 10.7, Esri, Inc., Redlands, CA, USA).
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2.6. Assessment of Soil Quality

The different agricultural practices and various types of land use influence the physical,
chemical, and biological properties, affecting soil quality [51]. Soil quality index is a flexible
model so, it can be used for assessing of soil quality and describe the soil degradation in a
specific area [52,53]. In this work, a soil quality index is developed to combine chemical,
physical, fertility, and geomorphologic properties of study area for better and accurate
estimation of soil quality. Four indices were used to assess soil quality, i.e., geomorphologic
(GI), fertility (FI), physical (PI), and chemical (CI), as the following:

The GI was described according to Equation (7):

GI = (GS ×GA ×GPC ×GPrC)
1/4 (7)

where: GI = geomorphologic index; GS = slope; GA = aspect; GPC = plan curvature; and
GPrC = profile curvature.

The four mentioned variables integrated in the GI indicate which lands can be exposed
to erosion and, implicitly, to degradation [45]. In the standard MEDALUS model the slope
is integrated in soil quality index (SQI) a parameter integrated as indicator to intensity
changes in hydric erosion [54]. The slope aspect conditions expose lands to both water
and wind erosion [55–57]. Plan curvature, which indicates the horizontal degree of slope
curvature focus on convergent runoff sectors [58,59], soil losses through erosion created
different types of SQ-related problems [60]. Thus, it is included in this work for first time
to reflect SQ status in the investigate area accurately.

The fertility index was described according to Equation (8):

FI = (FN × FP × FK × FOM × FNDVI)
1/5 (8)

where: FI = fertility index; FN, FP, FK = available nitrogen, phosphorus, potassium, respec-
tively; FOM = organic matter (%); and FNDVI = Normalized Difference Vegetation Index.
NDVI added to fertility index as it is sensitive to vegetation conditions dynamic change,
including several factors, for instance soil quality [61,62] in addition, there are positive
correlation between NDVI and soil quality [2].

The physical index was described according to Equation (9):

PI = (PD × PT × PBd × PHC × PWHC × PS)
1/6 (9)

where: PI = physical index; PD = profile depth; PT = soil texture; PBD = bulk density
(g/cm3); PHC = hydraulic conductivity (cm/h); WHC = water holding capacity (%); and
Ps = % surface stoniness.

The chemical index was described according to Equation (10):

CI =
(
CEC ×CpH ×CCaCO3 ×CCaSO4 ×CESP ×CCEC

)1/6 (10)

where: CI = chemical index; CEC = soil salinity; CpH = soil reaction; CCaCO3 = proportion of
soil calcium carbonate; CCaSO4 = prcentage of gypsum CESP = soil exchangeable sodium
percentage; and CCEC = cation exchange capacity.

The final DSQM index was described according to Equation (11):

DSQM = (CI× PI× FI×GI)1/4 (11)

where: DSQM = Developed soil quality model; CI = chemical index; PI = physical index; FI
= fertility index; and GI = geomorphologic index. The parameters or factors were rated
(Tables S1–S4) based on experts’ suggestions and a review of literature [15,54,63–68].

The NDVI values ranges from –1 to +1 [69], negative values express bare surface,
water and clods while positive values represent vegetated surfaces [70,71]. Sentential 2
data have the ability to distinguish vegetation cover [72].
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2.7. Modeling of Soil Quality Parameters

To produce the spatial model of SQ, the model builder function in ArcGIS 10.7 was
used. This tool displays selected spatial analysis of parameters in a diagram chain [2]
(Figure 4). Output of each process is used as the input to next process. The following stages
were implemented in this work to obtain the final SQ map of the study area: (a) soil proper-
ties were interpolated from point based to raster layer; (b) the output from (a) reclassified
into five classes (i.e., very high, high, moderate, low, and very low); (c) assigning score for
each SQ parameter according to (Tables S1–S4) feeding Equations (7)–(11) using the raster
calculator tool; and I the output from (d) used as input in weighted overlay function to
produce and display the DSQM final map.
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2.8. Validation of Developed Model
2.8.1. Validation Using Kappa Analysis

Weighted Additive method was used according to the following Equation (12) for val-
idation:

WAI = ∑n
i=1 Wi× Si (12)



Sustainability 2021, 13, 13438 9 of 24

where: WAI = Weighted Additive index; Si = the indicator score; n = number of indicators;
and Wi = the weight of indicators.

All parameters were weighted according to communality of each indicator which
calculated by mathematical statistics means of factor analysis using (IBM, SPSS Statics 22).
The calculation of weight value for each parameter depended on divided each value by
summation of overall values, on other words, as a ratio [73]. Kappa coefficient was used
to assess the level of agreement between model and weighted additive model. It is a
quantitative measure of consistency for two rates that are rating the same thing according
to the following Equation (13):

k = I (13)

where: K = the kappa coefficient; P(A) = the percentage of times that the coders agreIand
P(E) = the percentage of times that we would expect them to agree by chance. Levels of
agreement are shown in (Table 1).

Table 1. Interpretation of kappa coefficient results according to [74,75].

Values Level of Agreement

≤0 no agreement
0.01–0.20 none to slight
0.21–0.40 Fair
0.41–0.6 Moderate
0.61–0.8 substantial
0.81–1 almost perfect

2.8.2. Correlation Based on Land Capability

The ALESarid software was used for evaluation of study area land capability. The
output values of this model were correlated with SQ values which extracted from developed
using (IBM, SPSS Statics 22) according to the following Equation (14) at a significance level
(p-value) < 0.001:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (14)

where: n = the number of samples; yi = measured value; ŷi = the predicted value; and y =
the mean of measured value.

2.9. Evaluation of Geostatistical Analysis

The above-mentioned geostatistical models were used to map soil properties. Four
indices (Equations (15)–(18)) were used to evaluate the models as the following:

Mean standardized error (MSE) =
1
N ∑N

i=1[Z1 (X1)− Z2 (X2)] (15)

Average standard error (ASE) =

√
1
N

+ ∑N
I=1 [Z1(xi)− [∑N

i=1 Z2(xi)]/N]
2

(16)

Root mean square error (RMSE) =

√
1
N ∑N

I=1[Z1(xi)− Z2(xi)]
2 (17)

Root mean square standardized error (RMSSE) =

√
1
N ∑N

I=1[Z1(xi)− Z2(xi)]
2 (18)

where: Z1 (xi) = Measured values; Z2 (xi) = Expected values.

3. Results and Discussion
3.1. Geomorphology of Study Area

As shown in Table 2 and Figure 5 plains landscape includes five landforms’ units, i.e.,
sand sheet, sand plain, coastal plain, sand beach, and sabkha (wet and dry) with an area
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1978.13, 462.27, 193.85, 113.70, and 705.73 hectares, respectively, it formed by erosion of the
plateau. Soils of this unit are very important for agriculture due their flatness. Wadi unit
consider one of the most diagnosed geomorphological units in the study area and extends
in large areas of the north-western coast of Egypt [32] and occupying the north part of the
study area. It receives high amounts of runoff in comparison to surrounding upland due to
it is location in gentle slopes. This landscape covers about 733.05 hectare (3.34%) of total
area including two landforms’ units (wadi and wadi outlet). Terraces units are formed
by alluvial sediments cyclic erosion and deposition stages (cut and fill) in a setting that
generates a staircase [76]. This unit classified into very high alluvial terraces (1227.42 ha),
high alluvial terraces (1241.03 ha), slightly moderate alluvial terrace (1615.76 ha), moderate
alluvial terrace (885.84 ha), and low alluvial terraces (2179.60 ha). Basins are defined as
lowland where the accumulation of rainfall and drained water done on their outlet. Basins
include both of the accumulative surface runoff, and nearby streams which, downslope
towards the shared outlet represent 399.27 ha of total area. Pavement plain unit occupies
3588.68 ha (16.8%) of the total area and formed by the erosion processes over a long time.
This unit is divided into Pediment plain (high, moderate and low with areas 444.14, 659.26
and 1054.62 hectares, respectively, and peneplain (1430.66 ha). The included landforms in
the reference’s terms landscape are plateau (1444.62 ha), escarpment (774.97 ha), table land
(3444.89), waterlogging, and rock outcrop (380.94 ha).

Table 2. Areas of landforms units in the study area.

Land Scape Geomorphology Landforms Area—km2 Area—Hectare (ha) % Area

Plain

Sand sheet High sand sheet 19.78 1978.13 9.26
Sand plain Sand plain 4.62 462.27 2.16

Coastal plain Coastal plain 1.94 193.85 0.91
Sand Beach Sand Beach 1.14 113.70 0.53

sabkha
Dry sabkha 6.32 631.81 2.96
Wet sabkha 0.74 73.92 0.35

Basin basin Basin 3.99 399.27 1.87

Wadi
Wadi Wadi 7.26 726.14 3.40
Wadi Wadi outlet 0.07 6.91 0.03

Terraces Alluvial terraces

Very High Alluvial terraces 12.27 1227.42 5.74
high Alluvial terraces 12.41 1241.03 5.81

Slightly Moderate Alluvial
terrace 16.16 1615.76 7.56

Moderate Alluvial terrace 8.86 885.84 4.15
Low Alluvial terraces 21.80 2179.60 10.20

Pavement plain Pediment plain
High Pediment plain 4.44 444.14 2.08

Moderate Pediment plain 6.59 659.26 3.09
Low Pediment plain 10.55 1054.62 4.94

peneplain Peneplain 14.31 1430.66 6.69

Reference terms

Plateau Plateau 14.45 1444.62 6.76
Escarpment Escarpment 7.75 774.97 3.63

Table land
High table land 13.07 1306.70 6.11

Moderate table land 13.75 1374.56 6.43
Low table land 7.64 763.63 3.57

Waterlogging Waterlogging 0.54 54.24 0.25
Rock outcrop Rock outcrop 3.27 326.70 1.53
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3.2. Soil Properties of Study Area

Soil properties of the study area are recorded in (Table 3) and interpolated in (Figure S4).
The settings of the study area are mildly/strongly alkaline due to the pH values range
from 7.90 to 8.54, with an average value of 7.28 [77]. Physical, chemical, and biological
properties are affected by soil pH [78,79]. Values of ESP differ from 7.9% to 10.2%, which
means that the area is not exposed to sodicity risks [80]. The results of CEC ranged from
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1.2 to 7.0 cmole/kg. The low values of it due to low content of clay and organic matter as
there are significant positive correlations between CEC, clay, and organic matter [28], while
organic matter percentage (OM%) content ranges from 0.04% to 0.71%. There is no specific
distribution pattern of OM in the study area (Figure S4d) while, soils of the study area
were characterized as having low content of OM, in agreement with [71]. OM play very
important role in improving soil physical and chemical properties [81,82]. Texture differs
between sandy clay loam, sandy loam, and sandy. Hydraulic conductivity (HC) expresses
of water movement and pore structure in soil [83], it ranged from 1.61 to 15.66 (cm/h) in
addition water holding capacity is relatively low due to coarse texture. Hydraulic conduc-
tivity is an important indicator of water movement and pore structure in soil. Soil depth
ranged between 40 and 90 cm while surface stoniness is less than 20%. The study area is
diagnosed by none to high salinity soils due to ECe values varying from 0.1 to 14.89 dS/m
with an average value of 5.04 dS/m [84]. According to the interpolated map the highest
value of EC was found in the north part of study area it might due to sea water (Figure S4k).
Most salinized soils are present in arid and semi-arid conditions due to low precipitation
and high evaporation [2]. CaCO3 ranges between 2.12% and 34%. Areas near to sea had
the highest value of CaCO3; it might be due to shell fragments. The highest CaCO3 value
in some areas can cause formation of very hard layers impermeable to water and crop roots
in addition, phosphorus fixation fertilizer in calcareous soils [85] areas in the southeast of
study area has the highest values of CaCO3 it might due to shell fragments (Figure S4k).
CaSO4 ranged from 0.2% to 3.1% with an average 0.6%. The available N ranges from 20.3 to
66.14 mg/kg (45.4 to 148.15 kg N/ha) demonstrating that the nitrogen content in the study
area differ from low to moderate [71] while, high content of N located in the middle part of
study area due to agriculture practices (Figure S4n). The available P and K content in the
study area are classified as low according to [77] as the average values are 9.18 kg P/ha and
186.74 kg K/ha. To estimate and map the unknown soil properties, the OK interpolation
method was used (Figure S4). Accuracy of the model was confirmed for each soil property
depending on mean standardized error (MSE), average standard error (ASE), root mean
square error (RMSE), and root mean square standardized error (RMSSE) (Table 4). The
results indicate that spherical model is suitable for EC, pH, bulk density, HC, WHC, and
CaSO4, the Gaussian model is suitable for OM, ESP, sand% N, P, and K. Finally, the circular
and exponential models are suitable for K and clay%, as RMSSE and MSE are close to one
and zero, respectively, thus the mentioned models are the appropriate for predicting the
unsampled location [67,86].

Table 3. Statistics of some soil properties which used in SQ assessment.

Properties Min. Max. Mean Standard
Division (STD)

pH 7.90 8.54 7.28 0.35
ESP 7.93 12.61 10.24 1.03

CEC (cmole/kg) 1.19 6.98 3.46 1.68
OM% 0.05 0.71 0.38 0.17

Bulk density (g/cm3) 1.12 1.68 1.48 0.16
HC (cm/h) 1.61 15.66 11.09 3.25
WHC (%) 10 20 10.79 2.43

EC (dS/m) 0.10 14.89 5.04 3.67
CaCO3 (%) 2.12 34 12.59 5.10
CaSO4 (%) 0.22 3.10 0.62 0.49
N (ppm) 20.3 45.47 66.15 9.63
P (ppm) 2.01 6.84 4.18 1.40
K (ppm) 24.13 174.59 83.37 30.64
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Table 4. Semi-variogram models and geostatistical analyses of some soil properties.

Soil Parameters Model Type Mean RMSE MSE RMSSE ASE

pH Spherical 0.03 0.40 0.07 0.91 0.38
ESP Gaussian 0.0003 0.93 0.00 1.32 0.69

CEC (cmole/kg) Circular 0.003 1.65 0.00 1.00 1.64
OM% Gaussian 0.002 0.15 0.01 0.97 0.16

Bulk density (g/cm3) Spherical 0.002 0.1687 0.01 0.99 0.16
HC (cm/h) Spherical 0.46 3.13 0.07 0.56 5.97
WHC (%) Spherical 0.03 2.43 0.005 1.16 1.97

EC (dS/m) Spherical 0.22 2.65 0.01 0.87 3.95
CaCO3 (%) Gaussian 0.01 9.40 0.00 0.98 9.40
CaSO4 (%) Spherical 0.01 0.48 0.04 1.1 0.40
Sand (%) Gaussian 0.15 6.34 0.04 0.97 6.76
Silt (%) Gaussian 0.52 4.36 0.02 1.15 1.93

Clay (%) Exponential 0.15 0.99 0.03 0.99 4.32
N (ppm) Gaussian 5.31 14.08 0.1 0.49 28.02
P(ppm) Gaussian 0.009 1.24 0.02 0.94 1.36
K (ppm) Gaussian 0.77 26.72 0.03 1.02 25.24

3.3. Geomorphological Index (GI)

Geomorphologically, the GI values indicate that about 307.55 ha is located under very
high class (G1) while around 9867 ha is high class (G2) and moderate geomorphology class
(G3) cover 6919.26 ha of total study area and the poorest geomorphological conditions, i.e.,
low (G4) covers around 3045.7 ha due to the values of slope, aspect, plan, profile curvature
show an accelerated, convergent surface runoff leads to hydric erosion (Figure S3a–d;
Tables S5, S6, and Table 5 and Figure 6).

Table 5. Areas of geomorphologic index.

Classes Symbol Area (ha)

Very high G1 307.55
High G2 9867.42

Moderate G3 6919.26
Low G4 3045.671

Reference terms 1229.82

3.4. Fertility Index (FI)

Soil fertility mapping is a key issue for a lot of implementations in research fields
ranging from sustainability of soil management to the precision farming concept [67].
According to FI index, the study area fell into very high (F1), high (F2), moderate (F3), and
low (F4) classes, respectively. A descending order of fertility index in the study area is F3
(9946.33 ha), F4 (7729.22 ha), F2 (2350.65 ha), and F1(113.70 ha) (Table 6 and Figure 7). As
clear from results that most of study area located under F3 class because of deficiency of
OM, N, P, and K values in addition low values of NDVI from remote sensing data over the
study. NDVI is helping in achieving precision agriculture by predicting and mapping the
land degradation extension and allowing farmers and decision makers to make accurate
decisions on time [2,87]. The major causes of low productivity are soil fertility losing and
nutrients depletion [88], so to achieve sustainable development, it requires decreasing
losing and increasing the efficiency of use [89].
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Reference terms 1229.82
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3.5. Physical Index

The data given in Table 7 and Figure 8 and indicate that PI in the study area is varied
from very high physical index (P1) to very low (P5). Rating of soil physical index indicates
that around 7 (ha) of study area is very high-quality soil due to deep soil profiles, low
content of gravels, while 6457.6, 6634.14, 6409.43, and 331.80 (ha) of total agriculture areas
are classified as high (P2), moderate (P3), low (P4), and very low (P5) classes, respectively.
The soil limiting factors are coarse texture, high values of bulk density, and shallow depth.

Table 7. Areas of physical index.

Classes Symbol Area (ha)

Very high P1 6.90
High P2 6457.61

Moderate P3 6634.14
Low P4 6409.4323

Very low P5 631.80
Reference terms 1229.82
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3.6. Chemical Index (CI)

Soil degradation (chemical, physical, and biological), means reducing of soil qual-
ity [89]. Spatial distribution map of chemical index (Figure 9) shows that a wide range of
chemical quality ranging from very low quality (C5) to very high (C1). The areas chemical
index are as the follows: 7291.9 ha is very high quality, 3794.7 ha is high quality, 3407 ha is
moderate quality, 3773.91 ha is low quality, and 1872.83 ha is very low. C1 class character-
ized by low values of ECe, ESP, and pH on the other hand, low values of CEC which may
causing chemical degradation [90] and high content of CaCO3 are the main limiting factors
of C5 class soils (Table 8).
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Table 8. Areas of chemical index.

Classes Symbol Area (ha)

Very high C1 7291.49
High C2 3794.64

Moderate C3 3407.02
Low C4 3773.91

Very high C5 1872.83
Reference terms 1229.82

3.7. Assessment of Soil Quality

Soil physical, chemical, and biological quality parameters are the key indicators of SQ.
An optimal combination of these parameters increases agronomic productivity and reach
to management systems sustainability [91], furthermore geomorphologic properties have
a direct effect on land state through increasing of hydric erosion process [51]. According
to (Figure 10) the DSQM the study area classified into four classes. The first class is
characterized by high quality represent around 194 ha (0.9%) of the total study area. The
second class is characterized by moderate quality occupied 4748.61 ha (22.22%) of the
total study area. The soil third quality class (low) covers 4675 ha (21.87%) of the total
study area and, finally, the very low-quality class is the most representative class as it
occupies 10522.45 ha (49.23%) of total area. Around 5.7% of study area is reference, i.e.,
table land, waterlogging and rock outcrop, these areas are not cultivated. It could be
concluded from the interpolated map that; the highest class of soil quality is located in the
wadi unit (Figure 10a). Low values of OM%, CEC, N, P, K led to negative effect on soil
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quality in addition physical properties, i.e., shallow depth, coarse texture affect particles
and pores organization and therefor, impacts on root growth, speed of plant emergence,
and agricultural practices water infiltration [83].
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Generally, soil quality is affected by agricultural practices and climatic conditions,
which, in turn, affect the physical, chemical, and fertility properties of the soil [25]. Calcula-
tion of SQ in the study area by weighted additive index were according to the following
Equation (19):
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SQ = (0.047× SS) + (0.038× SA) + (0.047× PC) + (0.03× SPRC) + (0.036× SN)×
(0.042× SP)(0.044× SK) + (0.024× SOM) + (0.037× SNDVI) + (0.039× SD)+
(0.046× ST) + (0.047× SBD) + (0.05× SHC) + (0.043× SWHC) + (0.04× SSS)+

(0.004× SEC) + (0.047× SpH) + (0.045× SCaCO3) + (0.046× SCaSO4)+
(0.04× SESP) + (0.037× SCEC)

(19)

The results shows that 3635.76 ha (17%) of soils are moderate quality, 4792 ha (22.4%)
of soils are fell into low class, and while, most of study area are characterized by very
low class around 11,712.11 ha (54.8%) (Figure 10b). These results indicate high agreement
between weighted additive index and developed model as most of study area around
49.23% is classified as very low-quality class according to developed model.

3.8. Assessment of Land Capability

The results of land capability are showed in (Figure 11) it could be concluded from
these results that the study area fell into three classes, i.e., fair (C3), poor (C4), and non-
agriculture class (C5) with an area of 1125.41 ha (5.26%), 12,713.27 ha (59.50%), and
6301.22 ha (29.50%), respectively. Moreover, around 6% of study area is classified as
references terms (uncultivated area). The results showed that the most of study area is
classified as poor for agriculture (59.50%) which means that these soils have a lot of hazards,
such as shallow depth, coarse texture low values of fertility indicators. The lowest class lo-
cated in the north part of study area and some areas near to the middle of it (Figure 10). The
soils of C5 cannot be cultivated consistently; due to the management process of agriculture
is difficult [61].
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3.9. Developed Soil Quality Model (DSQM) Validation

To calculate the agreement between developed model and weighted additive index,
kappa coefficient was calculated. The kappa value was 0.67 indicating substantial agree-
ment (Table 1). It is implemented to show agreement between the two models involves all
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parameters regardless their relative importance or weights [18]. Although, the geometric
mean algorism provides enhanced assessment of central conditions due to the arithmetic
mean may be skewed away from the median because the presence of outliers and anoma-
lous results [22]. DSQM is s significantly high correlated with CI (R2 = 0.71, p < 0.001),
these results indicate that the DSQM is accurate model for assessment of soil quality in the
agreement of [2]. The CI is chosen because it is using for assessing the potential of land for
a specific type of use like DSQM, but the DSQM is a newly developed approach, while CI
has been in use since 1961 [92].

4. Conclusions

Generally, soil quality assessment is very important for sustainable agricultural prac-
tices management and for precision farming especially. In this study soil physical, chemical,
biological, and geomorphological properties were used for SQ evaluation. For this purpose,
GMA jointly used with GIS to quantitative assessment of SQ and map it. The results
indicated that the soil quality (SQ) of study area classified into four classes, i.e., high quality
(SQ2), moderate quality (SQ3), low quality (SQ4), and very low quality (SQ5) occupied
0.90%, 21.87%, 22.22%, and 49.23% of the total study area in addition 5.74% of study area
is uncultivated. The results were validated by calculation kappa coefficient and showed
substantial agreement with weighted additive index, moreover significantly high correlated
with CI. As a whole, the developed soil quality model (DSQM) is qualified to assess soil
quality actuary in the study area and re applied in the same environments. Improving
SQ in the study area requires some agriculture practices for instance; reduce risks of soil
erosion which might occurs due to, geomorphologic properties of study area, increase
the rainwater and fertilizers efficiency used as, the cultivation in the study area depends
on winter rains and minimize losing of organic matter and nutrients. In conclusion, it is
very important to assess soil quality periodically to identify limiting factors of SQ and
try to maintain high crop yield, for the purpose of reduce a gap between production and
consumption and it is suggested that increasing field work and approaches of soil quality
calculation in the future studies.
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10.3390/su132313438/s1. Figure S1: The main geological units of study area. Figure S2: NDVI of
investigated area. Figure S3: The indices of topographic in the study area: (a) slope; (b) aspect; (c) plan
curvature; (d) profile curvature; (e) Slop length factor (LS-factor); (f) slope length and steepness;
(g) valley depth; and (h) analytical hill shading. Figure S4: Interpolation maps of some physical,
chemical, and biological properties: (a) soil reaction (pH); (b) exchangeable sodium percentage
(ESP); (c) cation exchange capacity (CEC, cmole/kg); (d) organic matter (OM, %); (e) sand (%); (f)
silt (%); (g) clay (%); (h) bulk density (g/cm3); (i) hydraulic conductivity (cm/h); (j) water holding
capacity (%); (k) soil salinity (EC, ds/m); (l) calcium carbonate (CaCO3, %); (m) gypsum (CaSO4, %);
(n) nitrogen (N, ppm); (o) phosphorus (P, ppm); and (p) potassium (K, ppm). Table S1: Scores of GI
parameters. Table S2: Scores of FI parameters. Table S3: Scores of PI parameters. Table S4: Scores of
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