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Abstract: This paper presents an innovative instantaneous pricing scheme for optimal operation
and improved reliability for distribution systems (DS). The purpose of the proposed program is to
maximize the operator’s expected profit under various risk-taking conditions, such that the customers
pay the minimum cost to supply energy. Using the previous information of the energy consumption
for each customer, a customer baseline load (CBL) is defined; the energy price for consumption costs
higher and lower than this level would be different. The proposed scheme calculates the difference
between the baseline load and the consumption curve with the electricity market price instead of
calculating the total consumption of the customers with the unstable price of the electricity market,
which is uncertain. In the proposed tariff, the developed cost and load models are included in the
distribution system operation problem, and the objective function is modeled as a mixed integer
linear programming (MILP) problem. Also, the effect of demand response (DR) and elasticity on the
load curve, the final profit of the distribution system operator, and payment risk and operation costs
are examined. Since there are various uncertainties in the smart distribution grid, the calculations
being time-consuming and volumetric is important in the evaluation of reliability indices. Thus, when
computation volume can be decreased and computation speed can be increased, analytical reliability
analysis methods can be used, as they were in the present work. Finally, the changes in the reliability
indices were calculated for the ratio of the customers’ sensitivity to the price and the customers’
participation in the proposed tariff using an analytical method based on Monte Carlo simulation
(MCS). The results showed the efficiency of the proposed method in increasing the operator profit,
reducing the operation costs, and enhancing the reliability indices.

Keywords: demand response (DR); distribution system (DS); real-time pricing (RTP); reliability indices

1. Introduction
1.1. Aim

Demand response, as the main part of future smart grids, plays a significant role in
instantaneous pricing tariffs in the electricity industry. The instantaneous pricing tariff
is known as the most direct and efficient price-based demand response approach. Sched-
ulers are trying to employ price-based demand response instead of direct interruptible
loads [1,2]. There is a direct relationship between customers’ power consumption and the
electricity price. Thus, in this type of load, selecting a demand response program is of great
importance [3]. An instantaneous pricing tariff program should be designed such that the
operation costs are reduced and the distribution network reliability is increased. On the
other hand, the program should provide sufficient incentive to attract customers. Various
studies have been presented on energy pricing and reducing the distribution costs among
customers [4]. The model proposed in this paper calculates the transmission, distribution,
and energy costs independently and announces them in separate invoices. The best price-
based demand response program in distribution networks that can increase the operators’
profit and cover the consumers’ social welfare is real-time pricing [5]. On the one hand,
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the development of distribution networks with high energy demand, particularly in big
cities, increases electricity consumption significantly, highlighting the role of distribution
networks in supplying electricity. On the other hand, supplying reliable energy of high
quality has attracted attention recently. Accordingly, evaluating the reliability and risk
management of these networks is essential and important. In general, an analytical method
and a method based on probabilistic simulations have been presented to evaluate reliability
and risk management in smart distribution networks. Each method has some advantages
and disadvantages. The advantage of probabilistic simulation methods is that various
uncertainties of the distribution system and new conditions can be added, but the disad-
vantage is that it is time-consuming because of the numerous iterations of the calculations.
Although mathematical modeling is used in analytical methods by simplification, and the
computation time therefore decreases, the accuracy of the results also decreases, being far
from reality. Here, a new framework is presented for calculating the load curve considering
the participation level of the consumers in DR programs and self-elasticity. This load curve
is based on base load and compares the consumption with the base load at each time
instant to calculate the difference of the demand with the base load. Then, this demand
curve is used to obtain the consumption-based reliability indices for distribution systems.
Thus, this research followed three main objectives: first, developing a tariff for calculating
the customers’ invoice; second, calculating the profit and costs of the DSO; and third,
calculating the reliability indices using a new framework based on load restoration.

1.2. Literature Review

In recent years, the performance of distribution networks has attracted attention in
electricity markets. Also, the use of DR programs to improve the reliability of smart distri-
bution networks is increasing. The authors of [6] presented an incentive-based DR program
for optimal wind energy utilization in the market framework. The authors of [7] imple-
mented a real-time pricing (RTP) tariff, resulting in optimal utilization of wind generators.
This study assumed that the energy price in the market was equal to the marginal cost
of hourly energy generation. In the other words, the impact of the application of market
power by energy generation companies in the market at the consumption peak was ig-
nored. Considering the operation constraints, this study aimed to maximize the total profit.
In [8], a framework was proposed for determining optimal RTP price signals. While the
electric energy industry is moving towards changing the power system structure, various
problems and challenges, including transmission network congestion [9], electricity price
spikes [10,11], operation, and management, have emerged. In the emerging competitive
electricity markets, congestion management plays an essential role in economical, safe, and
stable operation of the power system [12]. With the development of demand-side manage-
ment, it was decided to activate load and customers so that electricity market problems
would be resolved with minimum cost. In line with this approach, various DR technologies
and approaches have been developed [13] such that customers are more active in the elec-
tricity market and play their effective role as the fastest, cheapest, and most reliable tool for
solving the electricity market’s problems [14]. Since one of the most important operation
costs is the cost of interruptions (penalty of unsupplied energy to customers), interruptions
should be managed and reduced [15]. In [16], a mixed integer linear programming model
(MILP) was used to solve the complicated problems of power systems. In [17], a novel
bilevel method was used to schedule the smart distribution networks in the presence of
demand response aggregators (DRA) and microgrids (MG). In this method, the upper level
minimized the operational costs of the distribution system (DS) operator (DSO), while the
lower level maximized the MG and DRA profits. In [18], a mixed integer nonlinear pro-
gramming model (MINLP) was proposed for scheduling the development of multicarrier
systems, including electricity and gas distribution networks. An optimal schedule was
applied to minimize the investment costs and losses. Finally, an approach based on the
Benders decomposition algorithm was presented to reduce the solution time. In ref. [19], a
new framework was proposed for developing trade strategies for a distribution company



Sustainability 2021, 13, 13201 3 of 35

(DisCO) with distributed generation (DG) units and electricity storage systems (ESSs) in
the energy and retail markets. In this framework, thanks to its DG units and ESSs, such a
DisCO acts as a price maker in the wholesale electricity market. The uncertainty associated
with the demands across the distribution network was considered by a set of scenarios,
with the demand elasticity further taken into account in the demand response program
(DRP). Striving for optimal demand control and profit growth, a real-time pricing (RTP)
scheme was considered as the best choice for the DisCOs. This was modeled by a bilevel
optimization problem, the upper level of which included the maximum profit from selling
energy to consumers under RTP programs and management of DG units, and the lower
level of which included the wholesale market clearing and considered the constraints of the
DC network to maximize social welfare. Even though the DisCO’s profit grew in [19], con-
sumers could not benefit from the DRP due to elasticity reduction. Thus, retail prices were
not adjusted at peak consumption, and consumer payments increased. In [20], a bilevel
DR program was presented for residential load adders in which the scheduling domain
was a diverse set of loads based on the clustering model for the day-ahead market and
real-time market. In [21], a probabilistic model was presented for simultaneous planning
of energy and MG reserve with price-based DR participation. According to the findings
of this study, the loads enhanced the system performance against uncertainties through
participation in the energy storage schedule. In this model, the operation risk of countering
the uncertainties that play an effective role in allocating reserve from resources was not
considered. In [22], the effect of DR programs on energy scheduling and storage of an MG
in the day-ahead market was studied. In this reference, the uncertainty of loads, renewable
resources, and energy price in a scenario-based model were considered, but the effect of
risk on energy storage resource scheduling was not evaluated. Refs. [23,24] focused mainly
on the security and reliability of MGs, countering with the operation uncertainties resulting
from predicting the demand and supply. However, in the mentioned references, the effect
of DR programs on capacity of the required storage under various risk-taking conditions
of the operator was not studied.

In [25,26], flexible loads were used to calculate the energy consumption of household
appliances in different seasons of the year, but demand responsiveness and irresponsive-
ness were not compared. In [27], a model was presented for standard energy consumption
based on the baseline load of the customers to increase the energy efficiency and reduce the
energy consumption of the customers using DR programs. In [28,29], novel demand-side
management models were presented to enhance the efficiency of the smart grid based on
scheduling smart household appliances with renewable energy resources and energy stor-
age systems. Statistical studies showed that the electric energy distribution grids played a
significant role in outages for customers [30,31]. On the other hand, reliable energy supply
has also attracted attention in recent years. Accordingly, evaluating the reliability and
risk management of these grids is very important [32,33]. Analytic methods and methods
based on probabilistic simulations have been presented to evaluate reliability and risk
management in smart grids [34–37]. Methods based on probabilistic simulations such as
the Monte Carlo (MC) method cover various system uncertainties, and new conditions
with new stochastic nature can be easily added [38–40]. However, it should be noted that
these methods are time consuming, with heavy computations. When a large number of
studies are required, this method is not responsive or efficient. In such conditions, the
importance of using analytical methods grows [34,41,42].

One of these analytical methods is the Markov model. In [43–46], system reliability
considering failure rate was calculated using the Markov model. In analytical methods,
mathematical modeling is simplified, reducing the accuracy of the results and growing far
from reality. On the contrary, in simulation methods, the real system is studied, and more
accurate results are obtained. One simulation method that is widely used in analyzing
the reliability of the electric systems is the MC method [47–49]. Monte Carlo simulation
(MCS) is suitable for complicated systems, such as photovoltaic–wind systems, because
its computational efficiency is independent of size and complexity. Studies conducted
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in the context of reliability evaluations have had some defects; for example, reliability
evaluation and accurate failure rate calculation for all components have not been carried
out, and a proper algorithm has not been used to execute the Monte Carlo method. In
distribution networks, load restoration should be carried out to calculate reliability during
fault occurrence so that the lost load is calculated. In [50], an analytical optimization model
was presented for the restoration problem, and a novel formulation was used to reduce the
number of binary variables. In [51], the restoration concept was defined by developing an
MG, and a nonlinear problem was converted to a linear problem through approximation.
In [52], the effect of renewable resources and their uncertainty on distribution system
restoration was studied. Also, severe operational occurrences and the effects of demand
response programs on distribution system performance in the restoration period were
studied for restoring a distribution system. In [53], an approach based on Markov decision
making was proposed for calculating restoration policy. In [54], a graph theory based
on a particle swarm optimization (PSO) algorithm was presented for distribution system
restoration. In this paper, the effects of restoration scheme and load harvest on distribution
system reliability were studied. In [16], a distribution service restoration framework was
modeled that could determine the optimal switching sequence and estimate the restoration
time in the presence of remote-controllable switches, manual switches, and distributable
DGs. This model was designed as a mixed integer linear programming model. The
investigated studies had some shortcomings that might affect the decisions of a DSO. In
this regard, in [3,9–13], although DR programs were used, the reliability of the distribution
system was not investigated. In some articles (for example, [12–18]), the authors presented a
framework for developing sell/purchase strategies for a distribution company in the energy
and retail markets considering demand uncertainty, but none of them examined the effect
of elasticity on consumption demand. In some studies, no pricing scheme was used, such
that the customers of the distribution network were ignored (for example, [32–47]). In some
articles, load restoration resources in the distribution system and network reliability were
considered, but no plan was considered for pricing and participation levels of consumers
(for instance, [32–49]). Also, in some models, the distribution network and optimal power
flow were ignored (for example, [46,48,49,54]). Table 1 demonstrates the characteristics of
previous studies along with the characteristics of the current study.

Table 1. Relevant features of previous studies.

Reference
Demand
Response
Program

Elasticity Reliability
Issue

Power
Flow Pricing Method Approach Bill Paid by

Customers

[4] Yes No No ACOPF RTP NLP No
[5] Yes No Yes ACOPF RTP MILP Yes
[6] Yes No No DCOPF TOU MILP Yes
[7] Yes Yes No No RTP NLP No
[8] No No No No Dynamic pricing LMI No
[9] Yes No No ACOPF RTP Genetic algorithm No
[10] Yes No No ACOPF TOU Fuzzy satisfying No
[11] Yes No No ACOPF RTP MILP No
[12] Yes No No NO RTP LP Yes
[13] Yes No No ACOPF No MILP No
[14] Yes No No ACOPF LC MILP No
[15] Yes Yes No ACOPF RTP NLP No
[16] No No No ACOPF No MILP No
[17] Yes No No ACOPF RTP Big-M method Yes
[18] Yes No No ACOPF Various methods MINLP No
[19] Yes Yes No ACOPF RTP MILP No
[20] Yes No No ACOPF RTP NLP No
[21] No No No ACOPF Prices MILP No
[22] Yes Yes No ACOPF RTP MILP No
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Table 1. Cont.

Reference
Demand
Response
Program

Elasticity Reliability
Issue

Power
Flow Pricing Method Approach Bill Paid by

Customers

[23] Yes Yes No ACOPF Dynamic pricing MILP No
[24] Yes Yes No ACOPF RTP MILP Yes
[25] Yes No Yes ACOPF Prices NLP No
[26] Yes No No ACOPF TOU MILP Yes
[27] Yes No No No No NLP No
[28] No No Yes ACOPF RTP NLP No
[29] Yes No No DCOPF RTP MILP No
[30] Yes No No No No Fuzzy model No
[31] Yes No No ACOPF No MILP No

[32,35–40] No No Yes OPF No Monte Carlo simulation No
[43,45,47] No No Yes ACOPF No Markov method No
[46,48,49] No No Yes No No Monte Carlo simulation No

[51] No No Yes ACOPF No MINLP No
[52] Yes No Yes ACOPF No MILP No
[53] No No Yes ACOPF No Rollout algorithm No
[54] No No No No No PSO algorithm No

This paper Yes Yes Yes ACOPF RTP MILP Yes

1.3. Contributions

One of the most important objectives of a DSO is to supply the required energy for the
consumers and prevent outages to reduce energy not supplied, reduce the operation costs,
and increase the consumers’ satisfaction. Since device failure is inevitable, continuous and
reliable distribution of electricity is impossible, and considering failure management in
the form of detecting fault location and resolving it the shortest possible time is of great
importance. Thus, a comprehensive model for examining reliability indices in a distribu-
tion network is required that decreases the operation costs and increases the consumers’
satisfaction. On the other hand, participation of consumers in the DR programs might
prevent increasing electricity prices by the wholesale market at peak hours. In the models
proposed in previous studies, DR programs reduced consumption at peak times, but these
studies did not consider the simultaneous effect of DR and elasticity with a load restoration
framework for improving the reliability indices, and they focused mainly on profitability
for the DSO ([13–16,19–21]). Also, in some studies such as [46,48,54], the physical con-
straints of transmission lines were considered, or the effect of DSO on the energy market
was neglected. Although, in some models, profitability for consumers and reduction in
energy consumption costs were considered, dependency of energy consumption on the
fluctuating prices of the electricity market, particularly at peak times, reduced the efficiency
of these models. Also, these models did not represent the effect of load consumption and
demand on changes of the reliability indices. Therefore, the purpose of this study was to
formulate a novel method for instantaneous DR pricing, aiming to improve reliability of
distribution networks. In the proposed framework, the energy consumption background
for each consumer is used to obtain the base load curve. The price signals for the base load
and real-time price are provided to the consumer by the DSO. The difference between the
consumption and base load is considered in the consumers’ invoices and recorded as the
DSO revenue.

Since the real-time prices are uncertain, multiple scenarios were considered for RTP
signals to specify the efficiency of the proposed framework. The model proposed for power
system operation after linearization and conversion to MILP was solved using GAMS.
In the proposed model, the load curve obtained using the reliability indices is calculated
using a novel analytical method based on load restoration. The innovations of this paper
are as follows:
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• presenting a new method for pricing based on basic load such that DR and elasticity are
involved simultaneously;

• reducing the effect of electricity market price fluctuations on the consumption load curve;
• reducing computation time and volume;
• making usage of analytical reliability evaluation and load restoration methods practical;
• presenting a new mathematical method for hourly load curve and reducing the load peak;
• examining reliability and pricing tariffs simultaneously;
• calculating consumers’ invoice with a new tariff that increases consumer satisfaction

with participation in DR programs.

2. The Energy Consumption Invoice Model for the Proposed Tariff

The energy consumption invoice for the proposed RTP tariffs is modeled as follows:

BLt =
CBLt·PrBS

t + (PDt −CBLt)·Prch
t for PDt > CBLt

CBLt·PrBS
t + (PDt −CBLt)·Prcr

t for PDt < CBLt
(1)

In this equation, BLt is the energy consumption cost of the participant at time t, CBLt
is the customer baseline load of the participant, PrBS

t is the baseline rate, PrCh
t is the charge

rate, PrCr
t is the credit rate, and PDt is the hourly energy consumption of the participant.

If the load consumption is higher than CBL, the energy consumption cost is calculated
with PrCh

t . When the load consumption is less than CBL, the difference of PDt with CBL is
negative; thus, the energy consumption cost of the participant decreases with the rate of
PrCr

t . To calculate a customer’s invoice in one operation day, the customer’s data and the
final prices of that day are collected, and the invoice is calculated at the end of the day.

BLTotal =
24

∑
t=1

BLt (2)

2.1. Definition of Consumption Peak and Nonpeak

The tariff defines certain hours of the day as the peak consumption time. When
there is a shortage of generation capacity in the market, energy generation companies can
dramatically increase the energy price in the market. The instantaneous pricing tariff in such
conditions provides the possibility for consumers to participate in DR programs and change
the real-time market (RTM) price. In other words, consumers can reduce the electricity
price at peak times (due to consumption decrease) by reducing their consumption at peak
times and shifting their consumption to nonpeak times. By defining a binary variable with
peak and nonpeak hours, the tariff is determined as follows:

qt =

{
1 PrM

t > PrBS
t

0 PrM
t < PrBS

t
(3)

In this equation, qt is the consumption peak hour, PrBS
t is the baseline price that is

announced to the consumer one day ahead, and PrM
t is the instantaneous energy price in

the real-time market equal to marginal price. The proposed tariff increases PrCr
t at the peak

hour. As this price increases, the credit of load reduction at the peak hour increases. At
these hours, PrCr

t is known and equal to the instantaneous market price.

qt = 1 PrCr
t > PrM

t PrCh
t = PrM

t (4)

The proposed tariff at nonpeak hours, when qt is zero, considers PrCh
t lower than the

market price. Thus, more discount is considered for increasing energy consumption at low-
load hours. At these hours, PrCr

t is equal to its baseline value (the real-time market price).

qt = 0 PrCh
t < PrM

t PrCr
t = PrM

t (5)



Sustainability 2021, 13, 13201 7 of 35

This tariff was aimed to provide the possibility for customers to respond to different
market conditions by providing instantaneous energy prices. By reducing energy consump-
tion at peak hours, the possibility of applying power is taken from companies, and the
energy price and its fluctuations are reduced. This tariff was aimed to motivate customers
to consume more optimally by increasing the credit given to consumption reduction at peak
hours and the discounts given to consumption increase at other times. This tariff assigns
more credit to load reduction at peak hours without increasing the costs of load increase.
On the other hand, at low-load hours, it gives greater discounts to consumption increases
without increasing the credit of consumption reduction. In other words, the incentive
offered to the customers with optimal costs increases effectively. In the following sections,
the proposed tariff is added to the DS operation model to calculate the demand curve.

2.2. The Load Model Participating in the Proposed Tariff

Since in the proposed tariff, two prices of PrCr
t and PrCh

t are considered for upper and
lower marginal consumptions in addition to the baseline price, modeling the vector of
change in electricity price (∆Pr) becomes complicated. Considering Equation (1), which
models the hourly energy consumption cost, it can be concluded that when load is lower
than CBL, the energy consumption cost decreases as PrCr

t increases. In other words, when
qt is one (at the peak hour of consumption), the energy price is higher than the baseline
price and the load consumption is lower than the baseline consumption. Also, when
consumption load is higher than CBL, the energy consumption cost decreases as PrCh

t
decreases. By implementing the proposed tariff and motivating customers to consume
optimally, the load reduction at peak times and load increase at other times is reinforced.
Therefore, ∆Pr can be modeled as follows:

∆Pr = PrM
t − PrBs

t +
(

PrCr
t − PrM

t

)
·qt +

(
PrCh

t − PrM
t

)
·(1− qt) (6)

In the baseline case, prices of PrCr
t and PrCh

t are the same as the marginal price (PrM
t );

therefore, this relationship is simplified as follows:

∆Pr = PrM
t − PrBs

t (7)

In this tariff, the base price is already known, and the marginal price is announced
to the consumer on the operation day. Of course, predicting the price announced the day
before helps the consumer to plan. Energy invoice is directly proportional to PrM

t ; thus,
when PrM

t exceeds PrBs
t , the customer reduces their consumption, and when PrM

t becomes
lower than PrBs

t , the customer increases their consumption. Now, the following linear
relationship can be used to calculate the relative load changes (∆PD) in response to relative
price changes: 

∆PD1
.
.
.

∆PD24

 = ζ ·


ε1,1 · · · ε1,24
· · ·
· · ·
· · ·

ε24,1 · · · ε24,24




∆Pr1
.
.
.

∆Pr24

 (8)

in which ε1,1 is the load elasticity coefficient in response to relative price changes of the
proposed tariff, and ζ is the customers’ enrollment level in the DR program. In the proposed
tariff, marginal consumption is subject to variable prices. Using the demand response
model for the proposed tariff, the participants’ behavior in response to prices is predictable.

2.3. Operation Considering the Proposed Scheme

The proposed pricing tariff is a three-sectional tariff based on consumption basic load.
This tariff uses three different rates to calculate the energy consumption at each hour. One
of these rates is known from the previous day and does not change. This rate is called the
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baseline rate. Predictions for the two other rates for each hour of the operation day are
announced to the customer on the previous day, but their exact values are announced to
the customer a few hours before the operation day. The customer’s energy cost at each
hour up to CBL is calculated with the baseline rate. Energy consumptions higher than CBL
are calculated with a rate called the charge rate, and energy consumptions lower than CBL
are calculated with the credit rate. This tariff can control the credit and discount given
to the customer by offering different rates for consumptions higher and lower than CBL.
This property of the proposed tariff increases the number of participants in the tariff and
increases motivation for optimal consumption. By increasing the efficiency of the tariff, the
company makes more profit, and the customer saves more. This optimal tariff covers its
implementation costs and reduces operation costs also.

2.4. The Objective Function

In this section, the profit model of the DSO is developed as the objective function
considering the proposed tariff. The invoice paid by the customers is calculated as the total
invoice paid by each type of customer. The bill is modeled as follows:

BLTotal
t =

24

∑
t=1

n

∑
j=1

BLt, j (9)

In this equation, BLTotal
t is the bill paid by the customer n at time t, and j is a set of

three different industrial, commercial, and residential customers. To calculate the cost of
energy consumption for the whole operating day, the product of energy consumption per
hour by the energy price at the same hour is calculated as follows:

BLTotal
t =

24

∑
t=1

[
PrM

t ·PDt

]
(10)

This invoice model is used for a single-part tariff (present RTP), and the invoice model
for a two-part tariff (proposed RTP) is as follows:

BLTotal
t =

24

∑
t=1

[
PrBs

t ·CBLt + PrM
t ·(PDt −CBLt)

]
(11)

The energy consumption should be obtained to calculate the invoice. The demand of
the customers that participate in the DR program is represented by CBLC:

CBLC = DR·CBLt (12)

in which DR is the load participation in the demand response. According to Equation (8),
the load changes vector is calculated as follows:

∆PD = ζ · EC·∆Pr (13)

in which ∆Pr is the price changes vector, EC is the elasticity, and ζ is the customers’
enrollment level in the DR program. Assuming that the demand curve is linear around the
operation point, the load elasticity is defined as follows:

Ej,t
C =

∆PDj,t

∆Prj,t
·

Print
j,t

PDint
j,t

(14)

in which PDint
j is the demand of customer j at time t before implementing the DR program

and Print
j is the initial value of the electricity price offered to customer j at time t. The
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modified load characteristics of the customer under the proposed scheme are calculated
using the following equation:

PDt = CBLt + ∆PDt (15)

in which PD represents the power consumption vector of the customer under the proposed
scheme. Accordingly, the total load of the distribution system can be calculated as follows:

PDt = PDDR + PDNDR (16)

in which PDDR is the set of customers that participate in the proposed scheme, and PDNDR
is the set of customers that do not participate in the proposed scheme and remain as default.
According to Equations (15) and (16), the final demand of the customer is calculated as
follows. Accordingly, considering the responsive and nonresponsive loads, the total load
of the DS is calculated as follows:

PDt = (CBLC − ∆PD) + (1−DR)·CBLt (17)

The first part of Equation (17), (CBLC − ∆PD), is the final demand of the customers
that participate in the DR. The second part is the demand of the customers that do not
participate in the DR. Therefore, the final objective function is defined as follows:

PDaily =
3

∑
j=1

(
BLTotal

j −CTotal
t

)
(18)

In this equation, PDaily is the DSO profit from daily operation. BLTotal
j is the total

bill received from all customers at time t, comprising the DSO income. CTotal
t is the cost

of supplying the DS energy at a specific hour, which includes the cost of buying energy
from the station, the cost of buying energy from DGs, and the cost of buying interruptible
contracts for covering emergency conditions. PDaily is the daily profit of the DSO, obtained
from total profit at each hour over the operation period. The total operation cost is
calculated as follows:

CTotal
t = PrM

t ·PGrid
t +

NDG

∑
g=1

CDG
t,g + PrIL

t ·PIL,C
t + CET

t (19)

In this equation, PGrid
t is the purchased power from grid at each hour and PrIL

t is
the real-time price of interruptible loads. We considered PrIL

t to be 10% of the real-time
price of purchasing electricity from the grid according to [3]. PIL,C

t is the interruptible load
contract, interruptible loads being those that participate in the interruptible/curtailable
program. In this method, the consumers make an agreement with the operator to decrease
their consumption whenever the operator requests. The customers that participate in this
program receive credit and discounts for reducing their consumption when failures occur,
and the customers who do not reduce their consumption when required are penalized. This
program is more suitable for industrial and large commercial loads. The loads that partici-
pate in this program vary from 200 kW to 3 MW. This range might be different in different
markets and conditions. CET

t is the cost of using the smart measurement infrastructure,
NDG is total number of the DG units in the system, and CDG

t,g is the piecewise linear cost
function of energy generation by DGs, which is estimated using the following equation.

CDG
t,g = CSU

t,g + CM
g ·It,g + ∑

n=1
rn,gPt,n,g (20)

in which CSU
t,g , CM

g , It,g, rn,g, and Pt,n,g are the start-up cost of DG unit g in real-time, the
minimum generation cost of unit g, a binary variable denoting commitment status of
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DG unit g at time t, the linear generation cost model parameter of DG g, and the power
generation for DG g for segment n of the piecewise linear cost function, respectively.

2.5. Constraints

The power balance relationship is modeled as follows:

PGrid
t +

NDG

∑
g=1

PDG
t,g − PDRT

t + PIL.C
t = ∑

k,r
LFP

k,r,t (21)

QGrid
t +

NDG

∑
g=1

QDG
t,g −QDRT

t + QIL.C
t = ∑

k,r
LFQ

k,r,t (22)

In the above equations, PDRT
t and QDRT

t are the active and reactive power consumed
by customers in period t, respectively; PDG

t,g and QDG
t,g are the active and reactive power

generated by each DG unit, respectively; and LFP
k,r,t and LFQ

k,r,t are the active and reactive
power flow, respectively, from bus k to bus r at time t [24]:

LFP
k,r,t =

[
Gk,r

[
V2

k,t −Vk,t·Vr,t· cos(δk,t − δr,t)
]

−Bk,r.Vk,t·Vr,t· sin(δk,t − δr,t)

]
(23)

LFQ
k,r,t = −

[
Bk,r

[
V2

k,t −Vk,t·Vr,t· cos(δk,t − δr,t)
]

+Gk,r·Vk,t·Vr,t· sin(δk,t − δr,t)

]
(24)

in which Vk,t (δk,t) and Gk,r (Bk,r) are the voltage magnitude (voltage angle) at node k at
time t and the line conductance (susceptance) from bus k to r, respectively. The two above
equations are nonlinear; they were linearized through proper approximation [24].

LFP
k,r,t = Gk,r(Vk,t −Vr,t −Wk,r,t + 1)− Bk,t·(δk,t − δr,t) (25)

LFQ
k,r,t = −Bk,r(Vk,t −Vr,t −Wk,r,t + 1)−Gk,t·(δk,t − δr,t) (26)

|(δk,t − δr,t)| ≤ 10o (27)

Wk,r,t = dk,r,t,m·(δk,t − δr,t) + ek,r,t,m (28)

Linearizing power flow equations was given in [24]. In this reference, the linearization
error was neglected, and (|(δk,t − δr,t)| ≤ 10o) was considered to obtain the linear estima-
tion for cos(δk,t − δr,t). This reduces computation time significantly. In the above equation,
Wk,r,t describes the linear approximation of cos(δk,t − δr,t), and ek,r,t,m and dk,r,t,m are the
linearization constants. The constraints of active and reactive power flow and phase angle
are considered as follows [24]:

− LFP
k,r,t ≤ LFP

k,r,t ≤ LFP
k,r,t (29)

− LFQ
k,r,t ≤ LFQ

k,r,t ≤ LFQ
k,r,t (30)

− π ≤ δk,t ≤ π (31)

DG constraints: the operation of a DG unit is subject to some technical limits, including
generation limits, minimum down/up time, and ramp-down/ramp-up constraints. The
DG power constraints considering the participation of the units are modeled as follows:

Pt,n,g ≤ PDGSegMax
n,g ·It,g (32)

CSU
t,g = Zg

(
It,g − It−1,g

)
(33)
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PDG
t,g = PDGmin

g It,g + ∑
n=1

Pt,n,g (34)

In the above equations, PDGSegMax
n,g , PDGmin

g , and Zg are the maximum capacity of DG
generation segment, the minimum DG capacity limit for active power, and the DG start-up
cost parameter, respectively. The generation constraints ensure that the power generated
by each DG unit is bounded by the corresponding upper and lower limits as follows:

PDGmin
g ·It,g < PDG

t,g < PDGMax
g ·It,g (35)

in which PDGMax
g is the maximum DG capacity limit for active power. The generation of

DG units should adhere to the ramp-down/-up constraints as follows:
PDG

t+1,g − PDG
t,g ≤ RUP

g t = 0, 1, . . . , t− 1

PDG
t,g − PDG

t+1,g ≤ RDn
g t = 0, 1, . . . , t− 1

PDG
t,g |t=0= 0

(36)

In the above equations, RUP
g and RDn

g are the ramp-up/down limits for DG unit g.
Minimum down-/uptime constraints guarantee that the operating status of DG units

adheres to the limits as follows:
MUPg

∑
l=1

It−l+1,g ≥ MUPg

MDNg

∑
l=1

(
1− It−l+1,g

)
≥ MDNg

(37)

in which MUPg and MDNg are the minimum up- and downtime of the DG unit, respec-
tively. The bus voltage limits are taken into account as follows:

−V ≤ Vt ≤ V (38)

in which V and V are the minimum and maximum values of allowed voltage
magnitudes, respectively.

The power constraint received from the network and voltage of phases is modeled
as follows:

PGrid
t ≤ PGrid,Max (39)

In this equation, PGrid,Max is the maximum real power flowing through the distribution
transformer.

2.6. MILP Formulation

Finally, the original DSO profit optimization problem can be recast by the following MILP:

Max.
3
∑

j=1

{(
24
∑

t=1

[
PrBs

t ·CBLt + PrM
t ·(PDt −CBLt)

])
−
(

PrM
t ·PGrid

t +
NDG
∑

g=1
CDG

t,g + PrIL
t ·PIL,C

t + CET
t

)} (40)

Subject to:
Equations (19)–(22), and Equations (25)–(39)
The variables associated with this problem are {QGrid

t , QDG
t,g , CDG

t,g , CSU
t,g , Pt,n,g, LFP

k,r,t,

LFQ
k,r,t, Vk,t, Vr,t, Wk,r,t, δk,t, δr,t, It,g}, and the positive variables are {PGrid

t , PDG
t,g , PIL.C

t , QIL.C
t }.
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3. Effect of the Proposed Pricing Tariff on DS Reliability

Quantifying the advantages of employing DR for cost studies is essential. In this
section, a method is presented for accurate calculation of the effect of implementing DR
and describing it as DS reliability indices. In this paper, it was assumed that the daily
energy consumption of each customer was fixed. Also, customers’ behavior was optimal;
customers transferred their consumption from peak hours to nonpeak hours in response
to the proposed tariff. Therefore, implementing the proposed program did not affect the
average daily energy of the DS and only decreased the load peak. The general algorithm of
the method proposed in this paper is shown in Figure 1.
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3.1. Effect of Load Transfer on System Reliability

Many distribution systems have open points in their ring structure such that they
operate as effective radial systems under natural conditions, but when a fault occurs in a
system, some switches are closed, and a number of loads that are interrupted are restored.
This property affects DS reliability because other loads that are disconnected until the faulty
element is repaired completely are returned to normal conditions during the switching
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time using these links. Since many distribution system faults occur during peak hours, all
disconnected loads cannot be transferred to the side feeders via the normal lines, because
the side feeder might be overloaded or because connecting all loads to the side feeder
reduces the voltage significantly. In such conditions, the time for which a load point
is disconnected, which corresponds to a failure, is equivalent to the isolation time if it
can be transferred to the side feeder or equivalent to the maintenance time if it cannot
be transferred to the side feeder. The average of these two values specifies the time for
which a load is disconnected as a result of a fault. Also, recovering disconnected loads by
connecting to the side feeder increases by decreasing energy consumption at peak times,
and more loads are thereby recovered [55,56]. Hence, the expected energy-not-supplied
index decreases [57].

3.2. DS Reliability Indices

The reliability indices were mainly calculated based on random construction of the
fault time or correctness of each element instead of generating a faulty or healthy sequence
of an element. The main reliability indices in the distribution system that were defined for
each load point included the average failure rate λi, the average disconnection time ri, and
the average annual disconnection time Ui.

Customer-Based Indices

These indices consider the number of customers at each load point. The average time
on the primary indices is considered using the number of customers. Some of these indices
include [55,56]:

• System average interruption frequency index (SAIFI), the average number of customer
interruptions in a system divided by the total number of customers in the period
of study:

SAIFI = ∑n
i=1 λi·Ni

∑n
i=1 Ni

(41)

in which λi is the number of interruptions per year and Ni is the number of cus-
tomers of the ith load point. This index showed that each customer would experience
interruption several times a year.

• System average interruption duration index (SAIDI), the total interruption duration
of customers in a system divided by the total number of customers in the period
of study:

SAIDI = ∑n
i=1 Ui·Ni

∑n
i=1 Ni

(42)

in which Ui is the interruption duration of the ith load point and n is the total number
of load points. This index is described in terms of hours per customer in a year.

• Customer average interruption duration index (CAIDI), the total interruption duration
for all customers divided by the total number of interruptions for all customers; in
other words, it verifies the average interruption time per interruption:

CAIDI = ∑n
i=1 Ui·Ni

∑n
i=1 λi·Ni

(43)

• Average service availability index (ASAI), the customers’ access to electricity as the
percentage of hours during which the customers have access to electricity out of the
total hours during the period of study:

ASAI = ∑n
i=1 Ni·T−∑n

i=1 Ui·Ni

∑n
i=1 Ni·T

(44)

in which T is the total hours during the period of study, which in this case was 8760 h
in a year.
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• Average service unavailability index (ASUI), the unavailability of energy, or the
percentage of interruption hours out of the total hours during the period of study:

ASUI = ∑n
i=1 Ui·Ni

∑n
i=1 Ni·T

(45)

• Average energy not supplied (AENS), the average energy not supplied per customer
in kWh/customer:

AENS =
∑n

i=1 La(i)
∑n

i=1 Ni
(46)

in which La(i) is the average load of the ith load point.

3.3. The Proposed Reliability Evaluation Framework

In this paper, the Monte Carlo (MC) method was used to generate the fault scenario
and develop an analytical method for reliability assessment of smart grids. The Monte
Carlo simulation (MCS) method is one of the most applicable system simulation methods
and has been used in various studies. To calculate reliability under the proposed tariff,
first, the hourly demand curve of the system (CBL) was obtained. Then, the new hourly
demand curve was calculated based on the baseline price and RTP signals. The effective
reliability scenarios for fault included fault in the main grid and fault in the lines. When a
fault occurred in any of the DGs, the load was supplied by the grid, and load supply was
not interrupted. Thus, DG faults did not affect the expected energy not supplied (EENS)
and were considered as one of the fault scenarios. Thus, the total number of fault scenarios
is equal to the total of the grid’s fault and the lines’ fault.

In this model, the following steps are taken to calculate the reliability indices:
Step 1: first, the information matrix of the IEEE 33 bus system is recalled, and the

status matrix of the buses is calculated, in terms of relationships with each other and
adjacency to the main grid, and recalled.

Step 2: to calculate the reliability indices, four scenarios are considered for load
elasticity to examine its impact on the reliability indices. Also, the proposed tariff and
the instantaneous pricing signals are used to calculate the new hourly demand curve for
each scenario.

Step 3: there are various methods to calculate the initial values of the annual failure
rates, the average switching time, and the average maintenance time of each element
of the distribution system. In this paper, the simulation interval was one year, and all
sections were the same in terms of reliability. Thus, if a fault occurred in any of the
sections, it affected the total reliability of the system. The initial values of the failure rate
and maintenance time were modeled using the Monte Carlo method. For this purpose,
40,000 scenarios were considered. In each scenario, the duration of the devices being
healthy (T), the time required for switching (ST), and repair time (RT) were specified
randomly. In the following, the results were divided by the number of scenarios (40,000)
and the number of days of the year to obtain the final failure rate and RT.

First, a random number with uniform distribution in the range of 0 and 1 was gener-
ated. The random number was described using a function as the duration of the element
being healthy. To convert the random number to the duration of time that the element is
healthy, the following function was used [57]:

T = − 1
A

Ln(U) (47)

Then, another random number was generated, and the ST of the element is obtained:

ST = − 1
B

Ln(U) (48)
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Finally, a random number was also generated for the RT of the element:

RT = − 1
C

Ln(U) (49)

The parameters A, B, and C were obtained using the fault probability distribution of
the elements, which was exponential. Therefore, a vector including the failure time of the
elements, a vector including the ST of the elements, and a vector including the RT of the
elements were obtained for one year. Figure 2 shows the scenario generation diagram for
calculating the failure rate and repair time of the devices. M is the number of load points
in the 33-bus network considering the main network, and j is the number of scenarios for
calculating the initial values of failure rate and equipment repair time by the Monte Carlo
simulation method.
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Step 4: the number of load points of the distribution system, the power of the DGs,
and the installation locations of the DGs are assigned.

Step 5: according to the total demand curve (PD) at time t, which is described in MW,
the new demand for each bus (Di) is obtained.

Step 6: the first fault scenario is related to grid fault. For each fault scenario, the failure
rate of each load and the load loss duration are obtained. When a fault occurs, the load
difference of all buses with the total capacity of the up and down DGs is considered as the
lost load. The lost load at the failure rate (λ0) is multiplied by the average repair time of the
network (ri) and divided by the hours in a year (8760) to obtain the lost load of the first
failure rate.

Step 7: when a fault occurs in the feeders, the process is a bit more complex, and
the restoration of the disconnected loads should be modeled via DGs. In this step, the
BusState matrix is used, which is a 3D matrix. If a fault occurs in one feeder, this matrix
specifies which bus is connected to the network and which buses are connected to each
other, for example, Busstate(B, L, :) for the 33-bus system has 33 elements and shows the
buses that remain connected to bus B when a fault occurs on line L. In fact, it is a vector
with 33 elements that are either one or zero. If the nth element of this vector is one, it
indicates that when a failure occurs on line L, bus B remains connected to bus n; if it is zero,
it indicates that when a failure occurs on line L, bus B is not connected to bus n. The values
of the BusState matrix are recalled first. The buses that remain connected to the network
after fault are specified to calculate the indices after fault occurrence in the feeders. Then,
the bus numbers of the loads that are disconnected from the grid and should be restored
by the DGs are determined. Next, the bus numbers of the disconnected loads are specified
using DGs.

The loads are restored based on the distance of the loads from the bus on which each
DG is installed. For example, if a DG is installed on bus 10, and this bus and its adjacent
buses are disconnected from the grid, the DG restores the load of its bus and the adjacent
buses until its capacity is completed. In this process, the loads closer to the DG are of
higher priority. For this purpose, a matrix is generated in which the buses close to each
bus are sorted based on their adjacency to the bus of interest. This matrix is a 2D matrix
(BusOrder) in which each row is equivalent to a bus.

Finally, the state of each load is specified by the Loadstate(k, L) vector, which represents
the load restoration percentage at bus L and scenario k. If the state is one, the total load
of bus L is restored, and if it is zero, the total load of bus L is lost. After obtaining the
restoration percentage of each load, the lost load (fault in the main grid) can be calculated
for the fault scenarios of the grid lines.

Step 8: for all fault scenarios, the total failure rate of each load (λi) is calculated as
the total of all failures, and the interruption duration (Ui) is calculated as the total of
all interruptions.

Step 9: the reliability indices are calculated based on the obtained information.
The general algorithm of the method presented for calculating the reliability indices is

shown in Figure 3.
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4. Numerical Study

In this section, the short-term effect of employing the proposed tariff on the operation
decision, load level, DSO profit, and operator costs is studied. Its long-term effect on
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reliability indices of a sample distribution system [57] is also studied considering the 1-year
load profile.

4.1. Short-Term

In this section, the effect of employing the proposed instantaneous pricing tariff on
operation decisions was studied. Figure 4 shows a schematic of the studied DS. The
maximum power generation capacities of (DG1, DG2) and (DG3, DG4) were 5 MW and
4 MW, respectively.
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The simulations were performed using GAMS and MATLAB. The problem was
solved as a mixed integer linear programming (MILP) model in GAMS 24.1. This type
of programming in GAMS was specified using MIP, and the solver of this problem was
CPLEX [58].

MATLAB was used to calculate the effect of pricing method on the demand curve
and the customers’ payment. Finally, the final demand curve obtained from MATLAB was
used to solve the operation problem and calculate the profit. In this section, three studies
were conducted. In the first study, which aimed to analyze the effect of DSO signals, the
time-variant electricity price was integrated with the DS performance, investigating the risk
to customers’ payment resulting from price fluctuations by changing the DR percentage.
The purpose of the second study was to analyze the effect of customers’ participation in the
tariff; therefore, in the scenarios defined for the second study, the participation level varied,
but the sensitivity of the customers participating in the tariff was fixed regarding the price
changes. In the third study, it was assumed that there was a specific level of customer
participation and that the customers’ sensitivity to the prices changed. An increase in ε
indicated that the customers’ sensitivity to price changes increased. Short-term studies
were intended here for 24 h a day on a winter day, which can be generalized to a season by
averaging the price signals.

4.1.1. The First Study

This study investigated the effect of DR percentage on the customers’ energy con-
sumption payment risk. To this end, first, the baseline price signals TOU and RTP were
given. It should be mentioned that since RTP is associated with the real-time price of the
electricity market, it was uncertain. Three different scenarios were considered for pricing
to cover the uncertainty (Figure 5). Then, the demand curve was calculated for different
price scenarios.
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The percentage of the load that was reprogrammable was defined using ζ, and it was
equal to 0.015. Ec is a diagonal matrix that represents load elasticity for 24 h, and it was
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considered to be 0.4. Figure 6 shows the demand curve for different pricing scenarios based
on the proposed tariff. As can be seen, in all scenarios, the consumption decreased at all
peak times and increased at nonpeak times under the proposed tariff.
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Table 2 shows the minimum and maximum payments of customers based on normal
pricing and the proposed pricing tariff. As can be seen, the proposed scheme reduced
the customers’ payment changes significantly. The payment risk was equal to the differ-
ence of the maximum payment and the average payment. The difference between the
customers’ payment in the best and worst scenarios under the normal one-sectional RTP
was 1140.8 USD, while it was 516.54 USD under the proposed scheme. In other words,
the proposed scheme reduced the payment risk by 54%, because unlike the normal RTP
scheme, which calculates the total consumption of the customers with the unstable price of
the electricity market (which is uncertain), the proposed scheme calculates the different
between the TOU and the consumption curve with the electricity market price.

Table 2. The customers’ payment in the best and worst scenarios (USD).

Proposed Scheme (USD) Present RTP (USD)

Best scenario payment 1.3774 × 105 1.3129 × 105

Worst scenario payment 1369 × 105 1.279 × 105

Payment exposure risk 516.54 1140.8

In the next section, the effect of load participation in DR on payment risk was studied.
To this end, five different values were considered for load participation in the DR, which
was defined as the DR vector. These values varied from 0 to 80% with a step of 20%. Finally,
the payment risk and expected payment were obtained and stored for each value.

Figure 7 shows the payment risk vs. DR percentage. As customer participation in
the proposed tariff increased, the payment risk also increased, while in the existing RTP
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scheme, the payment risk decreased as the responsive load increased. This was because
under the proposed scheme, if a customer does not change their normal consumption
pattern (CBL), no price change is applied to any part of the customer’s consumption.
According to the term (PDt −CBLt) in calculating customer invoices, the further away a
subscribers’ consumption was from the CBL, the difference of the consumers’ payment
with the baseline payment was higher. Also, Figure 7 shows that customer risk under
the proposed scheme was lower than the risk under the existing RTP for all responsive
loads. From Figure 8, it can be found that the expected consumption of the customers was
almost the same. The changes in the responsive loads changed the customers’ payment
for different scenarios, but the expected payment, which is the average of these payments,
remained almost unchanged.
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of the load. The results showed that according to the proposed tariff, the DSO profit was
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Table 3. DSO income and operation costs for two pricing schemes (USD).

Pricing Scheme DSO Income
(BLTotal

t )
Purchase from

Grid (CGrid
t ) IL Purchase (CIL

t )
DG Generation

(CDG
t ) DSO Profit (P)

Existing present RTP scheme 131,287 96,788 160.566 14,320.00 20,018.2
The proposed RTP scheme 137,023 96,788 160.566 14,320.00 25,754
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4.1.2. The Second Study

In this study, the effect of customers’ participation on operation decisions, customer
invoices, DSO profit, and load level was investigated. In this section, the baseline price and
RTP price (Scenario 1) were considered as the inputs. Table 4 shows the DSO profit vs. costs
and income. The represented profit is called the baseline profit, because it was calculated
assuming that customer participation in the proposed program was zero (DR = 0) and the
prices did not change (Ec = 0). In other words, this profit was calculated assuming that
the load profile was equal to CBL and that customers did not change their consumption in
response to prices.

Table 4. Costs and incomes of the DS in basic case.

Pricing Scheme Enrollment Level (BLTotal
t )

(USD)
(CGrid

t )
(USD)

(CIL
t )

(USD)
(CDG

t )
(USD)

(P)
(USD)

Existing RTP scheme 0 135,729 95,391.42 383.057 14,320 25,634.52
Proposed RTP scheme 0 129,993 94,391.42 383.057 14,320 19,898.76

Figure 9 shows the improvement in the operation profit between the existing and
proposed tariffs regarding the baseline case. The red curve shows the improvement of
the total operation profit using the proposed tariff, and the blue curve shows the profit
percentage for the normal RTP tariff. The proposed model was more effective than the
normal tariff and increased the profit by eliminating the possibility of changing the market
price as a result of increasing the participation level of the customers in the pricing tariff.
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customers’ participation level in the DR.

Table 5 shows the changes in different components of the profit, income, and DSO
profit based on changes in the customers’ participation in the proposed program. The
DGs’ cost was fixed. As can be seen, as the participation level increased, the cost of buying
electricity from the gird decreased, and the contract with interruptible loads also decreased
because the consumption decreased at peak times.

Table 5. Changes in different components of profit, cost, and income based on participation level in
the DR.

DR (BLTotal
t )

(USD)
(CGrid

t )
(USD)

(CIL
t )

(USD)
(CDG

t )
(USD)

(P)
(USD) Improvement (%)

25% 136,160.2 94,858.56 305.564 14,320 26,676.1 4.0631773
50% 136,591.4 93,425.6 228.285 14,320 28,617.56 11.6367851
75% 137,022.7 92,121.18 160.566 14,320 30,420.92 18.6716701

100% 137,453.9 90,338.57 119.006 14,320 32,676.31 27.4699234

4.1.3. The Third Study

In this study, the effects of customers’ sensitivity to prices on operation decisions,
customers’ invoices, DSO profit, and load level were investigated. In this study, it was
assumed that 75% of customers had registered in the proposed tariff. Figure 10 shows the
profit increase under the proposed tariff compared to the basic case. The red curve shows
the improvement of the operator’s total profit when employing the proposed tariff. This
figure shows that as the customers’ sensitivity to prices under both tariffs increased, the
operation profit increased. The proposed pricing tariff was more effective and increased
the profit further.
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Table 6 shows changes in different elements of profit, income, and cost for differ-
ent elasticity scenarios. Although increasing the elasticity increased the DSO income, it
decreased the operation costs significantly.

Table 6. Changes in different elements of profit, cost, and income for different elasticity scenarios.

E (BLTotal
t )

(USD)
(CGrid

t )
(USD)

(CIL
t )

(USD)
(CDG

t )
(USD)

(P)
(USD) Improvement (%)

0.05 136,591.4 94,375.1 344.203 14,320 27,552.2 7.481
0.1 137,453.9 93,658.6 305.564 14,320 29,169.8 13.791

0.15 138,316.3 92,492.1 266.925 14,320 31,237.3 21.856
0.2 139,178.8 91,125.6 228.285 14,320 33,504.9 30.702

4.1.4. Time-Varying Electricity Rates

The real-time pricing method proposed in this paper was compared with time-of-use
(TOU) pricing methods and critical peak pricing (CPP) [23], and the comparison results in
a sample day are given in Table 7.

Table 7. Changes in different elements of profit, cost, and income for different elasticity scenarios (USD).

Electricity Rate (BLTotal
t ) (CGrid

t ) (CIL
t ) (CDG

t ) (P) DSO Profit

TOU 133,160 95,383.1 539.9 14,320 22,917
CPP 127,822 107,557.5 541.5 14,320 5403
RTP 137,023 96,788 160.566 14,320 25,754

In TOU, different time intervals are determined in which the prices are fixed; however,
prices vary from one interval to another. These intervals might be different hours of a day.
In CPP, the prices are fixed in different intervals, but they increase significantly for the
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peak range in which the demand is high, and the customers usually receive the new price
information one day ahead. In the RTP method, the electricity price is variable in all hours
and reflects the market price. The results given in Table 7 show that TOU and RTP increased
the DSO profit significantly, while CPP reduced the DSO profit. Therefore, considering
the increase in DSO profit and decrease in operation costs using RTP compared to the two
other methods, RTP is the most appropriate method for the proposed pricing tariff.

4.1.5. Verification of the Results’ Accuracy

As mentioned before, to solve the operation problem, the MILP model was solved
using GAMS and CPLEX 24.1.3. The tests were carried out using an Intel core i3 3217u
2.1 GHz processor with 4 GB RAM. Because of the large number of constraints, the binary
variables and the parameters, convergence, and accuracy of the model were investigated.
Tables 8 and 9 show the “best solution”, “absolute gap”, and “computation time” of the
results with sufficient accuracy for different cases. As can be seen, the results were in
good agreement and demonstrated convergence of the algorithm. In these calculations,
the linearization method was used to solve the power flow equations. Comparison of the
results of the linear and nonlinear equations showed that the results were very close to
each other, but the computation time for linear methods was much shorter than that for
nonlinear methods.

Table 8. The output of CPLEX 24.1.3 for each study case with linear equations such as AC power flow constraints.

Case Model Best Solution (USD) Absolute Gap Computation Time (Min.)

DR = 0, E = 0.04 MILP 19,898.76 0% 0.25
DR = 0.25, E = 0.04 MILP 26,676.1.6 0% 5
DR = 0.5, E = 0.04 MILP 28,617.56 0% 5.09

DR = 0.75, E = 0.04 MILP 30,420.92 0% 5.11

Table 9. The output of CPLEX 24.1.3 for each study case with nonlinear equations such as AC power flow constraints.

Case Model Best Solution (USD) Absolute Gap Computation Time (Min.)

DR = 0, E = 0.04 MILP 19,899.8 0% 8
DR = 0.25, E = 0.04 MILP 26,677.2 0% 26.4
DR = 0.5, E = 0.04 MILP 28,618.6 0% 26.67

DR = 0.75, E = 0.04 MILP 30,423 0% 26.78

4.2. Long-Term

In this section, the long-term effect of instantaneous pricing on the reliability indices of
the system was investigated. It was assumed that the customers’ behavior was optimal and
that customers transferred load at peak times to other times. The response of customers to
prices was modeled using the load elasticity concept. The load profile was examined first
to calculate the DS reliability using the proposed method. To this end, two different cases
were considered for the load profile. In the first case, the DR changed for each load curve,
and in the second case, the elasticity changed. The conventional methods for calculating
the reliability indices could not demonstrate the changes resulting from changes in the load
profile, because these methods used the average load instead of the load profile, and the
average load was fixed in all load profiles. The important point is that by implementing
the proposed instantaneous pricing program, the load profile became more uniform, and
the load peak decreased.

4.2.1. First Case: Calculating Reliability Indices vs. DR Changes

In this section, four scenarios were considered for determining customer participation.
The purpose of determining these scenarios was to specify the effect of the number of
participants on different reliability indices. For this purpose, 40,000 scenarios were consid-
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ered for simulating the failure rate and repair time using the Monte Carlo method. The
reliability indices of the baseline case (Ec = 0, DR = 0) are given in Table 10.

Table 10. Reliability indices in the basic case.

Reliability Indices Value

SAIFI (interrupt/customer/year) 3.5404
SAIDI (hours/customer/year) 14.6565

CAIDI (hours/interruption) 4.1399
ASAI 0.9984
ASUI 0.00165

ENS(MWh/year) 23.6110
AENS (KWh/customer/year) 14.5468

The results of the proposed method for calculating the reliability indices in baseline
are compared with the results obtained using the two other references in Table 11. The
numerical results showed that the reliability indices of the proposed framework were
reduced compared to the those of the other two methods, as the expected energy-not-
supplied index was reduced under the proposed method, and customer satisfaction was
increased.

Table 11. Comparing the reliability indices of the proposed method with other studies.

Solution Approaches SAIFI SAIDI CAIDI ASAI

Model presented in [55] 21.5210 40.3415 1.875 0.9985
Model presented in [59] 5.35187 927.25 173.25 0.9987

Proposed model 3.5404 14.656 4.1399 0.9984

As customer participation increased at a fixed elasticity (Ec = 0.45), the reliability
indices of the distribution network decreased. Comparison with the results (shown in
Table 12) showed that when customer participation in the proposed tariff increased, the
reliability indices that rely on the load level decrease because the consumption load curve
became smooth; indeed, some indices directly relied on the failure rate of the devices,
and their changes in response to changes in load consumption were negligible. Figure 11
shows changes in reliability indices compared to the basic case, indicating improvement in
reliability as customer participation increased.

Table 12. Changes in reliability indices based on DR for Ec = 0.45.

DR SAIFI SAIDI CAIDI ASAI ASUI ENS AENS

0 3.54038 14.6565 4.1399 0.99835 0.001649 23.6109 14.5468
0.25 3.51957 14.5818 4.1432 0.99835 0.001649 22.9618 14.3912
0.50 3.50378 14.5229 4.14501 0.99835 0.001649 22.4406 14.3117
0.75 3.48817 14.4669 4.14742 0.99835 0.001649 21.9928 14.1924

1 3.48297 14.4482 4.14823 0.99835 0.001649 21.7581 14.1527

4.2.2. Second Case: Calculating Reliability Indices as Load Elasticity Changes

In this section, four scenarios were considered for load elasticity. The purpose of
determining these scenarios was to determine the effect of customers’ sensitivity to price
changes on various reliability indices. In this case, the DR for different elasticities was
considered to be 50%. As shown in Table 13, increasing load elasticity improved the
reliability of some indices and did not affect other indices, because increasing elasticity
decreased the load peak and the pressure on the system, improving reliability. However,
some reliability indices, such as ASAI and ASUI, depend on the failure rate of the devices;
thus, the impact of increasing elasticity on these indices was negligible.
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Table 13. Changes of reliability indices on load elasticity for DR = 0.5.

Self-Elasticity SAIFI SAIDI CAIDI ASAI ASUI ENS AENS

0 3.5404 14.6565 4.1399 0.9984 0.00165 23.6110 14.5468
0.15 3.5300 14.6191 4.1416 0.9984 0.00165 23.2183 14.4686
0.30 3.5103 14.5469 4.1441 0.9984 0.00165 22.7673 14.3519
0.45 3.5038 14.5229 4.1450 0.9984 0.00165 22.4405 14.3116
0.60 3.4882 14.4669 4.1474 0.9984 0.00165 21.9928 14.1923
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Figure 12 shows changes in reliability indices for different elasticities for DR of 0.75.
The diagrams show that indices such as SAIFI, SAIDI, and ENS improved up to the point
that the load curve did not fluctuate.

Sustainability 2021, 13, x FOR PEER REVIEW 29 of 37 
 

Table 12. Changes in reliability indices based on DR for E = 0.45. 

DR SAIFI SAIDI CAIDI ASAI ASUI ENS AENS 
0 3.54038 14.6565 4.1399 0.99835 0.001649 23.6109 14.5468 

0.25 3.51957 14.5818 4.1432 0.99835 0.001649 22.9618 14.3912 
0.50 3.50378 14.5229 4.14501 0.99835 0.001649 22.4406 14.3117 
0.75 3.48817 14.4669 4.14742 0.99835 0.001649 21.9928 14.1924 

1 3.48297 14.4482 4.14823 0.99835 0.001649 21.7581 14.1527 

4.2.2. Second Case: Calculating Reliability Indices as Load Elasticity Changes 
In this section, four scenarios were considered for load elasticity. The purpose of 

determining these scenarios was to determine the effect of customers’ sensitivity to price 
changes on various reliability indices. In this case, the DR for different elasticities was 
considered to be 50%. As shown in Table 13, increasing load elasticity improved the re-
liability of some indices and did not affect other indices, because increasing elasticity 
decreased the load peak and the pressure on the system, improving reliability. However, 
some reliability indices, such as ASAI and ASUI, depend on the failure rate of the devic-
es; thus, the impact of increasing elasticity on these indices was negligible.  

Table 13. Changes of reliability indices on load elasticity for DR = 0.5. 

Self-Elasticity SAIFI SAIDI CAIDI ASAI ASUI ENS AENS 
0 3.5404 14.6565 4.1399 0.9984 0.00165 23.6110 14.5468 

0.15 3.5300 14.6191 4.1416 0.9984 0.00165 23.2183 14.4686 
0.30 3.5103 14.5469 4.1441 0.9984 0.00165 22.7673 14.3519 
0.45 3.5038 14.5229 4.1450 0.9984 0.00165 22.4405 14.3116 
0.60 3.4882 14.4669 4.1474 0.9984 0.00165 21.9928 14.1923 

Figure 12 shows changes in reliability indices for different elasticities for DR of 0.75. 
The diagrams show that indices such as SAIFI, SAIDI, and ENS improved up to the point 
that the load curve did not fluctuate. 

  
(a) (b) 

Sustainability 2021, 13, x FOR PEER REVIEW 30 of 37 
 

  
(c) (d) 

  
(e) (f) 

Figure 12. Changes in reliability indices based on elasticity for DR = 0.5. (a) SAIFI; (b) SAIDI; (c) CAIDI; (d) ASAI; (e) 
ENS; (f) AENS. 

Figure 13 depicts the load curve for elasticity values of 3, 4, and 5, which are signif-
icant and uncommon values for elasticity. As can be seen, the load curve was affected by 
valleys and peaks, and as a result, the enhancement of reliability indices decreased. 

 
Figure 13. Changes in the consumption demand curve with respect to significant changes in elas-
ticity. 

Figure 12. Changes in reliability indices based on elasticity for DR = 0.5. (a) SAIFI; (b) SAIDI; (c) CAIDI; (d) ASAI; (e) ENS;
(f) AENS.

Figure 13 depicts the load curve for elasticity values of 3, 4, and 5, which are significant
and uncommon values for elasticity. As can be seen, the load curve was affected by valleys
and peaks, and as a result, the enhancement of reliability indices decreased.
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4.3. Sensitivity Analysis of Energy Not Supplied

In this section, a sensitivity analysis was performed on the ENS of the load points
based on DR changes and elasticity changes. As can be seen in Figure 14 and Table 14, as
the elasticity and DR increased, the ENS of the load points decreased until the customers’
responsiveness exceeded a threshold. As the customers’ responsiveness further increased,
the load peak was converted to a valley, and the increase in consumption generated peaks
at the nonpeak points, increasing interruption probability at the nonpeak points.
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Table 14. Changes in ENS based on simultaneous changes in DR and elasticity.

Self-Elasticity DR = 0.25 DR = 0.50 DR = 0.75 DR = 1

0.7 22.6175 21.7581 21.1515 20.5449
1 22.3521 21.2382 20.3716 19.1548

1.3 21.8447 20.7182 19.4172 17.5737
1.6 21.5848 20.1983 18.0944 15.3805
1.9 21.3248 19.5021 16.6074 13.9134
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4.4. Sensitivity Analysis of SAIFI

In this section, a high elasticity was considered for sensitivity analysis to demonstrate
the changes of the load profile. The sensitivity analysis of the SAIFI index showed that
as the customers’ sensitivity to energy price changed, the number of interruptions of the
load points decreased because the consumption peak was shifted from heavy-load to
low-load times (as shown in Figure 15 and Table 15). In fact, the customers tended to
change their consumption to the times with energy price discounts. Therefore, at peak
time, load peak and pressure on the lines and devices of the distribution system decreased
and the number of interruptions decreased. In this analysis, it was shown that increasing
customers’ participation in the pricing tariff decreased SAIFI significantly until the load
profile became smooth; after several load profile changes, at consumption peaks, the
number of interruptions increased.
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Table 15. Changes in the SAIFI index based on simultaneous changes in DR and elasticity.

Self-Elasticity DR = 0.25 DR = 0.50 DR = 0.75 DR = 1

0.7 3.5038 3.4830 3.4829 3.4740
1 3.5038 3.4830 3.4561 3.3494

1.3 3.4829 3.4785 3.3693 3.2340
1.6 3.4829 3.4336 3.2685 3.0606
1.9 3.4829 3.3693 3.1566 2.9329

5. Conclusions

In this study, an instantaneous pricing scheme is proposed for optimal operation and
improved reliability of distribution systems. The numerical studies showed that employing
the proposed tariff reduced the load peak and made the load profile more uniform by
motivating customers to buy optimally. Thus, the operation costs and customers’ invoices
are decreased, and the final profit of the DSO is increased. On the other hand, since the load
peak was decreased, more load could be connected to the side feeder when a fault occurs.
Thus, the reliability of distribution system was improved. The results showed that as the
customers’ participation in the proposed tariff increased, the cost of buying energy from the
market and the cost of interruptible loads decreased, because the energy consumption is
shifted to low-load times, and the need to make interruptible contracts to cover emergency
conditions decreased. Increasing DR and elasticity improved the reliability indices of the
distribution system; the DR increased until the customers’ responsiveness did not exceed a
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threshold, because further increase in the customers’ responsiveness converted the load
peak into a valley and generated peaks at nonpeak times by increasing consumption.

The proposed framework is capable of optimal emergency operation and restoration
in different distribution systems with smart automation levels such as the IEEE119 bus
and IEEE69 bus distribution systems. Since load restoration time played an essential role
in designing the proposed model, said model necessitates using distribution networks
with advanced metering infrastructure (AMI) and internet of things (IOT) that can detect
and resolve faults in minimum time. Also, using DR programs on the consumer side
necessitates using advanced communication networks with high reliability. Creating such
smart structures in distribution networks for processing information on consumers and
bidirectional communication systems based on IOT changes the operation costs. Thus, one
practical constraint of this scheme is to convert conventional distribution systems to smart
structures. Thus, in future studies, the main focus will be on developing a load restoration
and operation model in microgrids that considers the uncertainty of DGs and DR programs
associated with IOT.
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Nomenclature

A. Indices and Sets

t, l Indices and set of time intervals, running from 1 to T
i, k, r Indices and set of network buses, running from 1 to 33
g, NDG Index and number of distributed generation, running from 1 to 4
T Index of total time (24 h a day)
N Set of linear model segments, running from 1 to 10
J Set of different customers from 1 to 3

B. Parameters and Variables

qt
Binary indicator denoting of the consumption peak hour, equal to
1 on peak, otherwise 0

PrBS
t , Prch

t , Prcr
t , PrM

t , PrIL
t

Baseline rate, charge rate, credit rate, marginal price, and
interruptible load price (USD/MWh)

MUPg , MDNg Minimum up and down time of DG unit (h)

PDGMax
g , PDGmin

g
Maximum and minimum of DG capacity limit for
activepower (KW)

PDGSegMax
n,g Maximum capacity of DG generation segment (KW)

Zg DG startup cost parameter (USD)

It,g
Binary variable denoting commitment status of DG unit g at time
t, equal to 1 if unit g is scheduled to be committed, otherwise 0
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RUP
g , RDn

g Ramping-up and ramping- down rates ofDG unit g (KW)
rn,g Linear generation cost model parameter ofDG unit (USD/KWh)

CM
g Minimum generation cost of unit g (USD/KWh)

ε, E, ζ
Price elasticity coefficient, matrix of price elasticity factors,
customers’ enrollment level on DR program

PDint
j

Demand of customer j at time t before implementing DR
program (MW)

Print
j

Initial value of electricity price offered tocustomer j at time
t (USD)

CET
t Cost of using smart measurement infrastructure (USD)

PGrid,Max Maximum real power procured from outside grid (MW)
V, V Upper and lower allowed voltage magnitudes (pu)

ek,r,t,m, dk,r,t,m Linearization constants (radian)

Wk,r,t Linear approximation of cos
(
δk,t − δr,t

)
(radian)

Gk,r
(
Bk,r

)
Line conductance and susceptance (from bus k to r) (ohm)

Vk,t
(
δk,t
)

Voltage magnitude (voltage angle) at node k at time t (pu)

A, B, C Constant parameters for distribution function probability
La(i) Average load of the ith load point (MW)

λi, Ui, ri
Failure rate, average repair time, average annual disconnection
time (h)

Ni Number of customers of the ith load point, running from 1 to 34

LFP
k,r,t

(
LFQ

k,r,t

)
Active (reactive) power flow from node k to r (MW)

BLTotal
t Total bill received from all customers at time t (USD)

CTotal
t Cost of supplying the DS energy at a specific hour (USD)

PDDR(PDNDR)
Power consumption of customers that participate (do not
participate) in the proposed scheme (MW)

PDRT
t

(
QDRT

t

) Active (reactive) power consumed by customers in period.
MW (MVAR)

PDG
t,g

(
QDG

t,g

)
Active (reactive) power generated by each DG unit. KW (KVAR)

PIL.C
t

(
QIL.C

t

)
Active (reactive) power of interruptible load. MW (MVAR)

PGrid
t

(
QGrid

t

)
Active (reactive) power purchased from grid. MW (MVAR)

∆PD Matrix of changes in demand (MW)
∆Pr Price change vector (USD)

PDaily The DSO profit from daily operation (USD)
CDG

t,g Piecewise linear cost function of energy generation by DGs (USD)

Pt,n,g
Power generation for DG g for segment n of piecewise linear
cost function. (KW)

CSU
t,g Startup cost of DG unit g (USD)

RT, ST Repair time, switching time (h)
Di New demand for each bus (MW)

C. Abbreviations

SAIFI System average interruption frequency index
SAIDI System average interruption duration index
CAIDI Customer average interruption duration index
ASAI Average service availability index
ASUI Average service unavailability index
AENS Average energy not supplied
ENS Energy not supplied
EENS Expected energy not supplied
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CBL Customer baseline load (MW)
CBLC Demand from customers that participate in the DR program (MW)
DG Distributed generation
DR Demand response
PSO Particle swarm optimization
DS Distribution system
MCS Monte Carlo simulation
Busstate Bus state

Loadstate Load state

BusOrder Bus order

MILP Mixed integer linear programming model
RTP Real-time pricing
MG Microgrid
DSO Distribution system operator
IL Interruptible load
DRA Demand response aggregators
RTM Real-time market
CCP Critical peak pricing
TOU Time of use
RTP Real time pricing
AMI Advanced metering infrastructure
IOT Internet of things
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