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Abstract: Currently, manufacturers seek to provide customized and sustainable products, requiring
flexible manufacturing systems and advanced production management to cope with customization
complexity and improve environmental performance. The reconfigurable manufacturing system
(RMS) is expected to provide cost-effective customization in high responsiveness. However, reconfig-
uration optimization to produce sustainable mass-customized products in RMS is a complex problem
requiring multi-criteria decision making. It is related to three problems, process planning, scheduling,
and layout optimization, which should be integrated to optimize the RMS performance. This paper
aims at integrating the above three problems and developing an effective approach to solving them
concurrently. It formulates a multi-objective mathematical model simultaneously optimizing process
planning, job-shop scheduling, and open-field layout problem to improve RMS sustainability. The
penalty for product tardiness, the total manufacturing cost, the hazardous waste, and the greenhouse
gases emissions are minimized. Economic and environmental indicators are defined to modify
the Pareto efficiency when searching the Pareto-optimal solutions. Exact Pareto-optimal solutions
are obtained by brute-force search and compared with those of the non-environmental indicator
model. NSGA-III is adopted to obtain the approximate Pareto-optimal solutions in high effective-
ness and efficiency. A small numerical example is applied to validate the mathematical model and
resolution methods.

Keywords: reconfigurable manufacturing system; mass customization; process planning; scheduling;
layout; environmental sustainability

1. Introduction

Customers today require unique personalized products as well as sustainable ones.
Companies on the other hand want to improve their environmental impact while sur-
viving in today’s environment characterized by highly variable and uncertain demand.
Low-carbon product family design is an excellent idea to deal with the diverse needs
of customers and the pressure from government policy for environmental protection [1].
Sustainable manufacturing is useful in minimizing material and energy wastage as well
as improving machine utilization and process productivity coupled with higher customer
satisfaction [2]. Companies seek to be flexible with cost-efficiency and more sustainable.
The reconfigurable manufacturing system (RMS) is recognized as one of the most advanta-
geous next-generation manufacturing systems allowing flexibility not only in producing
a variety of parts but also in changing the system itself, which could facilitate the ever-
quicker introduction of new products caused by the current customer-driven market and
the increased awareness of environmental issues [3]. Mass customization (MC) has become
a vital manufacturing strategy to meet agility and high responsiveness for most companies
in view of current levels of market globalization, rapid technological innovations, and
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intense competition [4]. MC can lead to better environmental performance [5]. Since
RMS is designed to perform different operations on various products grouped in families
according to their operational requirements [6], it is beneficial to employ RMS to provide
MC. However, the complexity of planning and scheduling in this scenario is progressively
raised, especially if the layout switching is jointly considered. Effective methods to gener-
ate the best layout arrangements are significant to improve business profit and customer
satisfaction as well as to promote environmental protection and the achievement of MC
with RMS in practice.

The work aims to formulate the integrated process planning, scheduling, and layout
problem as well as to propose a suitable method to produce multiple mass-customized
products in RMS with minimum tardiness penalty, total cost, and amount of pollutants.

The significance of the work is first in simultaneously studying open-field layout
reconfiguration with process planning and job-shop scheduling for MC in RMS. Rare
studies optimize environmental objective simultaneously with makespan and cost for the
integrated problem. Moreover, this study sensibly devises the Pareto-optimal solutions
sorting principle in two steps by the economic and environmental indicators converted
from the proposed multi-objectives.

The main contributions of this paper are:

• including the environmental sustainability for this integrated production management
problem in RMS, which is limited in previous research;

• modifying the Pareto efficiency by combining the characteristics of this problem to get
a reasonable number of Pareto-optimal solutions for decision makers; and

• surveying the appropriate parameters to design a decent heuristic approach in order
to solve this problem effectively and efficiently.

The rest of this paper is organized as follows: the literature review is presented in
Section 2; assumptions, notations, and the mathematical model to formulate the problem
in detail are introduced in Section 3; a numerical case to validate the mathematical model,
the modified Pareto efficiency, the exact Pareto-optimal solutions obtained by brute-force
search to this small case, and comparison with the exact Pareto-optimal solutions for no
environmental indicator model are presented in Section 4; the approximate Pareto-optimal
solutions obtained from a reference-point-based many-objective evolutionary algorithm
following NSGA-II framework, NSGA-III [7], is explained in Section 5, along with the
parameter tuning to prove the effectivity and efficiency of this approach; conclusions and
future research directions are summarized in Section 6.

2. Literature Review

Previous studies principally treat process planning, scheduling, and layout design
for MC in RMS as detaching themes. Mathematical programming and heuristics are often
used to solve these problems. Research to integrate them is very limited. The works
on sustainability in RMS are few. The issue is not sufficiently treated. As scheduling
correlates deeply with RMS layout, operation sequence, and configuration to produce
mass-customized products, the comprehensive investigation is more likely to reach the
global optimum with minimum cost, time, and environmental impact.

The selection of a machine and its configuration is the primary task to determine the
process planning for distinct product features in RMS. Early research extensively investi-
gated the development of an optimal process plan for diverse parts composing a singular
product or given order. Bensmaine [8] proposed an adapted NSGA-II-based approach
minimizing the total cost and the total time by the selection of candidate reconfigurable
machines among available sets, which then will be used to carry out a certain product with
specific characteristics. Hasan [9] designed an algorithm to find the exact global optimum
of configuration and order execution sequence associated with the selected configuration
in RMS for the maximum benefit.

Some studies select the optimal process planning from the existing operation sequence,
or feasible triples consisting of the machine, configuration, and tool indices for each opera-
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tion. Musharavati [10] exploited simulated annealing algorithm with auxiliary knowledge
to minimize multiple parts’ production cost in multistage parallel reconfigurable manu-
facturing lines. Touzout [11] addressed the single-product multi-unit process planning
problem to minimize the total cost, total completion time, and machine exploitation in RMS
where three hybrid heuristics were proposed and compared.

Scheduling is responsible for unfolding a plan into detailed resource assignments and
sequences [12]. Valente [13] outlined an Integrated Scheduling Architecture supporting the
static and dynamic scheduling execution of control tasks in reconfigurable production sys-
tems. Prasad [14] used Shannon entropy to calculate weights of criteria and multi-attribute
range evaluation to calculate the uncertainty of decision variables into the uncertainty of
ranking for products scheduling in RMS. Mahmoodjanloo [15] dealt with an extension
of a flexible job-shop scheduling problem containing reconfigurable machine tools with
configuration-dependent reconfiguration time to minimize makespan.

With the drawbacks involving unbalanced resource utilization, infeasible and unrealis-
tic process plans and uncoordinated and isolated optimization when process planning and
scheduling are treated as separate entities, more and more researchers combine these two
topics into a single cohesive unit [16]. Dou [17] established a multi-objective mixed-integer
programming model in a reconfigurable flow line to minimize total cost and tardiness in
view of the close coupling between configuration generation and scheduling. Morganti
et al. [18] engaged the operation-triplet process planning and scheduling for multiple parts
with defect frequencies in RMS.

The flexibility in RMS provides the capacity to produce several products in the same
system with layout reconfiguration, whereas operations sequence or precedence, space for
reconfiguration, unproductive time, departments or machines size and shape, machine
capacity, stationary facilities, non-overlapping departments and empty spaces are con-
straints for adjustment with minimal effort [19]. Haddou et al. presented several works
to advance this research subject. In 2017, they introduced a multi-objective approach that
assessed the evolution and layout transition efforts between products of a product family
in RMS design [20]. In 2018, they put forward an exhaustive search-based heuristic to
ensure that the best layout respects both the constraints imposed by the generated pro-
cess plan and those depicting the available location in the shop floor where machines are
going to be placed [21]. In 2019, Haddou, Benderbal, and Benyoucef [22] incorporated
AMOSA with the above exhaustive search-based heuristic for the RMS layout design infra
performance metrics.

The delays originating from layout reconfiguration will influence the optimal planning
and scheduling. Hence, it is important to simultaneously optimize the three problems.
The difficulty is that each problem already exhibits its own computational complexity,
which escalates the total degree of difficulty to resolve the unified problem. Gao [23]
built a linear mathematical model to minimize the tardiness penalty for job-shop schedul-
ing and open-field layout in RMS. Campos [24] settled the instance selection problem
for a modular mass-customized product via a 0–1 nonlinear integer programming con-
cerning machine reconfiguration and layout allocation in RMS. Ghanei [25] presented a
mixed-integer programming model to minimize the total cost of energy consumption,
layout reconfiguration, and part transportation between machines during the multi-period
planning and scheduling problem.

The complexity of reconfiguration, product variation, and development processes
necessitate the use of tools to improve the eco-friendliness of RMS, for which Kurniadi [26]
suggested a multi-disciplinary green bill of material with an additional multi-disciplinary
feature to minimize emissions and hazardous materials during product development and
manage product information across multiple disciplines during the reconfiguration process.
Touzout et al. [27] propounded a hybrid multi-objective approach that consolidates the
strengths of the multi-objective integer linear programming and the evolutionary algorithm
AMOSA to tackle the process plan problem in RMS with a criterion of GHG emissions. At
the same time, a comparative study of this method with two other hybrid-meta-heuristics
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was carried out to solve the sustainable single-product multi-unit process plan generation in
RMS, and these approaches were inspired by a microscopical study of optimal Pareto front
solutions [28]. Khezri [29] conducted the process planning for a single unit of a product
in RMS with the goal of minimizing the amount of wasted hazardous which consists of
hazardous liquid waste and GHG, the total production cost, and the total production time.
Lamy [30] examined the impact of reconfigurable machine tools on schedules in the context
of a multiple path shop floor subject to variations in power supply.

In conclusion, simultaneously optimizing process planning, scheduling, and layout
under environmental sustainability for several mass-customized products in RMS is a
research gap. It is worthwhile to formulate the united problem and develop theory and
techniques for the purpose of the green and intelligent industry.

3. Problem Formulation

This paper complies with the rules of FJSP and dynamic open-field layout problem
with process planning to decide the optimal machine location, the operation sequence of
each part, machine, and configuration to perform each operation, and processing time of
each operation to yield a number of mass-customized products composed of several parts
belonging to some part variants in an RMS.

A job indicates the complete procedure to produce a part. Whether belonging to
the same product or not, jobs producing parts belonging to the exact part variant have
identical parameters to perform the same operation, but the executing machine and con-
figuration might differ. An unfinished part is termed a WIP. Assumptions and notations
about products, part variants, jobs, WIP, operations, machines, and configurations are
stated hereafter.

3.1. Assumptions

The model is based on the following assumptions:

1. Parameters about a WIP’s transportation time, cost, energy consumption, and holding
cost are only dependent on the type of part variant this WIP belongs to;

2. Parameters about an operation’s processing time, processing cost, processing energy
consumption, hazardous waste, setup time, setup cost, and setup energy consumption
are dependent on the type of part variant the corresponding WIP belongs to, the kind
of this operation, the executing machine, and the configuration;

3. Parameters about reconfiguration time, cost, and energy consumption on a machine
depend on the former configuration and the latter configuration;

4. Energy consumed from different activities is quantified with the same unit, which
can be added directly to estimate the amount of GHG emissions;

5. Parts and the final mass-customized products are qualified without any defect during
production in RMS;

6. All machines are idle without configurations and setups at the beginning of the task
to produce a given number of mass-customized products; and

7. All the raw materials and handling devices are available.

3.2. Notations

Sets, indices, parameters, and decision variables of the model are described as follows:

3.2.1. Sets and Indices

I = {1, 2, . . . , |I|}, Set of products;
i, i′ Indices of products, i, i′ ∈ I;
V = {1, 2, . . . , |V|}, Set of part variants;
v, v′ Indices of part variants, v, v′ ∈ V;
Ji,v = {1, 2, . . . , |Ji,v|}, Set of jobs belonging to part variant v in product i; ∅ if there

is no job belonging to part variant v in product i;
j, j′ Indices of jobs, j, j′ ∈ Ji,v;
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OP = {1, 2, . . . , |OP|}, Set of operations;
e, e′ Indices of operations, e, e′ ∈ OP;
VPv = {. . . , e, . . . , e′, . . .}, Set of operations to process part variant v;
Kv,e = {. . . , e′, . . .}, Set of operations precedent to operation e when processing part

variant v; ∅ if there is no operation precedent to operation e;
q, q′ Indices of positions in the operation sequence of jobs, q, q′ ∈ {1, 2, . . . , |VPv|};
l, l′ Indices of positions in the processing sequence on machines, l, l′ ∈ N+;
M = {1, 2, . . . , |M|}, Set of machines;
m, m′ Indices of machines, m, m′ ∈ M;
Gm = {1, 2, . . . , |Gm|}, Set of configurations on machine m;
g, g′ Indices of configurations, g, g′ ∈ Gm.

3.2.2. Parameters

To deliver every mass-customized product on time, the production of all the parts that
make up every mass-customized product should be finished before the due date. In case
some product is delayed, the manufacturer will receive a penalty to bear the customer’s
loss. The tardiness penalty depends on customers and the tardiness duration. Different
values of the tardiness penalty parameters in unit time imply the patience of distinct
customers.

Di, Due date of product i;
Wi, Tardiness penalty of product i per time unit;
An RMS could process various part variants experiencing similar operations in a part

family. Based on the above assumptions, parameters about transporting a WIP between
two consecutive operations performed on different machines and holding them when the
subsequent machine is occupied differ by disparate part variants. Operation precedence
is considered in processing part variants. Operations could be performed on alternative
machines with optional configurations.

MGe,m,g, 1 if operation e is feasible on machine m with configuration g; 0 otherwise;
FTv, Transport time of a WIP belonging to part variant v per distance unit;
FCv, Transport cost of a WIP belonging to part variant v per distance unit;
EFv, Energy consumption for transporting a WIP belonging to part variant v per

distance unit;
HCv, Holding cost of a WIP belonging to part variant v per time unit;
An operation indicates a procedure shaping parts with a specific feature in structure

or creating a particular function. Identical operations have different setup and processing
parameters values for different part variants. They also differ by executing machines with
selective configurations.

PTv,e,m,g, Processing time of operation e for a WIP belonging to part variant v on
machine m with configuration g;

PCv,e,m,g, Processing cost of operation e for a WIP belonging to part variant v on
machine m with configuration g;

EPv,e,m,g, Energy consumption of performing operation e for a WIP belonging to part
variant v on machine m with configuration g;

HWv,e,m,g, Hazardous waste discharged from performing operation e for a WIP be-
longing to part variant v on machine m with configuration g;

STv,e,m,g, Setup time of operation e for a WIP belonging to part variant v on machine
m with configuration g;

SCv,e,m,g, Setup cost of operation e for a WIP belonging to part variant v on machine m
with configuration g;

ESv,e,m,g, Energy consumption of setup operation e for a WIP belonging to part variant
v on machine m with configuration g;

System reconfiguration enables machines’ position change from the initial layout
to the optimal one for a production task. Machine reconfiguration enables machines to
perform diverse operations with abundant reconfigurable manufacturing tools.
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BX, Boundary of the workshop on the X-coordinate;
BY, Boundary of the workshop on the Y-coordinate;
LTm, Time for moving machine m in distance unit;
LCm, Cost for moving machine m in distance unit;
ELm, Energy consumption for moving machine m in distance unit;
Xm, Initial position of machine m on the X-coordinate;
Ym, Initial position of machine m on the Y-coordinate;
SXm, Security distance of machine m on the X-coordinate;
SYm, Security distance of machine m on the Y-coordinate;
The layout reconfiguration occurs at the beginning of the production period. All

machines are freely placed in a rectangular plant of length BX and width BY. Every
machine has a security distance on the X and Y coordinate apiece. For machine m, the
minimum acceptable interspaces between the location of machine m and others on the X
and Y coordinate are defined as the security distance SXm and SYm.

RTm,g,g′ , Reconfiguration time from configuration g to configuration g′ on machine m,
if g = g′, RTm,g,g′ = 0;

RCm,g,g′ , Reconfiguration cost from configuration g to configuration g′ on machine m,
if g = g′, RCm,g,g′ = 0;

ERm,g,g′ , Energy consumption of reconfiguration from configuration g to configuration
g′ on machine m, if g = g′, ERm,g,g′ = 0;

Hazardous waste could result in severe soil contamination and marine pollution,
threatening the survival of humans and other creatures. Increase of GHG concentrations in
the atmosphere causes frequent extreme weather and climate change globally. For these,
limits of the average hazardous waste and GHG emissions per time unit are adopted in
this problem formulation for appraising the sustainability level of production optimization.
The limit of the average hazardous waste per time unit is estimated from the boundary
of the hazardous waste for the manufacturer in a year or a certain duration. The limit of
the average GHG emissions per time unit is estimated as above. Referring to the common
method of GHG emissions measurement in the related literature, the amount of GHG
emissions is derived from converting the total amount of energy consumption with a
designated factor.

UHW, Limit of the average hazardous waste per time unit;
f , Emission factor for energy consumption;
UGE, Limit of the average GHG emissions per time unit.

3.2.3. Independent Decision Variables

xm, Position of machine m on the X-coordinate;
ym, Position of machine m on the Y-coordinate;
ρi,v,j,q, Operation processed at position q in the operation sequence of job j belonging

to part variant v in product i;
αi,v,j,q, Machine to perform operation ρi,v,j,q at position q in the operation sequence of

job j belonging to part variant v in product i;
ϕi,v,j,q, Configuration on machine αi,v,j,q to perform operation ρi,v,j,q at position q in

the operation sequence of job j belonging to part variant v in product i;
βi,v,j,q, Beginning time to perform operation ρi,v,j,q at position q in the operation

sequence of job j belonging to part variant v in product i.

3.2.4. Auxiliary Decision Variables

ci,v,j,q, Completion time of operation ρi,v,j,q at position q in the operation sequence of
job j belonging to part variant v in product i;

Ti, Tardiness of product i;
βm,l , Beginning time to perform operation at position l in the processing sequence on

machine m;
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im,l , Product of the performed operation at position l in the processing sequence on
machine m;

vm,l , Part variant of the performed operation at position l in the processing sequence
on machine m;

jm,l, Job of the performed operation at position l in the processing sequence on machine m;
qm,l , Position of the performed operation at position l in the processing sequence on

machine m;
∆xm,m′ , Distance between machine m and machine m′ on the X-coordinate;
∆ym,m′ , Distance between machine m and machine m′ on the Y-coordinate.

3.3. Mathematical Model

The aim of this work is to bring forward a constructive mathematical method to take
on an MC order fabricated in an RMS-equipped factory and find a resolution to gain
the optimum value of the above decision variables for reduced loss of delay, total cost,
and harm to the environment. The problem is formulated as a mixed-integer nonlinear
programming model (MINLP). The objective functions and constraints are expressed
hereafter. Abbreviations in the mathematical model are listed in Table 1.

Table 1. Abbreviations (authors’ own study).

Abbreviations Implication

RMS reconfigurable manufacturing system
MC mass customization

NSGA-II non-dominated sorting genetic algorithm II
NSGA-III non-dominated sorting genetic algorithm III
AMOSA archived multi-objective simulated annealing

GHG greenhouse gases
WIP work in progress
FJSP flexible job-shop scheduling

NP-hard non-deterministic polynomial-time hardness
TSC the total setup cost
TPC the total processing cost
TFC the total WIP transport cost
THC the total WIP holding cost
TRC the total machine reconfiguration cost
TLC the total layout reconfiguration cost

THW the total amount of hazardous waste
LHW the allowed amount of hazardous waste
EGHG the total amount of GHG emissions
LGE the allowed amount of GHG emissions

3.3.1. Objective Functions

There are three objectives in this mathematical model, to minimize:

• The total penalty of tardiness for all the delayed products accomplished after the
due date;

• The total cost including the total setup cost, the total processing cost, the total WIP
transport cost, the total WIP holding cost, the total machine reconfiguration cost, and
the total layout reconfiguration cost; and

• The value of the environment indicator defined as the aggregate of the normalized
hazardous waste item (the ratio of the total amount of hazardous waste and the al-
lowed amount of hazardous waste) and the normalized GHG emissions item (the ratio
of the total amount of GHG emissions and the allowed amount of GHG emissions).

Min
|I|

∑
i=1

Ti ×Wi (1)

Min TSC + TPC + TFC + THC + TRC + TLC (2)



Sustainability 2021, 13, 13323 8 of 24

Min
THW
LHW

+
EGHG
LGE

(3)

Essentially, the above objective functions optimize the production scheme for man-
ifold mass-customized products in RMS for time, cost, and environmental impact. The
completion time of every mass-customized product is weighted by customer-based prior-
ity in the first objective function. In addition, energy consumption is taken into account
through GHG emissions. All the variables in the objective functions are defined in the
constraints below.

3.3.2. Constraints

The following equations present the constraints to define the feasible solutions:

ci,v,j,q = βi,v,j,q + PTv,ρi,v,j,q ,αi,v,j,q ,ϕi,v,j,q

∀i ∈ I, ∀j ∈ Ji,v, ∀q ∈ {1, 2, . . . |VPv|} (4)

Ti = max
(

ci,v,j,|VPv | − Di, 0
)

∀i ∈ I, ∀v ∈ V, ∀j ∈ Ji,v (5)

βm,1 = min
(

βi,v,j,q
)

∀m ∈ M, ∀αi,v,j,q = m (6)

βm,l+1 = min
(

βi,v,j,q
)

∀m ∈ M, ∀l ∈ N+, ∀αi,v,j,q = m, ∀βi,v,j,q > βm,l (7)

im,l = i, vm,l = v, jm,l = j, qm,l = q
∃i ∈ I, ∃v ∈ V, ∃j ∈ Ji,v, ∃q ∈ {1, 2, . . . |VPv|}, βi,v,j,q = βm,l

(8)

∆xm,m′ = |xm − xm′ |, ∆ym,m′ = |ym − ym′ |
∀m, m′ ∈ M (9)

TSC = ∑
|M|
m=1(SCvm,1,ρim,1,vm,1,jm,1,qm,1

,m,ϕim,1,vm,1,jm,1,qm,1

+∑l=2 SCvm,l ,ρim,l ,vm,l ,jm,l ,qm,l
,m,ϕim,l ,vm,l ,jm,l ,qm,l

)

∀l ∈ N+, ∀l ≥ 2, ∀vm,l 6= vm,l−1 ∨ ∀ρim,l ,vm,l ,jm,l ,qm,l 6=
ρim,l−1,vm,l−1,jm,l−1,qm,l−1

∨ ∀ϕim,l ,vm,l ,jm,l ,qm,l 6= ϕim,l−1,vm,l−1,jm,l−1,qm,l−1

(10)

TPC = ∑|I|
i=1 ∑|V|

v=1 ∑|Ji,v |
j=1 ∑|VPv |

q=1 PCv,ρi,v,j,q ,αi,v,j,q ,ϕi,v,j,q (11)

TFC = ∑|I|
i=1 ∑|V|

v=1 ∑|Ji,v |
j=1 ∑|VPv |−1

q=1 FCv ×
(

∆xαi,v,j,q ,αi,v,j,q+1 + ∆yαi,v,j,q ,αi,v,j,q+1

)
(12)

THC = ∑
|I|
i=1 ∑

|V|
v=1 ∑

|Ji,v |
j=1 ∑

|VPv |−1
q=1 HCv

×
(

βi,v,j,q+1 − ci,v,j,q − FTv×
(

∆xαi,v,j,q ,αi,v,j,q+1 + ∆yαi,v,j,q ,αi,v,j,q+1

))
(13)

TRC = ∑|M|
m=1 ∑l=1 RCm,ϕim,l ,vm,l ,jm,l ,qm,l

,ϕim,l+1,vm,l+1,jm,l+1,qm,l+1
(14)

TLC = ∑|M|
m=1 LCm × (|xm − Xm|+ |ym −Ym|) (15)

THW = ∑|I|
i=1 ∑|V|

v=1 ∑|Ji,v |
j=1 ∑|VPv |

q=1 HWv,ρi,v,j,q ,αi,v,j,q ,ϕi,v,j,q (16)

EGHG = Ettl × f (17)
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Ettl = ESC + EPC + EFC + ERC + ELC (18)

ESC = ∑
|M|
m=1

(
ESvm,1,ρim,1 ,vm,1 ,jm,1 ,qm,1 ,m,ϕim,1 ,vm,1 ,jm,1 ,qm,1

+∑l=2 ESvm,l ,ρim,l ,vm,l ,jm,l ,qm,l ,m,ϕim,l ,vm,l ,jm,l ,qm,l

)
∀l ∈ N+, ∀l ≥ 2, ∀vm,l 6= vm,l−1 ∨ ∀ρim,l ,vm,l ,jm,l ,qm,l 6=

ρim,l−1,vm,l−1,jm,l−1,qm,l−1
∨ ∀ϕim,l ,vm,l ,jm,l ,qm,l

6= ϕim,l−1,vm,l−1,jm,l−1,qm,l−1

(19)

EPC = ∑|I|
i=1 ∑|V|

v=1 ∑|Ji,v |
j=1 ∑|VPv |

q=1 EPv,ρi,v,j,q ,αi,v,j,q ,ϕi,v,j,q (20)

EFC = ∑|I|
i=1 ∑|V|

v=1 ∑|Ji,v |
j=1 ∑|VPv |−1

q=1 EFv ×
(

∆xαi,v,j,q ,αi,v,j,q+1 + ∆yαi,v,j,q ,αi,v,j,q+1

)
(21)

ERC = ∑|M|
m=1 ∑l=1 ERm,ϕim,l ,vm,l ,jm,l ,qm,l

,ϕim,l+1,vm,l+1,jm,l+1,qm,l+1
(22)

ELC = ∑|M|
m=1 ELm × (|xm − Xm|+ |ym −Ym|) (23)

LHW = cmax ×UHW (24)

LGE = cmax ×UGE (25)

cmax = max
(

ci,v,j,|VPv |

)
∀i ∈ I, ∀v ∈ V, ∀j ∈ Ji,v (26)

THW ≤ LHW (27)

EGHG ≤ LGE (28)

MGρi,v,j,q ,αi,v,j,q ,ϕi,v,j,q = 1
∀i ∈ I, ∀v ∈ V, ∀j ∈ Ji,v, ∀q ∈ {1, 2, . . . |VPv|} (29)

βi,v,j,q′ ≥ ci,v,j,q + FTv ×
(

∆xαi,v,j,q ,αi,v,j,q′ + ∆yαi,v,j,q ,αi,v,j,q′

)
∀i ∈ I, ∀v ∈ V, ∀j ∈ Ji,v, ∀q, q′ ∈ {1, 2, . . . |VPv|}, ∀ρi,v,j,q ∈ Kv,ρi,v,j,q′

(30)

βm,1 ≥ STvm,1,ρim,1,vm,1,jm,1,qm,1
,m,ϕim,1,vm,1,jm,1,qm,1

∀m ∈ M (31)

βm,l+1 ≥ cim,l ,vm,l ,jm,l ,qm,l

∀m ∈ M, ∀l ∈ N+, vm,l+1 = vm,l ∧ ρim,l+1,vm,l+1,jm,l+1,qm,l+1
= ρim,l ,vm,l ,jm,l ,qm,l∧

ϕim,l+1,vm,l+1,jm,l+1,qm,l+1
= ϕim,l ,vm,l ,jm,l ,qm,l

(32)

βm,l+1 ≥ cim,l ,vm,l ,jm,l ,qm,l + RTm,ϕim,l ,vm,l ,jm,l ,qm,l
,ϕim,l+1,vm,l+1,jm,l+1,qm,l+1

+STvm,l+1,ρim,l+1,vm,l+1,jm,l+1,qm,l+1
,m,ϕim,l+1,vm,l+1,jm,l+1,qm,l+1

∀m ∈ M, ∀l ∈ N+, vm,l+1 6= vm,l ∨ ρim,l+1,vm,l+1,jm,l+1,qm,l+1
6= ρim,l ,vm,l ,jm,l ,qm,l∨

ϕim,l+1,vm,l+1,jm,l+1,qm,l+1
6= ϕim,l ,vm,l ,jm,l ,qm,l

(33)

∆xm,m′ ≥ SXm + SXm′ ∨ ∆ym,m′ ≥ SYm + SYm′

∀m, m′ ∈ M (34)

SXm ≤ xm ≤ BX− SXm, SYm ≤ ym ≤ BY− SYm
∀m ∈ M (35)
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ρi,v,j,q ∈ VPv
∀i ∈ I, ∀v ∈ V, ∀j ∈ Ji,v, ∀q ∈ {1, 2, . . . |VPv|} (36)

αi,v,j,q ∈ M
∀i ∈ I, ∀v ∈ V, ∀j ∈ Ji,v, ∀q ∈ {1, 2, . . . |VPv|} (37)

ϕi,v,j,q ∈ Gαi,v,j,q

∀i ∈ I, ∀v ∈ V, ∀j ∈ Ji,v, ∀q ∈ {1, 2, . . . |VPv|} (38)

xm, ym, βi,v,j,q ∈ R+
∀m ∈ M, ∀i ∈ I, ∀v ∈ V, ∀j ∈ Ji,v, ∀q ∈ {1, 2, . . . |VPv|} (39)

Constraint (4) defines the completion time of an operation in the operation sequence
of one part’s process plan. Constraint (5) gives the definition of a product’s tardiness.
Constraints (6)–(8) show the idea to obtain the auxiliary decision variables about jobs and
operations in the processing order on machines. When all the independent variables of
operation beginning times βi,v,j,q are decided, the processing orders on machines are also
determined. The information about ordered jobs and operations on machines is crucial
because machine reconfiguration and setup activities depend on the selected configurations
to perform two consecutive operations and types of jobs processed. Constraint (6) finds the
first operation on each machine. Constraint (7) rechecks and reformulates the remaining
operations processed in order on machines. Constraint (8) acquires the corresponding jobs
of operations in the processing order on machines. Constraint (9) calculates the distance
on the X and Y coordinate between any two machines. Constraints (10)–(15) calculate
the total setup cost, the total processing cost, the total WIP transport cost, the total WIP
holding cost, the total machine reconfiguration cost, and the total layout reconfiguration
cost separately. Constraint (16) calculates the total amount of hazardous waste. The
total amount of consumed energy times factor f to calculate the total amount of GHG
emissions in Constraint (17). Constraint (18) implies the total amount of consumed energy
comprising the total energy consumed from the setup, processing, WIP transport, machine
reconfiguration, and layout reconfiguration activities. Constraints (19)–(23) calculate the
total energy consumed from the activities mentioned above separately. Constraint (24)
fixes the allowed amount of hazardous waste by multiplying the completion time of the
entire production period with the limit of the average hazardous waste per time unit.
Constraint (25) fixes the allowed amount of GHG emissions similarly to how the allowed
amount of hazardous waste is fixed. Constraint (26) determines the completion time of
the entire production period. Constraints (27) and (28) restrict a feasible solution subject to
the hazardous waste and GHG emissions limit. Constraint (29) ensures that the selected
machine and configuration are able to perform the corresponding operation. Constraint (30)
states that the beginning time of an operation is no earlier than the sum of the completion
time of any higher precedence operation and the WIP transport time between these two
operations. Constraint (31) signifies that the first operation on each machine should
be performed after setup. Constraint (32) claims no setup and reconfiguration between
two consecutive and identical operations processing two WIPs belonging to the same part
variant and performed on a machine with the same configuration. Otherwise, the setup time
and reconfiguration time should be deliberated, as said in constraint (33). Constraint (34)
declares non-overlapping between any two machines on the X or Y coordinate. Constraints
(35)–(39) define the domain of the independent decision variables.

4. Numerical Experiment

This problem is NP-hard because the proved NP-hard FJSP is adopted. A small
example is exercised to validate the model. The general Pareto efficiency is modified to
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reduce the optimal solutions in the Pareto front, inasmuch as multi-objective optimization
will probably have redundant solutions to confuse decision-makers. Based on that, the
exact Pareto-optimal solutions are obtained by brute-force search.

As depicted in Figure 1, there are two products in this small numerical example, each
composed of an individual part belonging to a particular part variant. The due date and
the tardiness penalty per time unit for each product are given in this figure. In addition,
parameters about a WIP transport time, transport cost, transport energy consumption, and
holding time belonging to each part variant are displayed in this figure.
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Figure 1. Parameters about products and part variants in the numerical example (authors’
own study).

The average hazardous waste and GHG emissions limit per time unit (UHW and
UGE) are designated to 1 and 7. The factor to appraise the GHG emissions by the amount
of energy consumption ( f ) is set to 2.

The initial layout in the open-field workshop is illustrated in Figure 2. The secu-
rity distance of each machine, together with the layout reconfiguration cost and energy
consumption parameters, are marked in this figure too. Figure 3 presents the reconfirma-
tion time, cost, and energy consumption parameters between different configurations on
each machine.

Parameters about processing time, processing cost, processing energy consumption,
hazardous waste, setup time, setup cost, and setup energy consumption on a certain
machine with a certain configuration to produce a part belonging to each part variant are
presented in Figure 4.
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4.1. Modified Pareto Efficiency

For a three-objective minimizing mathematical model, two solutions sorted by the
general Pareto efficiency have twenty-seven kinds of relationship (33 since there are three
kinds of relationship comparing the values of an objective function for two solutions and
there are three objective functions). As illustrated in Figure 5, solution u and solution v
in the Pareto front are non-dominated to each other, entailing that the values of their first
objective function ( f1u and f1v ), second objective function ( f2u and f2v ), and third objective
function ( f3u and f3v ) match one of the thirteen conditions. The general Pareto efficiency
brings about numerous Pareto-optimal solutions in the Pareto front, also giving rise to
excess approximate Pareto-optimal solutions during approximate optimization searching.
Seeing that the number of feasible solutions in the solution space will not change by the
sorting methods, a strict Pareto efficiency narrows the Pareto front and decreases the
collected Pareto-optimal solutions.



Sustainability 2021, 13, 13323 13 of 24

Sustainability 2021, 13, x FOR PEER REVIEW 13 of 24 
 

  
(a) (b) 

Figure 3. Reconfiguration time, cost, and energy consumption: (a) on machine 1; (b) on machine 2 (author’s own study). 

Parameters about processing time, processing cost, processing energy consumption, 
hazardous waste, setup time, setup cost, and setup energy consumption on a certain ma-
chine with a certain configuration to produce a part belonging to each part variant are 
presented in Figure 4. 

 
 

(a) (b) 

Figure 4. Processing and setup parameters to produce a part belong to: (a) part variant 1; (b) part variant 2 (authors’ own 
study). 

4.1. Modified Pareto Efficiency 
For a three-objective minimizing mathematical model, two solutions sorted by the 

general Pareto efficiency have twenty-seven kinds of relationship (3  since there are three 
kinds of relationship comparing the values of an objective function for two solutions and 
there are three objective functions). As illustrated in Figure 5, solution 𝑢 and solution 𝑣 
in the Pareto front are non-dominated to each other, entailing that the values of their first 
objective function (𝑓  and 𝑓 ), second objective function (𝑓  and 𝑓 ), and third objec-

Figure 4. Processing and setup parameters to produce a part belong to: (a) part variant 1; (b) part variant 2 (authors’
own study).

Sustainability 2021, 13, x FOR PEER REVIEW 14 of 24 
 

tive function (𝑓  and 𝑓 ) match one of the thirteen conditions. The general Pareto effi-
ciency brings about numerous Pareto-optimal solutions in the Pareto front, also giving 
rise to excess approximate Pareto-optimal solutions during approximate optimization 
searching. Seeing that the number of feasible solutions in the solution space will not 
change by the sorting methods, a strict Pareto efficiency narrows the Pareto front and de-
creases the collected Pareto-optimal solutions. 

 
Figure 5. General Pareto efficiency (author’s own study). 

Owing to the fact that the first objective function and second objective function are 
quantified in currency, the sum of these two objectives (𝑓 + 𝑓 ) could be interpreted as 
the economic indicator. As illustrated in Figure 6, if 𝑓 + 𝑓  is set as the first objective 
function and 𝑓  is set as the second objective function to formulate a bi-objective model 
directly, the Pareto front of this bi-objective model is close to that of the above three-ob-
jective model, when solutions are sorted by the general Pareto efficiency. 

 
Figure 6. General Pareto efficiency (authors’ own study). 

This paper proposes a modified Pareto efficiency lowering the probability of a solu-
tion becoming non-dominated. As shown in Figure 7, it is divided into two steps. In the 
first step, solutions are sorted by the values of the first objective function and the second 
objective function. In the second step, all the non-dominated solutions from the previous 

Figure 5. General Pareto efficiency (author’s own study).

Owing to the fact that the first objective function and second objective function are
quantified in currency, the sum of these two objectives ( f1 + f2) could be interpreted as the
economic indicator. As illustrated in Figure 6, if f1 + f2 is set as the first objective function
and f3 is set as the second objective function to formulate a bi-objective model directly, the
Pareto front of this bi-objective model is close to that of the above three-objective model,
when solutions are sorted by the general Pareto efficiency.
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Figure 6. General Pareto efficiency (authors’ own study).

This paper proposes a modified Pareto efficiency lowering the probability of a solution
becoming non-dominated. As shown in Figure 7, it is divided into two steps. In the
first step, solutions are sorted by the values of the first objective function and the second
objective function. In the second step, all the non-dominated solutions from the previous
step are further sorted by the economic indicator and the environment indicator ( f3). As
a result, the relationship between solution u and solution v in the Pareto front sorted by
the modified Pareto efficiency falls into the reduced five conditions illustrated at the top of
Figure 7.
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4.2. Exact Pareto-Optimal Solutions Obtained from Brute-Force Search

There are three exact Pareto-optimal solutions obtained from brute-force search to this
small numerical example. Table 2 lists the values of the three objectives in each solution.
From this table, two solutions have the same values for all objective functions.



Sustainability 2021, 13, 13323 15 of 24

Table 2. The values of the multi-objective functions in the exact Pareto-optimal solutions for the small numerical example
(authors’ own study).

Solutions First Objective Function Second Objective Function Third Objective Function

Solution 1 3 70 0.9811320754716981
Solution 2 10 69 0.8662131519274376
Solution 3 10 69 0.8662131519274376

Table 3 displays the optimal layout in each exact Pareto-optimal solution. In fact, it is
the same as the initial layout, reflecting that layout reconfiguration is the inferior strategy
to arrange optimal production management.

Table 3. The optimal layout in the exact Pareto-optimal solutions for the small numerical example (authors’ own study).

Solutions Machines Position on the X-Coordinate Position on the Y-Coordinate

Solution 1
Machine 1 3 3
Machine 2 9 7

Solution 2
Machine 1 3 3
Machine 2 9 7

Solution 3
Machine 1 3 3
Machine 2 9 7

Table 4 gives the optimum beginning time to produce every part in the optimal operation
sequence on the best machine with the selected configuration. We can observe that every job
is implemented throughout one machine in each solution, which makes it seem that machine
reconfiguration is superior to the WIP transport for this small numerical example.

Table 4. The optimal production scheme in the exact Pareto-optimal solutions for the small numerical example (authors’
own study).

Solutions Independent Decision Variables
Processes (i,v,j,q)

(1, 1, 1, 1) (1, 1, 1, 2) (1, 1, 1, 3) (2, 2, 1, 1) (2, 2, 1, 2) (2, 2, 1, 3)

Solution 1

ρi,v,j,q 0 1 2 0 1 2

αi,v,j,q 1 1 1 0 0 0

ϕi,v,j,q 1 2 0 1 0 0

βi,v,j,q 3 27 45 3 12 23

Solution 2

ρi,v,j,q 0 1 2 0 1 2

αi,v,j,q 0 0 0 0 0 0

ϕi,v,j,q 1 0 0 1 0 0

βi,v,j,q 31 48 56 3 12 23

Solution 3

ρi,v,j,q 0 2 1 0 1 2

αi,v,j,q 0 0 0 0 0 0

ϕi,v,j,q 1 0 0 1 0 0

βi,v,j,q 31 43 59 3 12 23

4.3. Comparison with Exact Pareto-Optimal Solutions for No Environmental Indicator Model

There are seven exact Pareto-optimal solutions for the model without the third ob-
jective function and the relevant parameters in this problem formulation. The values of
the two objective functions, the optimal layout, and the optimal process planning and
scheduling arrangement in each solution are in Tables 5–7.
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Table 5. The values of the multi-objective functions in the exact Pareto-optimal solutions for no environmental indicator
model (authors’ own study).

Solutions First Objective Function Second Objective Function

Solution 1 3 70
Solution 2 10 69
Solution 3 10 69
Solution 4 36 63
Solution 5 36 63
Solution 6 36 63
Solution 7 36 63

Table 6. The optimal layout in the exact Pareto-optimal solutions for no environmental indicator model (authors’ own study).

Solutions Machines Position on the X-Coordinate Position on the Y-Coordinate

Solution 1
Machine 1 3 3
Machine 2 9 7

Solution 2
Machine 1 3 3
Machine 2 9 7

Solution 3
Machine 1 3 3
Machine 2 9 7

Solution 4
Machine 1 3 3
Machine 2 9 7

Solution 5
Machine 1 3 3
Machine 2 9 7

Solution 6
Machine 1 3 3
Machine 2 9 7

Solution 7
Machine 1 3 3
Machine 2 9 7

Compared with the exact Pareto-optimal solutions in Section 4.2, there are four solu-
tions eliminated by the environmental indicators. Moreover, these four solutions would
be removed as well if all the above solutions are just sorted by the economic indicator.
Thus, considering environmental sustainability has a positive impact on the optimization
of mass-customized production management in RMS. The modified Pareto efficiency is
advanced in gathering economically profitable and environmentally friendly solutions.
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Table 7. The optimal production scheme in the exact Pareto-optimal solutions for no environmental indicator model
(authors’ own study).

Solutions Independent Decision Variables
Processes (i,v,j,q)

(1, 1, 1, 1) (1, 1, 1, 2) (1, 1, 1, 3) (2, 2, 1, 1) (2, 2, 1, 2) (2, 2, 1, 3)

Solution 1

ρi,v,j,q 0 1 2 0 1 2

αi,v,j,q 1 1 1 0 0 0

ϕi,v,j,q 1 2 0 1 0 0

βi,v,j,q 3 27 45 3 12 23

Solution 2

ρi,v,j,q 0 1 2 0 1 2

αi,v,j,q 0 0 0 0 0 0

ϕi,v,j,q 1 0 0 1 0 0

βi,v,j,q 31 48 56 3 12 23

Solution 3

ρi,v,j,q 0 2 1 0 1 2

αi,v,j,q 0 0 0 0 0 0

ϕi,v,j,q 1 0 0 1 0 0

βi,v,j,q 31 43 59 3 12 23

Solution 4

ρi,v,j,q 0 1 2 0 1 2

αi,v,j,q 0 0 0 0 0 0

ϕi,v,j,q 1 0 0 1 0 0

βi,v,j,q 5 44 52 13 22 33

Solution 5

ρi,v,j,q 0 1 2 0 1 2

αi,v,j,q 0 0 0 0 0 0

ϕi,v,j,q 1 0 0 1 0 0

βi,v,j,q 11 44 52 3 22 33

Solution 6

ρi,v,j,q 0 2 1 0 1 2

αi,v,j,q 0 0 0 0 0 0

ϕi,v,j,q 1 0 0 1 0 0

βi,v,j,q 5 39 55 13 22 33

Solution 7

ρi,v,j,q 0 2 1 0 1 2

αi,v,j,q 0 0 0 0 0 0

ϕi,v,j,q 1 0 0 1 0 0

βi,v,j,q 11 39 55 3 22 33

5. Approximate Optimization

The approximate Pareto-optimal solutions are obtained from NSGA-III, an algorithm
advantaged in finding a well-converged and well-diversified set of points for multi—even
many—objective optimization problems [7]. Without any preference information, the
reference points are generated on the three three-dimensional unit simplex. The total
number of the reference points (H) in this three-objective problem is defined by the division
parameter for each objective axis (p):

H =

(
3 + p− 1

p

)
(40)
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The decision variables about machine positions and the beginning time of each process
in the operation sequence of every job are encoded with continuous values. Decision
variables about the selected operation, machine, and configuration corresponding to each
process in the operation sequence of every job are encoded with integer values. Since they
are encoded with real values, there is no special decoding procedure. Selection, crossover,
and mutation take place in order during each generation until the number of iterations
comes to the generation limit.

The performance of NSGA-III is assessed by effectivity and efficiency. Based on the
fact that this is a three objective minimization problem, and most of the approximate Pareto-
optimal solutions are dominated by the exact Pareto-optimal solutions, or at best equal to
the exact Pareto-optimal solutions, a metric (e f f ) to assess the effectivity of NSGA-III for
the numerical example is defined as the following equation:

e f f =

| f1− f1e |
f1

+
| f2− f2e |

f2
+
| f3− f3e |

f3

3
(41)

In this equation, f1e , f2e , and f3e are the mean values of the first, second, and third
objective function in the exact Pareto-optimal solutions. f1, f2, and f3 are the mean values of
the first, second, and third objective function in the approximate Pareto-optimal solutions
obtained by NSGA-III in a run.

The efficiency of NSGA-III to solve this problem is assessed by the computation time
(t). Small effectivity metric value and short computation time are preferred, representing
high effectivity and efficiency.

In NSGA-III, the number of the reference points, mutation probability, and the genera-
tion limit stipulating the number of iterations in a run mainly influence the performance of
this approach. Factor analysis is carried out in Minitab to check the dependency relating
the effectiveness and efficiency of this approach with the three parameters stated above.

5.1. Approximate Pareto-Optimal Solutions Obtained from NSGA-III

Here are three approximate Pareto-optimal solutions obtained in a run by setting
p = 2, mutation probability (0.05), and generation limit (2000). Hence, the number of the
reference points is equal to six, twice the number of the exact Pareto-optimal solutions.

The objective values, optimal layout, and the optimal production scheme in these
approximate Pareto-optimal solutions are displayed in Tables 8–10. For the optimal layout,
only Machine 2’s position on the X-coordinate is changed compared with that in the exact
Pareto-optimal solutions. The process plans for these solutions are almost the same as
that of the exact Pareto-optimal solutions, while the scheduling is quite different as the
beginning times of operations alter a lot.

Table 8. The values of the multi-objective functions in the approximate Pareto-optimal solutions for the small numerical
example (authors’ own study).

Solutions First Objective Function Second Objective Function Third Objective Function

Solution 1 6 74 1.0242587601078168
Solution 2 36 65 0.910411622276029
Solution 3 36 65 0.910411622276029
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Table 9. The optimal layout in the approximate Pareto-optimal solutions for the small numerical example (authors’
own study).

Solutions Machines Position on the X-Coordinate Position on the Y-Coordinate

Solution 1
Machine 1 3 3
Machine 2 8 7

Solution 2
Machine 1 3 3
Machine 2 8 7

Solution 3
Machine 1 3 3
Machine 2 8 7

Table 10. The optimal production scheme in the Exact Pareto-optimal solutions for the small numerical example (authors’
own study).

Solutions Independent Decision Variables
Processes (i,v,j,q)

(1, 1, 1, 1) (1, 1, 1, 2) (1, 1, 1, 3) (2, 2, 1, 1) (2, 2, 1, 2) (2, 2, 1, 3)

Solution 1

ρi,v,j,q 0 1 2 1 0 2

αi,v,j,q 1 1 1 0 0 0

ϕi,v,j,q 1 2 0 0 1 0

βi,v,j,q 3 27 45 3 13 24

Solution 2

ρi,v,j,q 0 1 2 0 1 2

αi,v,j,q 0 0 0 0 0 0

ϕi,v,j,q 1 0 0 1 0 0

βi,v,j,q 5 44 52 13 22 33

Solution 3

ρi,v,j,q 0 2 1 0 1 2

αi,v,j,q 0 0 0 0 0 0

ϕi,v,j,q 1 0 0 1 0 0

βi,v,j,q 5 39 55 13 22 33

The computation time of the corresponding run is 7.828125 s, saving 99.6% of the
computation time to obtain the exact Pareto-optimal solutions (2093.28125 s). The value of
the effectivity metric is 0.256988154, which means the deviation of the mean value for three
objective values is less than 26%.

The programming was conducted on a laptop computer powered by an Intel Core
i7-7600U CPU (2.80 GHz) and 16 GB of RAM. Algorithms are programmed in PyCharm, the
software of a Python Integrated Development Environment. The version used is 2021.2.2.
Python 3.8 was configured as a project interpreter.

5.2. Parameter Tunning

There are two levels for each factor in factor analysis, as shown in Table 11. It requires
eight runs necessary for a two-level full factorial design with three factors. The number
of replicates for the corner points was three. Thus, there were 24 runs altogether in this
factor analysis.

The Pareto charts of standardized effects in Figure 8 reveal that the common factor
of the number of the reference points, mutation probability, and generation limit is statis-
tically significant to the effectivity of NSGA-III in solving this problem, yet the number
of the reference points, generation limit, and the common factor of these two factors are
statistically significant to the efficiency of NSGA-III in solving this problem.
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Table 11. Two levels for each factor in factor analysis (authors’ own study).

Solutions Low Level High Level

Number of reference point 6 15
Mutation probability 0.05 0.1

Generation limit 1000 2000
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The main effects plots in Figure 9 reveal that the number of the reference points and
the mutation probability at a high level are obviously beneficial to improve the effectivity,
the number of the reference points and the generation limit at a low level are evidently
beneficial to improve the efficiency of this approach to solve the problem in this paper.
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6. Conclusions

This paper presented a multi-objective mathematical model to manage MC in RMS
from the economic and environmental perspectives concurrently. Reconfiguration on
machine and system levels are both taken into consideration. Decisions about process
planning, job-shop scheduling, and open-field layout are simultaneously optimized in an
MINLP model. The general Pareto efficiency is modified to sort solutions either in the
solution space of exhaustive search or among the solutions obtained from iterations in the
heuristics. Results comparing the exact Pareto-optimal of this problem and that of the non-
environmental model certify the significance of considering environmental sustainability
in the optimization of production management. Since this problem is NP-hard, NSGA-III is
prospected to solve this problem in high efficiency. Limited by memory to obtain the exact
Pareto-optimal solutions in brute-force search, this paper used a small numerical example to
validate the mathematical model and the adopted approach. The dependency between the
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performance of this approach and the number of the reference points, mutation probability,
and the generation limit is analyzed by two-level factor analysis. The results evidenced
that NSGA-III with proper parameters is practical for finding the desired solutions timely
for this sophisticated problem.

The limitation of this study is deficient validation with regard to the resolution. In
addition to NSGA-III, other heuristics and combinatorial optimization algorithms for
multi-objective mixed-integer nonlinear programming ought to be tried out. Supplemental
numerical analysis for more problem instances of large scales should be done to test the
performance of employed methods thoroughly. This work implicates the advantage of
the eco-friendly standpoint in operation management and contributes to the fundamental
understanding of layout integrated production planning for MC in RMS. It is applicable to
intelligent discrete manufacturing in the context of Industry 4.0. The stochastic arrival of
orders and investigation from the social pillar of sustainability could expand this model.

The state of the research illustrates that no continuous approaches for production
planning and scheduling for reconfigurable manufacturing systems are available [31],
while time-dependent energy prices are a consequence of replacing classical power plants
with renewable energies in the course of sustainable power generation [32]. Therefore,
developing novel strategies/algorithms that can be used in real-time to fulfill the efficiency
requirement of operational decision-making in RMS is critical for future research [33]. Fur-
thermore, dynamic environments complicate the model and run-time limits the application
of mathematical optimization to this NP-hard problem [34]. New methodologies such as
deep reinforcement learning should be explored to study the real-time optimization and
collaborative control of RMS in intelligent manufacturing [35].
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