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Abstract: The concentrations of sugars and acids are very important for the quality and the stability
of wines. In addition, the proportion of the two main acids, i.e., tartaric acid and malic acid, is a
significant factor for wine taste and stability. Over a period of three seasons in an organic vineyard,
the influence of leaf area on the concentration of total soluble solids (TSS), pH, titratable acidity
(TA), the concentration of tartaric acid and malic acid, and their mutual proportions were monitored.
Vines of three varieties (‘Rhine Riesling’, ‘Pinot Gris’, ‘Sauvignon Blanc’) were treated using three
different treatments (proportion of leaves removed 0%, 40%, and 70%). All varieties exhibited
positive correlations between leaf area and TSS. In terms of relationships between TA and leaf area,
‘Sauvignon Blanc’ was the most sensitive variety. The highest differences between the individual
variants were found for this variety. The tartaric to malic acid ratio displayed a significant seasonal
effect, which was mostly more important than leaf area reduction. The size of the leaf area mainly
affected the accumulation of sugars in the grapes, while content and ratio of acids was not affected so
significantly. Therefore, leaf area regulation is one of the ways to optimize the composition of grapes
in organic vineyards.

Keywords: grapevine; organic; leaf area; tartaric acid; malic acid; pH

1. Introduction

The aim of organic viticulture is to introduce a production system that minimizes the
occurrence of diseases and pests and reduces the use of pesticides, so that the final product
is not affected by a large number of interventions [1]. Organic grapevine production
carries certain risks, such as unreliable yields, disease and pest control problems, as well as
reduced yields of 8–16% [2–4]. Organic grape production systems differ from conventional
production and may, therefore, have an impact on the quality and composition of wine [5].
In organic vineyards, the grapes have a longer ripening time because the release of the
supplied nutrients is slower [6]. No differences in sugar or acid contents were found when
comparing conventional and organic grapes production [7].

Organic acids in wine grapes include tartaric acid, malic acid, citric acid, gluconic
acid, mucic acid, and more. Of these, tartaric acid and malic acid are most prevalent.
The proportion of the two is important, not only in terms of the manner the wine expresses
its taste, as it also determines the pH of the must and is the key criterion for determining
the ripeness of the grapes [8]. Wines with a higher concentration of malic acid have an
unbalanced taste because malic acid has a sharper taste than tartaric acid. Tartaric acid, i.e.,
dihydroxysuccinic acid, occurs in the grapes in the L(+) form and exists in all parts of the
grape and in leaves. As the berries grow, the content of this acid increases [9]. As the berries
soften, the acid already ceases to generate and its content becomes reduced, such that its
concentration is diluted [10]. Partial reduction in tartaric acid concentration could by
caused when some extent of the substance becomes linked with potassium (K+) contained
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in the grapes to produce potassium bitartrate, which is difficult to dissolve. For this reason,
grapes growing on plants with high stock of K(+) may contain lower quantities of tartaric
acid [11]. Malic acid is present in the L(−) form and is less stable than tartaric acid. In the
northern hemisphere, the synthesis and storage of malic acid mostly occurs during the first
growth stage of the berries [12]. During ripening, malic acid is decarboxylated to produce
pyruvate, while a small portion is converted by gluconeogenesis to fructose and glucose.
Increased temperature accelerates the process, so grapes in more southerly growing areas
are lower in malic acid than northern regions. Grapes from seasons with high temperatures
and little rainfall also exhibit a lower quantity of malic acid than those produced in colder
seasons with higher precipitation [11,13–15].

Interventions for regulating leaf area form the basis for many vineyard procedures
that lead to sourcing grapes with the characteristics required [16]. Reduction of the leaf
area can favor nutrient intake for grape ripening. It was previously shown that removal of
the leaves can increase growth of transverse shoots and increase photosynthetic activity of
other leaves [17,18].

Some organic acids are synthesized in leaves (particularly tartaric), while others
are produced in berries [19]. As berries ripen, the tartaric acid ceases to flow from the
leaves into the grapes along with assimilates, while malic acid is decarboxylated [8,12].
Carboxylation of phosphoenolpyruvate to oxaloacetic acid, followed by reduction in the
berries, is responsible for malic acid synthesis [20,21]. In unripe berries at beginning of
veraison, the titratable acidity (TA) is very high and malic acid is higher than tartaric acid.
During maturation, TA decreases, especially malic acid [14–16]. Decreasing the leaf area
by shoot thinning may result in a delay in the ripening of the grapes [22]. Shoot thinning
after blooming shifts fruit ripening by more than 1–2 months [23]. Too dense foliage can
cause excessively dense shoots or growth of sublateral shoots [24–27]. Thus, the aim of this
study was to observe the effect of the leaf area size on the content of soluble solids (TSS)
and acids in grapes during ripening.

2. Materials and Methods
2.1. Location of the Experiment

The experiment was conducted in 2017, 2018, and 2019 in an organic vineyard in the
municipality of Popice, Mikulov viticultural subregion, the Czech Republic (48◦55′47.2′′ N,
16◦42′04.1′′ E). The vineyard was planted in 2004, vines were cultivated using a semi-high
training method with a trunk height of 80 cm and the spacing of the plants was 2.4 × 0.9 m.
All varieties were pruned by cutting to 1 cane without a reserve spur with five to eight
buds. The inter-rows were treated alternately as grass zones and black fallow land zones.
The slope was oriented south to southwest at an altitude of 210–260 m, the soil type was
chernozem on loess, and, depending on the size of the particles, it was clay soil.

2.2. Weather Conditions

During the experiment, 2017 was the coldest period, showing the average temperature
of 15.5 ◦C. In 2019, the average temperature was 15.8 ◦C, whereas 2018 was the warmest
season, with an average temperature of 17.4 ◦C. Average temperatures of all three seasons
were slightly above the long-term average from April to October (Table 1). Average growing
season temperatures (TGS), based on the classification by Jones [28], were intermediate
(2017, 2019) or hot (2018). For the 3 seasons, the average Huglin Index [29] was 2066, and
the Winkler Index [30] was 1425.
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Table 1. Average monthly temperatures in ◦C for the experiment area, Popice, Czech Republic
2017–2019.

April May June July August September October Average Value
(April—October)

2017 8.3 15.2 20.2 20.4 20.9 13.3 10.2 15.5
2018 14.4 17.6 19.2 21 22.6 15.9 11.4 17.4
2019 10.9 11.9 22 20.1 20.7 14.7 10.4 15.8

long-term average 9.3 14.4 17.2 19.3 18.8 14.1 9 14.6

In 2018, disproportionately high temperatures were recorded in August and Septem-
ber; in the remaining two seasons of the experiment, September temperatures were below
the multi-annual average threshold (14.1 ◦C). The values of rainfall (mm) and sunshine
(hours) per month are shown in Figure 1.
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Figure 1. Sunshine (hours) and rainfall (mm) for the experiment area, Popice, Czech Republic
2017–2019.

2.3. Grape Varieties and Treatments of Experiment

Grapes of three Vitis vinifera L. varieties were investigated: ‘Rhine Riesling’ (RR),
clone R 2, rootstock Kober 5 BB, origin: VCR Rauscedo Italy. ‘Pinot Gris’ (PG), clone R 6,
rootstock SO 4, origin: VCR Rauscedo, Italy. ‘Sauvignon Blanc’ (SB), clone 107, rootstock
Teleki 5C, origin: Germany.

Each variety was split into three treatments, depending on the intensity of the agro-
technical interventions aimed primarily at reducing the leaf area. Tipping away excess
foliage on shoots took place two to three times during the growing season, with the aim of
removing 40% (variant B) and 70% (variant C) of the total leaf area (Table 2). For variant A
(control), no regulation was carried out on the leaf area. The removal of shoots was carried
out by mechanization at about 30-day intervals. The treatment was performed depending
on the growth rate of the shoots. The first reducing was always after blooming. Every
treatment consisted of three replicates, with fifty vines per replicate.
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Table 2. The leaf area of each of three grape varieties (A—without leaf area reduction, B—40% leaf
area reduction, C—70% leaf area reduction).

Leaf Area (m2/vine)

Variant of Leaf
Area Treatment Season ‘Pinot Gris’ ‘Sauvignon Blanc’ ‘Rhine Riesling’

A 3.03 c 2.67 d 4.25 c

B 2017 1.97 b 1.54 b 2.61 b

C 1.02 a 0.99 a 1.17 a

A 3.38 c 2.90 d 4.82 d

B 2018 1.95 b 1.71 b,c 2.99 b

C 1.14 a 1.12 a 1.40 a

A x 3.29 e 4.63 c,d

B 2019 2.20 b 1.95 c 2.72 b

C 1.17 a 1.14 a 1.39 a

ANOVA was used to compare data. Means within columns followed by different letters (a,b,c,d,e) are significantly
different from each other at p < 0.05 based on Fisher’s unprotected least significant differences test (LSD).

2.4. Measurement of Leaf Area and Sampling

At each sampling (from 50 days before harvest to harvest), the number of mature
leaves per shoot was recorded on shoots from which berries were sampled. At the end of
the experiment, 50 leaves per treatment (variant) were sampled and their surfaces measured
using the CI-202L Area Meter (CID, Inc., Camas, WA, USA) equipment, expressed in m2.
On the basis of these values, an average size of the leaf was calculated for each variety and
treatment and multiplied by the number of leaves on the shoot bearing the examined grape.

Each sample was represented by 100 berries. During the transportation period, the
berries were kept in open plastic bags with detailed labelling and stored in a plastic crate.
The berries were crushed and the loosely drained must was analyzed.

2.5. Titratable Acidity (TA) and pH

A digital pH meter OP 122/1 (WTW, Waltham, Germany) was used to determine pH.
The titratable acidity (TA) was determined using alkalimetry. Exactly 20 mL of must
was titrated using 0.1 M NaOH to reach pH 7, as is recommended by OIV methods [31].
The quantity of NaOH consumed was the basis for calculating the content of TA expressed
as tartaric acid (g/L). For each sample, the measurement was made in three runs.

2.6. Total Soluble Solids (TSS)

Soluble solids were established in the samples at a temperature of 20 ◦C using digital
refractometer (DR201-95, A. Krüss Optronic, Hamburg, Germany) and expressed in ◦Brix
degrees (◦Bx).

2.7. Tartaric and Malic Acid (TtA, MA)

Each sample was diluted by demineralized water (1:10 proportion) and subsequently
filtered through a microfilter, grain size 0.2 µm. Concentrations of tartaric acid and
malic acid were determined using an HPLC system with the Chrom SDS 150 pump,
a thermostat (at 60 ◦C), and the Thermo-Spectra System UV 6000 LP DAD Detector
(Thermo, Alaucha, FL, USA). The column used was a Watrex Polymer IEX H 10 µm,
250 × 8 mm, with a mobile phase of 2 mM sulfuric acid, flow: 0.7 mL/min. The absorbance
of the acids was set at a wavelength of 210 nm. The concentration was determined using a
10-point calibration system using tartaric acid and malic acid standards. The r2 value for
tartaric acid was 0.9918 and for malic acid, it was 0.9965. The sample volume was 20 µL.

2.8. Statistical Analysis

The statistical assessment was carried out using STATISTICA 12. Statistical operations
were used to obtain means and standard deviations from three determinations made in
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parallel. Cochran, Hartley, and Bartlett tests were used to confirm the variance homogeneity.
The method of multivariate analyses was selected to confirm a conclusive difference
between values of leaf area reduction and TtA/MA, TtA, Ma, and pH, with subsequent
use of Fisher’s unprotected least significant differences test (LSD) test at a significance level
of p < 0.05.

3. Results and Discussion

Reduction of the leaf area was carried out in variant B (40%) and C (70%) for all
varieties. The control treatment (A) had no leaf area reduction during grape ripening.
The individual leaf area values for the variants are given in Table 2. The analysis of results
showed that the variant of leaf area treatment had a significant influence of the leaf area,
but not the season.

Leaf area size was positively correlated with TSS (Figure 2) (Pinot Gris, r = 0.587;
Sauvignon Blanc, r = 0.435; Rhine Riesling, r = 0.438), consistent with other studies [32–35].
This trend was particularly apparent for the ‘Rhine Riesling’ and ‘Sauvignon Blanc’ varieties
(Figure 2c,e). The difference in cluster weight for these two varieties or different weather
conditions of each season could be the possible reason. The 3-year average cluster weight
of ‘Pinot Gris’ was 98 g, while for both ‘Sauvignon Blanc’ and ‘Rhine Riesling’, it was 110 g.
Schiefer and Thin [36] mentioned that for grape ripeness to be optimized, 16 to 22 cm2 of
leaf area per gram of grape weight is the necessary leaf to fruit ratio. The size of the leaf
area has a significant effect on the TSS, while Ollat and Gaudillere [16] reported that the
grapes had a lower TSS on the vine with a lower leaf area. The greatest differences were
recorded in 2017 for the ‘Sauvignon Blanc’ and ‘Pinot Gris’ varieties (Figure 2). The value
of TSS in grapes measured for plants with the highest leaf area reduction (variant C) was
up to 3◦ Bx less than for plants with greater leaf areas (Sauvignon Blanc and Pinot Gris).
The sensitivity of ‘Sauvignon Blanc’ to reduced leaf area in relation to TSS accumulation
was confirmed by Petrie et al. [18] as well. The smallest difference in terms of TSS values
was found in 2019 between the variants, when the figure ranged between 0.5 and 1.1◦ Bx
across all three varieties.

Regarding TA, a declining trend was observed in the course of berry ripening. The highest
TA of the clusters was contained in the ‘Rhine Riesling’ variety at harvest time, regardless of
the % of leaf reduction; this was particularly true in 2019, when TA values were up to 2 g/L
higher than seen in the preceding seasons (values ranging between 12.36 and 17.15 g/Lat
harvest). The effect of the leaf area size was shown most considerably for ‘Sauvignon Blanc’
(Figure 2c). In 2018, the value of 7.02 g/L was found for grapes growing on plants from the
variant without leaf area reduction, for plants from variant B it was 7.63 g/L, and, finally,
plants without reduced leaf area (variant A) achieved 8.63 g/L. While the other varieties
exhibited the same trend as ‘Sauvignon Blanc’ in the course of ripening, the differences were
not as significant as for this variety. Similar conclusions were reached by Candolfi-Vasconcelos
and Koblet [37] and Kozina et al. [38]. The results confirmed that while regulating the leaf area
after blooming can quite effectively influence the content of TA in grapes, the development of
climatic conditions in that season remains a very considerable factor, as shown on Figure 2.
Above all, the most rainy season, 2019, significantly affected the production of acids, which
were above average in all variants. Gutiérrez et al. [39] also studied the effect of leaf area
on TSS content in grapes. They found that in some varieties (Sauvignon Blanc, Cabernet
Sauvignon, Syrah) the declining leaf area reduced the TSS content in grapes, while in the
Carmenére variety, the leaf area did not affect the TSS in grapes.
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Figure 2. The effect of leaf area reduction on the grape content of total soluble solids (TSS) and total titratable acidity (TA)
during ripening (days before harvest (DBH)) in grapes of varieties ‘Pinot Gris’ (a,b), ‘Sauvignon Blanc’ (c,d), and ‘Rhine
Riesling’ (e,f) in 2017 (—red), 2018 (—blue), and 2019 (—black) when reducing 0% (•), 40% (N), and 70% (�) the leaf area.

The tartaric acid content remains more stable during ripening than malic acid con-
tent [40]. Malic acid begins to break down in the grapes as sugar begins to accumulate in
them. This is most pronounced at higher temperatures. In cool conditions, at temperatures
of 12–22 degrees, however, the synthesis of malic acid still persists in the grapes even after
the accumulation of sugar [41]. This experiment brought significant attention to changes
in the tartaric acid to malic acid proportion depending on the leaf area (Table 3). This
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proportion showed considerable differences depending on the variety and, in particular,
climatic conditions. For the surveyed varieties, the proportions ranged between 1.28 and
4.90. ‘Sauvignon Blanc’ grapes growing on plants without leaf area reduction showed the
acid ratio to be 0.17–2.64 less than for grapes from plants with the highest reduction of leaf
area (Table 3). In almost all cases, the lower leaf area caused a lower content of malic acid
in the grapes. Similar results were found by Ollat and Gaudillére [16], who studied the
effect of leaf area ratio on content of substances in the grapes, 51 days after bloom. In the
Cabernet Sauvignon variety, they observed higher concentrations of malic acid in grapes
on vines with a higher leaf area. Van Leeuwen et al. [42] suggested that the content of malic
acid in grapes is mostly dependent on the season, which was confirmed through the results
of the present paper. In particular, 2019 was the season to show significantly higher levels
of malic acid than in previous seasons.

Table 3. The effect of variety and leaf area on content of tartaric acid, malic acid, and pH in grapes at harvest time 2017–2019.

Variety Season Variant of Leaf Area Treatment TtA/MA TtA
(g/L)

MA
(g/L) pH

‘Pinot Gris’

2017
A 2.41 a 8.14 b 3.38 c 3.11 a

B 2.38 a 8.05 b 3.38 c 3.11 a

C 2.33 a 7.37 a 3.16 c 3.09 a

2018
A 2.92 b 9.18 c 3.14 c 3.37 b

B 3.57 c 8.52 b 2.39 b 3.42 c

C 4.12 d 8.07 b 1.96 a 3.39 b,c

2019
A
B

×
2.45 a

×
10.50 d

×
4.90 d

×
3.62 d

C 2.14 a 11.27 e 4.60 d 3.65 d

‘Sauvignon Blanc’

2017
A 2.89 b 8.81 c,d 3.04 d 3.03 a

B 3.75 c,d 7.14 a 1.90 b 3.01 a

C 4.90 e 7.11 a 1.45 a 3.10 a

2018
A 3.18 b,c 8.08 b 2.54 c 3.49 b

B 4.00 d 7.82 b 1.97 b 3.56 c

C 4.42 d,e 8.28 b,c 1.87 b 3.36 c

2019
A 1.52 a 9.90 f 6.50 e 3.67 c

B 2.69 a,b 9.18 e 3.41 d 3.69 c

C 2.62 a,b 9.25 d 3.52 d 3.69 c

‘Rhine Riesling’

2017
A 3.84 e 11.35 e 2.96 b 2.78 a

B 3.29 d 9.71 d 2.95 b 2.87 b

C 4.10 e 9.05 b,c 2.21 a 2.89 b

2018
A 2.69 c 8.45 a 3.14 b 3.18 c

B 3.02 c,d 8.75 a,b 2.89 b 3.19 c

C 3.18 d 9.24 c 2.91 b 3.14 c

2019
A 1.28 a 10.92 e 8.54 d 3.67 d

B 1.85 b 10.08 d 5.46 c 3.68 d

C 1.68 a,b 9.30 c 5.55 c 3.66 d

ANOVA was used to compare data. Means within each variety column followed by different letters (a,b,c,d,e,f) are significantly different
from each other at p < 0.05 for Fisher’s unprotected least significant differences test (LSD). X—the A variant was not monitored in 2019.

pH of grapes is related to the proportion of malic acid, tartaric acid, and K+ con-
centration [43]. Samples with a higher amount of malic acid were shown to have higher
pH values. There was no consistent treatment effect on pH. Despite the high TA in 2019,
musts of all varieties had relatively high pH values. Such levels could be caused by the
development of weather in that season, when there was significantly higher precipitation
than in 2017 and 2018 (Figure 1). Under such conditions, there is a more pronounced
accumulation of K+ in leaves, which could have led to an increase in pH [38].
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4. Conclusions

For each the of three varieties, the removal of 70% of leaf area led to the accumulation
of lesser quantities of sugar in the grapes; therefore, these grapes contained the lowest
values of TSS. Similarly to TSS, TA increased with the leaf area. ‘Sauvignon Blanc’ was
particularly high in its sensitivity towards reducing the leaf area and acidity production.
On the contrary, a minimum response was observed on this intervention in ‘Pinot Gris’.

The tartaric acid to malic acid ratio changed depending on the season and the extent
of the leaf area. The relationship between the proportion of these acids and the extent of
the leaf area was confirmed for ‘Sauvignon Blanc’ and ‘Pinot Gris’ in more warm seasons
(2018 and 2019), when the leaf area without reduction resulted in higher concentrations
of malic acid. This study showed the complexity of the relationship between leaves and
production of sugars and acidity of the grapes. As a result, any handling and regulation
related to leaf area should be subject to careful considerations and adapted to not only the
site-specific circumstances and climatic conditions, but also to intrinsic varietal features.
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