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Abstract: The classroom environment is of great significance for the health of primary and secondary
school students, but a comfortable indoor environment often requires higher energy consumption.
This paper presents a multi-objective optimization method based on an artificial neural network
(ANN) model, which can help designers efficiently optimize the design of primary and secondary
school classrooms in southern China. In this optimization method, first, the optimization objectives
and variables are determined according to building characteristics, and the physical model is estab-
lished through simulation software (EnergyPlus) to generate the sample space. Second, sensitivity
analysis is carried out for each optimization variable, and the physical model is modified according to
the results to regenerate the sample space. Third, the ANN model is trained by using the regenerated
sample space, and the Pareto optimal solution is generated through the use of the non-dominated
sorting genetic algorithm II (NSGA-II). Finally, the effectiveness of the multi-objective optimization
method is proven through a typical case of primary and secondary school classrooms in Nanjing,
China. The results show that, compared with the benchmark scheme, TES decreased by 810.8 kWh at
most, PT increased by 47.8% at most and DI increased by 4.2% at most.

Keywords: envelop optimization; ANN; school classroom; multi-objective

1. Introduction
1.1. Background

With the development of building environment technology, people’s requirements for
indoor comfort have become stricter [1]. Especially in schools, a healthy and comfortable
indoor environment plays an important role in promoting students’ learning efficiency
and physical and mental health [2]. However, the creation of a good indoor environment
requires considerable energy [3]. At present, the area of primary and secondary school
buildings in China is approximately 1.7 billion m2, accounting for 15% of the national public
building area, and the building energy consumption is approximately 20 million tons of
standard coal per year, accounting for approximately 7% of national public building energy
consumption [4]. Primary and secondary school students should stay in the classroom for
at least eight hours every day. Their physical and mental health is the focus of school and
family attention. Some studies have shown that a good daylighting environment helps to
reduce students’ myopia rate [5], while a comfortable thermal environment helps students
concentrate and makes them energetic [6,7]. Therefore, classroom thermal comfort and
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natural lighting are of great significance to the health of these students. In China, the main
goal of classroom design is to meet the required specifications. The design often relies on
past design experience and fails to take into account various factors, which can easily lead
to an unreasonable design (poor comfort or high energy consumption in the classroom).
Thus, how to optimize the design of primary and secondary school classrooms so that they
offer a comfortable indoor environment and have low operating energy consumption has
become an attractive challenge for architectural designers.

1.2. Literature Review
1.2.1. Parametric Design and Architectural Design Optimization

In recent years, the concept of parametric design has attracted extensive attention
from researchers in the field of architecture [8]. Parametric design uses rational thinking
instead of subjective imagination to design, which makes people reacquaint themselves
with the design rules [9]. Through the application of parametric design, architectural
design optimization can be realized. Ascione et al. proposed a multi-objective optimization
approach to address the design problem of the building envelope. By taking primary
energy consumption, cost and thermal comfort as the optimization objectives, the design of
a typical Italian residential building was optimized. The results provide valuable guidance
for the reconstruction of Italian residential inventories to achieve energy efficiency and cost
optimization [10]. Hu et al. analyzed the influence of different levels of envelope thermal
performance on building energy consumption. By taking a public building in Beijing
as the research object, the influence of external walls, roofs and windows on building
energy performance was analyzed by DeST-c software (developed by Tsinghua University).
The results show that the transfer coefficient of external windows had the greatest influ-
ence on the indoor heat load, followed by the roof and the external wall [11]. Zhai et al.
proposed a multi-objective optimization method combining the non-dominated sorting
genetic algorithm II (NSGA-II) with EnergyPlus (jointly developed by the Department of
Energy and Lawrence Berkeley National Laboratory) to optimize the window design. This
method considered the many variables involved in window design and optimized the
indoor visual performance, thermal comfort and energy. This method can help designers
obtain an optimal window design solution to minimize building energy consumption while
simultaneously improving the indoor thermal environment and visual performance [12].
Chang et al. proposed a building envelope decision-making scheme that could satisfy
multiple objectives under uncertain conditions while considering possible building en-
velope schemes. Considering the uncertainty of the existing building form, performance
prediction and newly developed facade system, a multi-objective optimization model was
established. The optimization model and framework proposed in the above study will help
to provide a roadmap for transforming existing buildings into smart and sustainable build-
ing systems [13]. Pan et al. established an online interaction framework that could couple
any MATLAB-based algorithm to the standard simulation software EnergyPlus. By taking
a typical residential building model in Nanjing as an example, the feasibility of the online
optimization framework was studied. The results show that the interactive optimization
framework was simple and accurate and could be used as an effective tool for building
performance design [14]. Zhu et al. used Rhino-Grasshopper to extract and establish the
benchmark models of three rural building types in northern China and comprehensively
considered the energy, indoor daylighting and thermal comfort of the three building types,
and explored the influence of the early design of the building shape and window-to-wall
ratio (WWR) on the above performance [15]. Although multi-objective optimization has
been applied in architectural design optimization, it has mainly adopted a coupling calcu-
lation of the simulation software and optimization algorithm. The parameterized physical
model of the building is established by simulation software, which is used as the objective
function in the optimization algorithm, and the Pareto solution set is obtained according
to the optimization objectives. This method is simple and easy to perform, but due to the
limitation of the calculation time of the simulation software, it is limited in optimization
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calculations that involve more variables. Furthermore, it is difficult for this method to fully
consider the multiple factors of architectural design optimization.

1.2.2. Optimization of Educational Architecture Design

Due to the special needs of young people in terms of learning and growth, the special
focus of education buildings must be user comfort while using as little energy as possi-
ble [16]. Therefore, the design optimization approach of education buildings must be a
multi-objective optimization approach, taking into account various factors at the same
time. Different from other public buildings and residential buildings, the optimization of
daylighting in education buildings must be considered. Many studies have shown that
daylighting has a very important impact on the health and performance of students and
teachers. The benefits of good daylighting include an increase in students’ sociability and
concentration [17], the creation of a less stressful environment for students [18], an im-
provement in academic performance [19] and a reduction in energy costs [20]. In addition,
some studies have shown that a good daylighting environment helps to reduce the myopia
rate of students [5]. Zhang et al. used simulation optimization tools to optimize the thermal
comfort and lighting of school buildings in northern China. In their optimization analysis,
a variety of passive design parameters were considered, including orientation, room depth
and corridor depth, the window-to-wall ratio of different interfaces, glass material and
shading type [21]. Acosta-Acosta et al. proposed a multi-objective optimization model to
optimize the design of natural ventilation education buildings to maximize the satisfaction
of occupants with human biological pollutants/body odor levels and minimize construc-
tion costs. The effectiveness of their optimization model was verified by a case study in Los
Angeles, CA, USA [22]. For the renovation of education buildings in the Mediterranean
region, Ascione et al. proposed a multi-step optimization method that enabled scien-
tists, professionals and designers to optimize the energy-saving renovations of existing
education buildings. The optimization process involves the renovation of the building
envelope, the integration of heating, ventilation and air conditioning (HVAC) systems and
a renewable energy supply. The optimization method can comprehensively consider costs,
indoor comfort and energy and determine an optimal transformation scheme [23]. Bakmo-
hammadi et al. proposed an optimization framework for classrooms in Tehran-Mehrabad,
which could not only meet residents’ comfort demands but also improve energy efficiency.
With the help of parametric design, architects can obtain a set of effective methods for
the best classroom design scheme from the Pareto front and then make the final decision
according to their personal preferences by comparing the visual comfort of the best solution.
The abovementioned study provides designers with a guideline for sustainable classroom
design and encourages them to use innovative energy-saving methods [24]. There are
great differences in the structure of educational buildings across different countries and
regions, so it is difficult to find a general physical model. Therefore, the above research on
the optimization of education buildings shows that strong regional characteristics exist.
Moreover, the architecture characteristics of primary and secondary schools and univer-
sities are also very different. The inner corridor structure is often used in educational
buildings in universities, and the classroom has only one side external window. The outer
corridor structure is often used in primary and secondary school education buildings, and
the external windows must be set on both sides of the classroom. Classrooms are the core
of the optimization design of primary and secondary schools, and there are few studies
on the optimization design of conventional primary and secondary school classrooms in
southern China.

1.2.3. Application of the Meta-Model in Architectural Design Optimization

All the above mentioned optimization studies involve the application of computer-
aided optimization. Through the coupling of simulation software and an optimization
algorithm, optimization research is carried out. However, evolutionary algorithms usually
require many cost function evaluations to obtain satisfactory results [25]. In addition, as
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described in Section 1.2.1, the running time of simulation software greatly restricts the
development of architectural design optimization in practical applications [26]. More
importantly, due to the limitations of simulation software, some optimization indexes
cannot be obtained directly by running the software and need to be reprocessed. Therefore,
traditional computer-aided optimization faces difficulty in dealing with multi-objective
optimization problems with many variables. To fully consider numerous variables and
achieve more realistic multi-objective design optimization, some researchers have used
meta-models instead of physical models (simulation software) [27]. Through the coupling
of a meta-model and a multi-objective optimization algorithm, simulation efficiency is
improved at the expense of a certain simulation accuracy. At present, the meta-model has
been used in some design optimization studies. Wang et al. proposed a three-stage multi-
objective optimization method for passive house design, which reduced model complexity,
improved model efficiency and had strong engineering applicability. In the above study,
gradient boosted decision trees were used, instead of a physical model, to optimize the
passive performance of buildings [26]. Yu et al. proposed a new multi-objective optimiza-
tion model to assist designers in green building design. The improved back propagation
(BP) network based on a simulation optimized by the genetic algorithm was used to repre-
sent the building behavior. Then, the GA-BP network model was established to quickly
predict the energy consumption and indoor thermal comfort of residential buildings [28].
Asadi et al. proposed a multi-objective optimization model based on the genetic algo-
rithm and an artificial neural network, which could be used to quantitatively evaluate
the technology selection of building renovation projects. The above model combined the
rapidity of artificial neural network evaluation with the optimization ability of the genetic
algorithm. By taking a school building as an example, the practicability of the proposed
method was illustrated, and possible problems were noted [29]. Although the meta-model
has been applied in the field of architectural design optimization, it has not been applied
in the design optimization of primary and secondary school classrooms. Moreover, the
prediction accuracy of the meta-model has a great influence on the optimization results, so
it is of great significance to train a stable and high-precision meta-model.

1.3. Research Gaps and Main Contributions

According to the above analysis, a knowledge gap has been identified: an efficient
multi-objective optimization method is needed for the classroom design of primary and
secondary schools in southern China, which can meet the needs of researchers and design-
ers in academic research and engineering applications. The design optimization of primary
and secondary school classrooms needs to comprehensively consider daylighting, thermal
comfort and energy. The variables involved in the optimization process are numerous
and complex, making them of great research value. Therefore, this paper proposes a
multi-objective optimization method based on a meta-model to achieve the Pareto optimal
solutions of the design schemes of primary and secondary school classrooms in a short
time. The remainder of this paper is arranged as follows. In the second section, an overall
framework for the efficient multi-objective optimization method is proposed, and the
implementation procedure of the method is introduced step by step. In the third section,
the method is applied to practical classroom cases, and the results are analyzed. The last
section concludes the paper.

2. Methodology

Figure 1 illustrates the framework of the proposed efficient multi-objective opti-
mization method, which is divided into two modules: physical modeling and efficient
optimization. The core of the physical modeling module is model establishment and
sensitivity analysis, which is also the basis of the efficient optimization module. In the
efficient optimization module, the coupling of the meta-model and optimization algorithm
is used to achieve fast optimization, and the optimal scheme set is generated. This section
details the involved methods.
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Figure 1. Framework for the multi-objective optimization method based on a meta-model.

2.1. Physical Modeling
2.1.1. Optimization Objectives

In the process of physical modeling, we first need to analyze the architectural features.
The research objects of this paper are primary and secondary school classrooms in southern
China, so the three indicators of thermal comfort, daylighting and energy are taken as the
optimization objectives of this paper.

Energy Performance Indicators

The energy consumption of a classroom mainly includes lighting, heating and cool-
ing, which are also closely related to each optimization objective. In this study, primary
energy consumption is used to express annual lighting energy consumption (LES), annual
heating energy consumption (HES), annual cooling energy consumption (CES) and total
annual energy consumption (TES), as shown in Equations (1)–(4). The HVAC system of
these classrooms is simplified as a variable-refrigerant-volume (VRV) air-conditioning sys-
tem [29]. The mathematical model of the VRV system is built and developed based on the
object of the existing air-cooled DX (direct expansion) coil in EnergyPlus [30]. This model
determines the performance of the DX coil at part-load conditions, utilizing performance
information at rated conditions along with curve fits for variations in total capacity, energy
input ratio and part load fraction [31]. In this study, the full load cooling COP and full
load heating COP in the DX coil model are set to be 3.25 and 3. With the change in indoor
cooling/heating load, the COP value of real-time operation of the VRV system will also
change. Per capita fresh air volume is considered in this study, and air volume is 30 m3/h
according to the design specification [32].

LES = ∑i=Nl
i=1 Les (1)

HES = ∑i=Nh
i=1 Hes (2)

CES = ∑i=Nc
i=1 Ces (3)
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TES = LES + HES + CES (4)

Les is the hourly lighting energy consumption in kW; Nl denotes the annual lighting
hours; Hes is the hourly heating energy consumption in kW; Nh denotes the annual heating
hours; Ces is the hourly cooling energy consumption in kW; and Nc denotes the annual
cooling hours.

Thermal Comfort Indicator

PMV, indoor average air temperature and hours of thermal discomfort can be used as
evaluation indicators of thermal comfort. PMV is a comprehensive evaluation indicator
considering many relevant factors of human thermal comfort based on the basic human
thermal balance, which shows the average index of the groups voting for (−3~3) seven
grades of thermal sensation [33]. According to reference [14], this study uses the proportion
of thermal comfort duration (PT) to measure the indoor thermal comfort during the use
period of buildings throughout the year. This indicator represents the percentage of the
number of hours with PMV value within the range of −1 to 1 in the total number of hours
in the use period of the whole year. The calculation process is shown in Equation (5).

PT =
Pt

NO
× 100% (5)

Pt is the number of hours when the indoor PMV value is greater than −1 and less
than 1 during the whole year’s building use period.

Daylighting Indicator

There are many indicators for evaluating visual performance, including the daylight-
ing coefficient, illuminance, annual sun exposure [34], daylight glare probability [35] and
so on [36]. According to [12], illuminance is selected as the indicator for measuring visual
performance. The height of the working face in the classroom is 0.8 m. During the use
period, the hourly percentage of daylight illuminance greater than 500 lux on the working
face (DI) is taken as the optimization objective of the visual performance evaluation.

DI =
Di

8760
× 100% (6)

Di is the number of hours when the daylighting illumination on the working face is
greater than 500 lux during the use period of the whole year.

2.1.2. Optimization Variables

According to [8,9,22,24] and the optimization objectives of the classroom determined
in Section 2.1.1, the optimization variables of the classroom in this study are selected. The
optimization variables involved are mainly envelope parameters, including the thermal
conductivity of the wall, the solar absorptivity of the wall, the thickness of the wall, wall
material density, wall specific heat, WWR, the U-value of the external window, the solar
heat gain coefficient (SHGC) of the external window, the visible transmittance (VT) of
the external window, the height and depth of the overhanging of the exterior window,
orientation, cooling setpoint, heating setpoint, air tightness grade, etc.

2.1.3. Establishment of a Physical Model and Sample Space

After the optimization objectives and variables are determined, EnergyPlus software
can be used to establish a physical model according to the building features. EnergyPlus is
a building energy simulation engine jointly developed by the Department of Energy and
Lawrence Berkeley National Laboratory. It can be used to simulate and analyze the heating,
cooling, daylighting and ventilation of buildings. Due to the reliability of EnergyPlus
software, many experts and scholars have used it to simulate building performance [37].
In the process of modeling, the features unrelated to the optimization variables can be
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simplified to reduce model complexity and uncertainty, and the various indicators involved
in the optimization objectives can be used as the output parameters of the model. Then,
the Monte Carlo method is used to generate the sample space.

2.1.4. Sensitivity Analysis and Modified Physical Model

After obtaining the sample space, sensitivity analysis is performed on the model,
playing an important role in performance analysis, such as building energy, which can
specifically extract the key factors that affect each building’s performance [38]. The regres-
sion method is the most commonly used global sensitivity analysis method because it is
easy to understand and the minimum sample size required is relatively small [39]. In this
study, the least squares method was used as the regression analysis method. To further
measure the relative importance of each optimization variable for each optimization objec-
tive, this study uses the standardized coefficient method [40] to deal with each independent
variable (optimization variable) and dependent variable (optimization objective) before
regression analysis.

The standardization coefficient subtracts the mean value of each variable, divided by
the corresponding standard deviation. It is essentially a dimensionless operation. Suppose
that there is a linear model with two variables; all variables are standardized according to
Equations (7)–(9). In this case, the meaning of β̃1 is that x1 changes one standard deviation
and that y changes β̃1 by one standard deviation. When β̃1 is greater than 0, x1 is positively
correlated with y, and when β̃1 is less than 0, x1 is negatively correlated with y. Therefore,
the influence of each independent variable on the dependent variable can be judged by the
absolute value of the standardized coefficient (β̃).

ỹ =
y− y
s.d(y)

(7)

x̃ =
x− x
s.d(x)

(8)

y = x1β1 + x2β2 + ε → ỹ = x̃1β̃1 + x̃2β̃2 + ε̃ (9)

ỹ is the standardization value of y, y is the mean of y, s.d(y) is the standard deviation
of y, x̃ is the standardization value of x, x is the mean of x, s.d(x) is the standard deviation
of x, β is the coefficient before standardization, β̃ is the standardization coefficient, ε is the
constant term before standardization and ε̃ is the standardization constant term.

After sensitivity analysis, the influence of each independent variable on each depen-
dent variable can be obtained. To improve the training quality of the follow up meta-model,
we consider modifying the physical model (deleting the independent variables that have
little influence on the three dependent variables). Then, the modified physical model is
simulated by the Monte Carlo method, and the regenerated sample space is used for the
training of the meta-model.

2.2. Efficient Optimization
2.2.1. Meta-Model

A meta-model is an approximate model for studying complex input–output rela-
tionships exhibited by another more complex model (physics-based model) [41]. In the
optimization of building performance, the commonly used meta-modeling techniques are
polynomial regression, multivariate adaptive regression splines, Gaussian processes (GPs,
also known as kriging), support vector machines (SVMs), and artificial neural networks
(ANNs). Among them, ANN is the most widely used and performs well in building energy
performance optimization [42]. It has an input layer of neurons that act as receivers, one or
more hidden layers of neurons that compute the data and undergo iterations, and then an
output layer that predicts the output, as shown in Figure 2 [43]. Therefore, the ANN model
is used as the meta-model of efficient optimization in this study.
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Figure 2. A typical ANN model.

2.2.2. Division of Sample Space and Model Evaluation

After determining the meta-model, it is necessary to divide the sample space. The
sample space is usually divided into a training set and a test set. The training set is used to
train the meta-model, and the test set is used to test the quality of the meta-model. In this
study, the ratio of the training set to test set is 4:1.

The mean relative error is used to measure the accuracy of the meta-model. In this
study, the meta-model has three output variables (corresponding to three optimization
objectives: TES, PT and DI), and it is necessary to analyze the prediction accuracy of
these three output variables. The robustness of the meta-model refers to its ability to
provide acceptable accuracy for diverse problems with varying levels of complexity and
dimensionality. Therefore, the meta-model technique must be robust to each output
variable. According to [44], R2 is used as the measure of robustness.

2.2.3. Multi-Objective Algorithm and Pareto Optimal Solutions

In this study, three optimization objectives are included, the properties and dimen-
sions of which are different. Thus, it is difficult to integrate them into an optimization
function. Therefore, it is necessary to use a multi-objective algorithm to solve the problem
and obtain the Pareto optimal solution set of the optimization problem, which lays the
foundation for the subsequent decision-making process to choose the scheme according
to preferences. There are many kinds of multi-objective algorithms, such as the multi-
objective evolutionary algorithm, multi-objective particle swam optimization algorithm,
non-dominated sorting genetic algorithm, non-dominated sorting genetic algorithm II
(NSGA-II) and multi-objective simulated annealing algorithm. The NSGA-II is the most
widely used multi-objective algorithm in terms of building performance optimization,
and it performs well and stably in various fields [45]. Therefore, the NSGA-II is used as
the multi-objective optimization algorithm in this study, and the ANN model selected in
Section 2.2.1 is used as the objective function of the NSGA-II.

2.2.4. Scheme Analysis

In actual engineering applications, according to the needs of researchers or designers,
the required scheme is selected in the Pareto optimal solutions. Due to the different needs
of researchers or designers, the selection criteria are also different. For example, under the
standard of ultralow energy consumption, priority will be given to the scheme with the
best energy; under the standard of high requirements for thermal comfort, the scheme with
the best thermal comfort will be selected. In this study, according to the three optimization
objectives, the optimal scheme for each optimization objective will be analyzed.
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3. Case Study

To verify the effectiveness of the proposed multi-objective optimization method for
the design optimization of primary and secondary school classrooms, this paper applies an
optimization method to the design optimization of a typical school classroom in Nanjing,
China. Python programming language, coupled with EnergyPlus, is used for simulation
and optimization. Through the coupling of the program language and simulation soft-
ware, the related contents of Monte Carlo simulation, sensitivity analysis and the efficient
optimization module are realized.

3.1. Case Information and Climate Characteristics

The typical classroom structure in Nanjing is shown in Figure 3. Both sides A and
C are usually internal walls, which are connected to other classrooms. Both sides B and
D are external walls with external windows. Teaching buildings are generally multistory
buildings, so the floor and ceiling of the classroom are connected with other classrooms. In
this study, the floor and ceiling of the classroom are considered as internal walls. According
to [46], the number of students in a typical classroom is considered to be 40, and the per
capita fresh air volume is set to 30 m3/h.

Figure 3. Schematic diagram of a typical classroom where: (a) is the top view of the classroom;
(b) is the axonometric view of the classroom.

The geographical coordinates of Nanjing are 31◦14” to 32◦37” N and 118◦22” to
119◦14” E. It has a subtropical monsoon climate, with abundant annual rainfall of 1200 mm.
The annual average temperature is 15.4 ◦C, and the annual extreme temperature is the
highest at 39.7 ◦C and the lowest at −13.1 ◦C. The weather data for simulation are derived
from the Chinese Standard Weather Data published on the EnergyPlus website [47].

3.2. Classroom Modeling

Section 3.1 introduces the architectural features of typical Chinese primary and sec-
ondary school classrooms. In this study, the physical model of the classroom is established
by using EnergyPlus software. According to the relevant content of the optimization
objectives and variables in Section 2.1, the optimization objectives in this study are thermal
comfort, daylighting and energy. A total of 18 optimization variables are shown in Table 1.
The value range and interval of variables refer to [10].
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Table 1. Characterization of optimization variables.

No. Optimization Variables Values

X1 Cooling setpoint (◦C) 24; 25; 26; 27; 28
X2 Heating setpoint (◦C) 18; 19; 20; 21; 22
X3 Solar absorptivity of wall (-) 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9
X4 Thickness of wall (m) 0.20; 0.25; 0.30; 0.35; 0.40
X5 Thermal conductivity of wall (W/m·K) 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9

X6 Wall material density (kg/m3)
500; 600; 700; 800; 900; 1000; 1100; 1200; 1300; 1400; 1500;

1600; 1700; 1800; 1900; 2000

X7 Wall specific heat (J/(kg·K)) 800; 900; 1000; 1100; 1200; 1300; 1400; 1500; 1600; 1700; 1800;
1900; 2000; 2100; 2200; 2300; 2400; 2500

X8 WWR of side B wall (-) 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8
X9 WWR of side D wall (-) 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8

X10 U-value of external windows (W/m2K) 0.8; 0.9; 1.0; 1.1; 1.2; 1.3; 1.4; 1.5
X11 SHGC of external windows (-) 0.2; 0.3; 0.4; 0.5; 0.6
X12 VT of external windows (-) 0.4; 0.5; 0.6; 0.7; 0.8

X13 Overhanging depth of side B external window (m) 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1.0; 1.1; 1.2; 1.3; 1.4; 1.5;
1.6; 1.7; 1.8; 1.9; 2.0

X14 Overhanging height of side B external window (m) 0; 0.1; 0.2; 0.3; 0.4; 0.5

X15 Overhanging depth of side D external window (m) 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1.0; 1.1; 1.2; 1.3; 1.4; 1.5;
1.6; 1.7; 1.8; 1.9; 2.0

X16 Overhanging height of side D external window (m) 0; 0.1; 0.2; 0.3; 0.4; 0.5
X17 Orientation (◦) 0; 30; 60; 90; 120; 150; 180; 210; 240; 270; 300; 330; 360
X18 Air tightness (1/h) 0.05; 0.10; 0.15; 0.20; 0.25; 0.30; 0.35; 0.40; 0.45; 0.50; 0.55; 0.60

According to the value range of each optimization variable, Monte Carlo simulation is
used to generate the sample space. Then, the data of the sample space are used to analyze
the sensitivity of each optimization variable. The sample size generated by Monte Carlo
simulation has an impact on the results of the sensitivity analysis. To determine the impact
of sample size on sensitivity analysis, this study uses different sample sizes.

The sensitivity analysis results of different sample sizes are shown in Figure 4, and the
R2 value of the regression model involved in the sensitivity analysis is shown in Table 2.
For different sample sizes, β̃ is slightly different, but the overall trend is basically the same.
With the increase in sample size, the R2 value of each regression model is finally greater
than 0.90, which indicates that the regression model has strong robustness.

Table 2. The determination coefficient (R2) of regression model in sensitivity analysis.

Sample Size
300

Sample Size
500

Sample Size
1000

Sample Size
2000

Sample Size
3000

TES 0.904 0.927 0.934 0.931 0.926
PT 0.87 0.902 0.907 0.903 0.91
DI 0.802 0.914 0.923 0.917 0.926

It can be seen from Figure 4a that the cooling setpoint and heating setpoint have the
greatest influence on the TES. The increase in the cooling setpoint and the decrease in the
heating setpoint can significantly reduce the TES. Then, the wall thermal conductivity
and wall thickness also have a great influence on the TES. The selection of wall materials
with lower thermal conductivity and the increase in wall thickness can reduce the TES.
In addition, air tightness also has a great impact on TES, and good air tightness can
significantly reduce TES. The effects of wall specific heat, wall material density, orientation,
the VT of external windows and the overhanging of external windows on the TES are
relatively low.
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Figure 4. Sensitivity analysis results of different sample sizes: the standardized coefficient (β̃) of each optimization variable.
(a) is the result of sensitivity analysis for TES; (b) is the result of sensitivity analysis for PT; (c) is the result of sensitivity
analysis for DI.

Moreover, it can be seen from Figure 4b that the cooling setpoint has the greatest
influence on the PT, and increasing the cooling setpoint can significantly increase the PT.
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However, the heating setpoint has little influence on the PT. The SHGC of external windows
and the WWR also have a great influence on the PT. Increasing these optimization variables
can significantly increase the PT. Air tightness also has a certain impact on PT, and good air
tightness helps to increase PT. Wall material density, wall specific heat, external window
VT, overhanging height of external windows and orientation have little influence on the PT.

It can be seen from Figure 4c that the WWR has the greatest influence on the DI,
and increasing the WWR can significantly increase the DI. The external window VT and
overhang of the external windows have a great influence on the DI. Increasing these
optimization variables can increase the DI. The relevant variables of the cooling setpoint,
heating setpoint and wall have little influence on the DI.

In general, the impact of each optimization variable on the three optimization objec-
tives is different, and contradictions exist. For example, the relevant variables of the wall
have a greater impact on the TES and PT but a lesser impact on the DI. The overhanging
of external windows has a great influence on the DI but little influence on the TES. These
contradictions reflect the necessity for multi-objective optimization.

Figure 5 shows the sensitivity analysis results when the sample size is 3000. Ac-
cording to the actual situation in this study, it is assumed that the absolute value of the
standardization coefficient is less than 0.05 (

∣∣∣β̃∣∣∣ < 0.05), indicating that the impact is
low. Therefore, these optimization variables—wall material density, wall specific heat
and orientation—have little influence on the three optimization objectives. To simplify the
physical model and improve the training quality of the subsequent meta-model, in this
paper, fixed values are used to replace the three optimization variables, and Monte Carlo
simulation is carried out again to generate the sample space of the training meta-model.

Figure 5. Sensitivity analysis results: the standardized coefficient (β̃) of each optimization variable
when the sample size is 3000.

3.3. Classroom Efficient Optimization
3.3.1. Training and Evaluation of the ANN Model

According to Section 2.2.1, the ANN model is used as the meta-model in this study,
and the schematic diagram of its input and output is shown in Figure 6. The setting of
hyperparameters has an important influence on the accuracy of the meta-model. The
most important hyperparameters affecting the ANN model include “activation function”,
“hidden layer sizes” and “hidden layer numbers”. In order to determine the values of
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these important hyperparameters, the grid search algorithm is used to optimize these
typical hyperparameters, and the results are shown in Table 3. To determine the optimal
sample size of the ANN model, we use different sample sizes for ANN model training.
The ratio of the training set to the test set is 4:1. The mean relative error and R2 values
will be used to evaluate the ANN model, the results of which are shown in Table 4. With
increasing sample size, the stability (R2) of the ANN model is improved, and the accuracy
is also increased (the mean relative error is reduced). When the sample size reaches 2000,
the accuracy and stability of the ANN model perform well and can be applied to the
subsequent multi-objective optimization algorithm.

Figure 6. The input and output schematic diagram of ANN model in this study.

Table 3. Hyperparameter setting of the ANN model.

Hyperparameters Search Space of Hyperparameters Optimal
Hyperparameters

Activation function sigmoid, tanh, relu relu
Hidden layer sizes 1; 2; 3; . . . . . . ; 20 12

Hidden layer numbers 1; 2; 3; 4 1

Table 4. The mean relative error and R2 values of ANN models with different sample sizes.

Sample Size TES PT DI R2

100 8.62% 31.42% 5.61% 0.73
300 3.16% 12.45% 3.30% 0.915
500 2.31% 4.52% 2.86% 0.971

1000 2.26% 4.15% 2.61% 0.970
2000 2.49% 4.42% 2.60% 0.970
3000 2.48% 4.29% 2.63% 0.969
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3.3.2. Multi-Objective Optimization and Scheme Analysis

In multi-objective optimization, the trained ANN model can be used as the objective
function of the NSGA-II. The objective of this paper is to minimize the TES and maximize
the PT and DI. In terms of the NSGA-II, the roulette selection method and two-point
cross are selected. In this study, according to [48], some parameters of the NSGA-II are
set, including population size, maximum number of iterations, crossover probability and
mutation probability, as shown in Table 5.

Table 5. Parameter setting of the NSGA-II.

Parameter Value

Population size 50
Maximum number of iterations 100

Crossover probability 0.8
Mutation probability 0.6

The result of multi-objective optimization: the Pareto optimal solution set is shown in
Figure 7. For convenience of display, the reciprocal of TES is used instead of TES as the
coordinate in the drawing. After optimization, the TES, PT and DI fluctuate in a certain range,
at 1622.2–2389 kWh (27–39.8 kWh/m2) per year, 43–81.7% and 71.1–92.2%, respectively.

Figure 7. Pareto optimization solution.

This paper analyzes three typical optimal schemes of the Pareto optimal solution:
energy optimal, thermal comfort optimal and daylighting optimal solutions, as shown in
Table 6. In these three typical optimal schemes, the cooling setpoints and heating setpoints
are 28 ◦C and 18 ◦C, respectively. Under this setting, the annual energy consumption of the
HVAC system is low. Among the relevant variables of the wall, the solar absorption rate in
the optimal scheme of energy and daylighting is 0.1, but the solar absorption rate in the
optimal scheme of thermal comfort is 0.9. This is mainly because the lower solar energy
absorption rate can reduce the classroom heat gain throughout the year, thus reducing
energy consumption. The higher solar energy absorption rate can increase the thermal
comfort time of the whole year in this study case. In the three schemes, the wall thickness
and thermal conductivity are 0.4 and 0.2, respectively. This is because the thick wall and
low thermal conductivity help strengthen classroom insulation and reduce the energy
consumption needed for cooling and heating.
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Table 6. Three typical optimal schemes and benchmark scheme.

Optimization Variables Energy
Optimal

Thermal Comfort
Optimal

Daylighting
Optimal

Benchmark
Scheme

Cooling setpoint (◦C) 28 28 28 26
Heating setpoint (◦C) 18 18 18 18

Solar absorptivity of wall (-) 0.1 0.9 0.1 0.3
Thickness of wall (m) 0.4 0.4 0.4 0.24

Thermal conductivity of wall (W/mK) 0.2 0.2 0.2 0.6
WWR of side B wall (-) 0.2 0.2 0.8 0.6
WWR of side D wall (-) 0.5 0.6 0.8 0.6

U-value of external windows (W/m2K) 0.8 0.8 0.8 2.2
SHGC of external windows (-) 0.2 0.6 0.4 0.35

VT of external windows (-) 0.8 0.8 0.8 0.8
Overhanging depth of side B external window (m) 2 2 0.1 0
Overhanging height of side B external window (m) 0 0 0.5 0
Overhanging depth of side D external window (m) 0.1 0.1 0.1 0
Overhanging height of side D external window (m) 0.5 0.5 0.5 0

Air tightness (1/h) 0.05 0.05 0.05 0.3
TES (kWh) 1622.2 2072.3 2389 2433

PT (%) 59.3 81.7 72.3 33.9
DI (%) 80.7 71.1% 92.2% 88%

Among the three schemes, the relevant variables of the external window and overhanging-
related variables are quite different. For example, in the daylighting optimal scheme, the
WWR of both sides B and D is the maximum value (0.8), and the DI of this scheme is 92.2%,
which is significantly larger than those of the other two schemes. However, the TES values
are much higher than those of the other two schemes in the daylighting optimal scheme
because the large area of external windows inevitably leads to large solar radiation gain
and heat exchange in the classroom, affecting the energy consumption of the HVAC system
in the classroom. In general, the three optimal schemes have their own advantages and
disadvantages, but all of them can be used as design schemes in practical applications.

Due to the lack of evaluation criteria for energy consumption, thermal comfort and
daylighting of primary and secondary school classrooms, in order to further measure the
optimization effect, this study uses a conventional primary and secondary school classroom
designed according to the specifications [32,46] as the benchmark for comparison. The
parameter setting and calculation results (calculated by EnergyPlus) are also shown in
Table 6. It can be seen that the TES of the benchmark classroom designed according to the
specification is greater than three typical optimization schemes, and the PT is less than
three typical optimization schemes. This is due to the cooling setpoint, the insulation
performance of the envelope and the lack of shading. The DI of the benchmark classroom
is higher, but it is still lower than the daylighting optimal scheme.

Overall, compared with the benchmark scheme, in the optimized schemes, TES decreased
by 810.8 kWh at most, PT increased by 47.8% at most and DI increased by 4.2% at most.

4. Conclusions

This paper presents a multi-objective optimization method for classroom design
optimization in primary and secondary schools in southern China, which can find the
optimal or near-optimal classroom design scheme considering energy, thermal comfort
and daylighting under the given conditions. The multi-objective optimization scheme
integrates sensitivity analysis, the ANN model and the NSGA-II, which can achieve the
efficient and accurate optimization of primary and secondary school classrooms. The main
conclusions are as follows:

1. The sensitivity analysis method based on the regression method is used to study
the correlation between optimization variables and optimization objectives. The
results show that for different sample sizes, the standardization coefficient of each
variable is slightly different, but the overall trend is consistent. Among them, wall
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material density, wall specific heat and orientation have little influence on the three
optimization objectives (

∣∣∣β̃∣∣∣ < 0.05 ).

2. The grid search algorithm is used to optimize the hyperparameters of the ANN model,
and the influence of different sample sizes is compared. The results show that when
the sample size reaches 1000, the accuracy and stability of the algorithm perform well.
At this time, the mean relative error of each optimization objective is 2.26% (TES),
4.15% (PT) and 2.61% (DI), and the R2 value is 0.97.

3. In this paper, the trained ANN model is coupled with the NSGA-II to achieve multi-
objective optimization. After optimization, the TES, PT and DI fluctuate in a certain
range, at 1622.2–2389 kWh per year, 43–81.7% and 71.1–92.2%, respectively.

4. Finally, the benchmark scheme is compared with the optimized design schemes. The
results show that the optimization indicators (TES, PT and DI) reflect an improved
design scheme. Among them, TES decreased by 810.8 kWh at most, PT increased by
47.8% at most and DI increased by 4.2% at most.

Author Contributions: Conceptualization, Y.X. and C.Y.; methodology, Y.J.; software, Y.X.; validation,
Y.X., L.S. and H.Q.; formal analysis, H.Q.; investigation, G.W.; resources, G.W.; data curation, Y.X.;
writing—original draft preparation, Y.X.; writing—review and editing, Y.X.; visualization, H.Q.;
supervision, Y.J.; project administration, C.Y.; funding acquisition, C.Y. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Key Research and Development Program of China,
grant number No. 2018YFE0116300, the National Natural Science Foundation of China, grant number
No. 51708287, the Natural Science Foundation of Jiangsu Province, grant number No. BK20171003, and
the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

CES Annual cooling energy consumption
Ces Hourly cooling energy consumption
COP Coefficient of performance

DI
Percentage of daylight illuminance on the working face is greater than 500 lux during the use
period of the whole year

Di
Number of hours when the daylighting illumination on the working face is greater than
500 luxduring the use period of the whole year

DX Direct expansion
HES Annual heating energy consumption
Hes Hourly heating energy consumption
HVAC Heating, ventilation and air conditioning
LES Annual lighting energy consumption
Les Hourly lighting energy consumption
Nc Annual cooling hours
Nh Annual heating hours
Nl Annual lighting hours
NO Annual zone occupied hours
SHGC Solar heat gain coefficient

PT
Percentage of the number of hours with PMV value within the range of −1 to 1 in the total
number of hours in the use period of the whole year

Pt
Number of hours when the indoor PMV value is greater than −1 and less than 1 during
the whole year’s building use period
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TES Total annual energy consumption
VRV Variable refrigerant volume
VT Visible transmittance
WWR Window-to-wall ratio
ANN Artificial neural network
BP Back propagation
GP Gaussian process
NSGA-II Non-dominated sorting genetic algorithm II
SVM Support vector machine
ỹ Standardization value of y
y Mean of y
s.d(y) Standard deviation of y
x̃ Standardization value of x
x Mean of x
s.d(x) Standard deviation of x
β Coefficient before standardization
β̃ Standardization coefficient
ε Constant term before standardization
ε̃ Standardization constant term

References
1. Xu, Y.; Yan, C.; Liu, H.; Wang, J.; Yang, Z.; Jiang, Y. Smart energy systems: A critical review on design and operation optimization.

Sustain. Cities Soc. 2020, 62, 102369. [CrossRef]
2. Attia, S.; Shadmanfar, N.; Ricci, F. Developing two benchmark models for nearly zero energy schools. Appl. Energy 2020,

263, 114614. [CrossRef]
3. Yan, C.; Wang, S.; Xiao, F. A simplified energy performance assessment method for existing buildings based on energy bill

disaggregation. Energy Build. 2012, 55, 563–574. [CrossRef]
4. Ma, H.; Lai, J.; Li, C.; Yang, F.; Li, Z. Analysis of school building energy consumption in Tianjin, China. Energy Procedia 2019, 158,

3476–3481. [CrossRef]
5. Wirz-Justice, A.; Skene, D.J.; Munch, M. The relevance of daylight for humans. Biochem. Pharmacol. 2020, 10, 114304. [CrossRef]
6. Li, B.; You, L.; Zheng, M.; Wang, Y.; Wang, Z. Energy consumption pattern and indoor thermal environment of residential

building in rural China. Energy Built Environ. 2020, 1, 327–336. [CrossRef]
7. Leccese, F.; Rocca, M.; Salvadori, G.; Belloni, E.; Buratti, C. Towards a holistic approach to indoor environmental quality

assessment: Weighting schemes to combine effects of multiple environmental factors. Energy Build. 2021, 245, 111056. [CrossRef]
8. Fan, C.; Xiao, F.; Li, Z.; Wang, J. Unsupervised data analytics in mining big building operational data for energy efficiency

enhancement: A review. Energy Build. 2018, 159, 296–308. [CrossRef]
9. Sun, Y. Sensitivity analysis of macro-parameters in the system design of net zero energy building. Energy Build. 2015, 86, 464–477.

[CrossRef]
10. Ascione, F.; Bianco, N.; Maria Mauro, G.; Napolitano, D.F. Building envelope design: Multi-objective optimization to minimize

energy consumption, global cost and thermal discomfort. Application to different Italian climatic zones. Energy 2019, 174, 359–374.
[CrossRef]

11. Hu, J.; Wu, J. Analysis on the Influence of Building Envelope to Public Buildings Energy Consumption Based on DeST Simulation.
Procedia Eng. 2015, 121, 1620–1627. [CrossRef]

12. Zhai, Y.; Wang, Y.; Huang, Y.; Meng, X. A multi-objective optimization methodology for window design considering energy
consumption, thermal environment and visual performance. Renew. Energy 2019, 134, 1190–1199. [CrossRef]

13. Chang, S.; Castro-Lacouture, D.; Yamagata, Y. Decision support for retrofitting building envelopes using multi-objective
optimization under uncertainties. J. Build. Eng. 2020, 32, 101413. [CrossRef]

14. Pan, L.; Li, K.; Xue, W.; Liu, G. Multi-objective Optimization for Building Performance Design Considering Thermal Comfort and
Energy Consumption. In Proceedings of the 35th Chinese Control Conference, Chengdu, China, 27–29 July 2016; pp. 2799–2803.

15. Zhu, L.; Wang, B.; Sun, Y. Multi-objective optimization for energy consumption, daylighting and thermal comfort performance of
rural tourism buildings in north China. Build. Environ. 2020, 176, 106841. [CrossRef]

16. Li, J.; Afsari, K.; Li, N.; Peng, J.; Wu, Z.; Cui, H. A review for presenting building information modeling education and research in
China. J. Clean. Prod. 2020, 259, 120885. [CrossRef]

17. Rikard, K.; Carin, L. Health and behavior of children in classrooms with and without windows. J. Environ. Psychol. 1992, 12,
305–317.

18. Day, J.K.; McIlvennie, C.; Brackley, C.; Tarantini, M.; Piselli, C.; Hahn, J.; O’Brien, W.; Rajus, V.S.; De Simone, M.;
Kjærgaard, M.B.; et al. A review of select human-building interfaces and their relationship to human behavior, energy
use and occupant comfort. Build. Environ. 2020, 178, 106920. [CrossRef]

http://doi.org/10.1016/j.scs.2020.102369
http://doi.org/10.1016/j.apenergy.2020.114614
http://doi.org/10.1016/j.enbuild.2012.09.043
http://doi.org/10.1016/j.egypro.2019.01.924
http://doi.org/10.1016/j.bcp.2020.114304
http://doi.org/10.1016/j.enbenv.2020.04.004
http://doi.org/10.1016/j.enbuild.2021.111056
http://doi.org/10.1016/j.enbuild.2017.11.008
http://doi.org/10.1016/j.enbuild.2014.10.031
http://doi.org/10.1016/j.energy.2019.02.182
http://doi.org/10.1016/j.proeng.2015.09.192
http://doi.org/10.1016/j.renene.2018.09.024
http://doi.org/10.1016/j.jobe.2020.101413
http://doi.org/10.1016/j.buildenv.2020.106841
http://doi.org/10.1016/j.jclepro.2020.120885
http://doi.org/10.1016/j.buildenv.2020.106920


Sustainability 2021, 13, 13119 18 of 19

19. Barrett, P.; Davies, F.; Zhang, Y.; Barrett, L. The impact of classroom design on pupils’ learning: Final results of a holistic,
multi-level analysis. Build. Environ. 2015, 89, 118–133. [CrossRef]

20. Doulos, L.T.; Kontadakis, A.; Madias, E.N.; Sinou, M.; Tsangrassoulis, A. Minimizing energy consumption for artificial lighting in
a typical classroom of a Hellenic public school aiming for near Zero Energy Building using LED DC luminaires and daylight
harvesting systems. Energy Build. 2019, 194, 201–217. [CrossRef]

21. Zhang, A.; Bokel, R.; van den Dobbelsteen, A.; Sun, Y.; Huang, Q.; Zhang, Q. Optimization of thermal and daylight performance
of school buildings based on a multi-objective genetic algorithm in the cold climate of China. Energy Build. 2017, 139, 371–384.
[CrossRef]

22. Acosta-Acosta, D.F.; El-Rayes, K. Optimal design of classroom spaces in naturally-ventilated buildings to maximize occupant
satisfaction with human bioeffluents/body odor levels. Build. Environ. 2020, 169, 106543. [CrossRef]

23. Ascione, F.; Bianco, N.; De Masi, R.F.; Mauro, G.M.; Vanoli, G.P. Energy retrofit of educational buildings: Transient energy
simulations, model calibration and multi-objective optimization towards nearly zero-energy performance. Energy Build. 2017,
144, 303–319. [CrossRef]

24. Bakmohammadi, P.; Noorzai, E. Optimization of the design of the primary school classrooms in terms of energy and daylight
performance considering occupants’ thermal and visual comfort. Energy Rep. 2020, 6, 1590–1607. [CrossRef]

25. Yan, C.; Gang, W.; Niu, X.; Peng, X.; Wang, S. Quantitative evaluation of the impact of building load characteristics on energy
performance of district cooling systems. Appl. Energy 2017, 205, 635–643. [CrossRef]

26. Wang, R.; Lu, S.; Feng, W. A three-stage optimization methodology for envelope design of passive house considering energy
demand, thermal comfort and cost. Energy 2020, 192, 116723. [CrossRef]

27. Chen, J.; Gao, X.; Hu, Y.; Zeng, Z.; Liu, Y. A meta-model-based optimization approach for fast and reliable calibration of building
energy models. Energy 2019, 188, 116046. [CrossRef]

28. Yu, W.; Li, B.; Jia, H.; Zhang, M.; Wang, D. Application of multi-objective genetic algorithm to optimize energy efficiency and
thermal comfort in building design. Energy Build. 2015, 88, 135–143. [CrossRef]

29. Asadi, E.; Silva, M.G.d.; Antunes, C.H.; Dias, L.; Glicksman, L. Multi-objective optimization for building retrofit: A model using
genetic algorithm and artificial neural network and an application. Energy Build. 2014, 81, 444–456. [CrossRef]

30. Zhou, Y.P.; Wu, J.Y.; Wang, R.Z.; Shiochi, S. Energy simulation in the variable refrigerant flow air-conditioning system under
cooling conditions. Energy Build. 2007, 39, 212–220. [CrossRef]

31. Zhou, Y.P.; Wu, J.Y.; Wang, R.Z.; Shiochi, S.; Li, Y.M. Simulation and experimental validation of the variable-refrigerant-volume
(VRV) air-conditioning system in EnergyPlus. Energy Build. 2008, 40, 1041–1047. [CrossRef]

32. Design Standard for Energy Efficiency of Public Buildings; National Standards of the People’s Republic of China. 2015. Available
online: http://www.jianbiaoku.com/webarbs/book/73810/1628137.shtml (accessed on 1 September 2021).

33. Zomorodian, Z.S.; Tahsildoost, M.; Hafezi, M. Thermal comfort in educational buildings: A review article. Renew. Sustain. Energy
Rev. 2016, 59, 895–906. [CrossRef]

34. Pilechiha, P.; Mahdavinejad, M.; Pour Rahimian, F.; Carnemolla, P.; Seyedzadeh, S. Multi-objective optimisation framework for
designing office windows: Quality of view, daylight and energy efficiency. Appl. Energy 2020, 261, 114356. [CrossRef]

35. Konstantzos, I.; Tzempelikos, A.; Chan, Y.-C. Experimental and simulation analysis of daylight glare probability in offices with
dynamic window shades. Build. Environ. 2015, 87, 244–254. [CrossRef]

36. Fantozzi, F.; Rocca, M. An Extensive Collection of Evaluation Indicators to Assess Occupants’ Health and Comfort in Indoor
Environment. Atmosphere 2020, 11, 90. [CrossRef]

37. Ciardiello, A.; Rosso, F.; Dell’Olmo, J.; Ciancio, V.; Ferrero, M.; Salata, F. Multi-objective approach to the optimization of shape
and envelope in building energy design. Appl. Energy 2020, 280, 115984. [CrossRef]

38. Pannier, M.-L.; Schalbart, P.; Peuportier, B. Comprehensive assessment of sensitivity analysis methods for the identification of
influential factors in building life cycle assessment. J. Clean. Prod. 2018, 199, 466–480. [CrossRef]

39. Tian, W. A review of sensitivity analysis methods in building energy analysis. Renew. Sustain. Energy Rev. 2013, 20, 411–419.
[CrossRef]

40. Flannery, M.J.; Rangan, K.P. Partial adjustment toward target capital structures. J. Financ. Econ. 2006, 79, 469–506. [CrossRef]
41. Chen, V.C.P.; Tsui, K.-L.; Barton, R.R.; Allen, J.K. A review of design and modeling in computer experiments. In Handbook of

Statistics; Elsevier: Amsterdam, The Netherlands, 2003; Volume 22, pp. 231–261.
42. Roman, N.D.; Bre, F.; Fachinotti, V.D.; Lamberts, R. Application and characterization of metamodels based on artificial neural

networks for building performance simulation: A systematic review. Energy Build. 2020, 217, 109972. [CrossRef]
43. Desai, M.; Shah, M. An anatomization on breast cancer detection and diagnosis employing multi-layer perceptron neural network

(MLP) and Convolutional neural network (CNN). Clin. eHealth 2021, 4, 1–11. [CrossRef]
44. Østergård, T.; Jensen, R.L.; Maagaard, S.E. A comparison of six metamodeling techniques applied to building performance

simulations. Appl. Energy 2018, 211, 89–103. [CrossRef]
45. Monsef, H.; Naghashzadegan, M.; Jamali, A.; Farmani, R. Comparison of evolutionary multi objective optimization algorithms in

optimum design of water distribution network. Ain Shams Eng. J. 2019, 10, 103–111. [CrossRef]
46. Code for Design of School; National Standards of the People’s Republic of China. 2011. Available online: http://www.jianbiaoku.

com/webarbs/book/414/2559815.shtml (accessed on 1 September 2021).

http://doi.org/10.1016/j.buildenv.2015.02.013
http://doi.org/10.1016/j.enbuild.2019.04.033
http://doi.org/10.1016/j.enbuild.2017.01.048
http://doi.org/10.1016/j.buildenv.2019.106543
http://doi.org/10.1016/j.enbuild.2017.03.056
http://doi.org/10.1016/j.egyr.2020.06.008
http://doi.org/10.1016/j.apenergy.2017.08.022
http://doi.org/10.1016/j.energy.2019.116723
http://doi.org/10.1016/j.energy.2019.116046
http://doi.org/10.1016/j.enbuild.2014.11.063
http://doi.org/10.1016/j.enbuild.2014.06.009
http://doi.org/10.1016/j.enbuild.2006.06.005
http://doi.org/10.1016/j.enbuild.2007.04.025
http://www.jianbiaoku.com/webarbs/book/73810/1628137.shtml
http://doi.org/10.1016/j.rser.2016.01.033
http://doi.org/10.1016/j.apenergy.2019.114356
http://doi.org/10.1016/j.buildenv.2015.02.007
http://doi.org/10.3390/atmos11010090
http://doi.org/10.1016/j.apenergy.2020.115984
http://doi.org/10.1016/j.jclepro.2018.07.070
http://doi.org/10.1016/j.rser.2012.12.014
http://doi.org/10.1016/j.jfineco.2005.03.004
http://doi.org/10.1016/j.enbuild.2020.109972
http://doi.org/10.1016/j.ceh.2020.11.002
http://doi.org/10.1016/j.apenergy.2017.10.102
http://doi.org/10.1016/j.asej.2018.04.003
http://www.jianbiaoku.com/webarbs/book/414/2559815.shtml
http://www.jianbiaoku.com/webarbs/book/414/2559815.shtml


Sustainability 2021, 13, 13119 19 of 19

47. Jihad, A.; Lamia, A. Daylight and Energy Performance Optimization in Hot-Arid Regions: Application and adaptation guide for
designers in the UAE. Procedia Manufacturing 2020, 44, 237–244. [CrossRef]

48. Chen, X.; Yang, H.; Zhang, W. Simulation-based approach to optimize passively designed buildings: A case study on a typical
architectural form in hot and humid climates. Renew. Sustain. Energy Rev. 2018, 82, 1712–1725. [CrossRef]

http://doi.org/10.1016/jpromfg202002227
http://doi.org/10.1016/j.rser.2017.06.018

	Introduction 
	Background 
	Literature Review 
	Parametric Design and Architectural Design Optimization 
	Optimization of Educational Architecture Design 
	Application of the Meta-Model in Architectural Design Optimization 

	Research Gaps and Main Contributions 

	Methodology 
	Physical Modeling 
	Optimization Objectives 
	Optimization Variables 
	Establishment of a Physical Model and Sample Space 
	Sensitivity Analysis and Modified Physical Model 

	Efficient Optimization 
	Meta-Model 
	Division of Sample Space and Model Evaluation 
	Multi-Objective Algorithm and Pareto Optimal Solutions 
	Scheme Analysis 


	Case Study 
	Case Information and Climate Characteristics 
	Classroom Modeling 
	Classroom Efficient Optimization 
	Training and Evaluation of the ANN Model 
	Multi-Objective Optimization and Scheme Analysis 


	Conclusions 
	References

