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Abstract: The rising concentration of global atmospheric carbon dioxide (CO2) has severely affected
our planet’s homeostasis. Efforts are being made worldwide to curb carbon dioxide emissions, but
there is still no strategy or technology available to date that is widely accepted. Two basic strategies
are employed for reducing CO2 emissions, viz. (i) a decrease in fossil fuel use, and increased use of
renewable energy sources; and (ii) carbon sequestration by various biological, chemical, or physical
methods. This review has explored microalgae’s role in carbon sequestration, the physiological
apparatus, with special emphasis on the carbon concentration mechanism (CCM). A CCM is a
specialized mechanism of microalgae. In this process, a sub-cellular organelle known as pyrenoid,
containing a high concentration of Ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco), helps
in the fixation of CO2. One type of carbon concentration mechanism in Chlamydomonas reinhardtii
and the association of pyrenoid tubules with thylakoids membrane is represented through a typical
graphical model. Various environmental factors influencing carbon sequestration in microalgae and
associated techno-economic challenges are analyzed critically.

Keywords: microalgae; pyrenoid; carbon sequestration; carbon emissions; algae

1. Introduction

Climate change is a major threat that severely hampers the survival of various plant
and animal species as well as humans. The continuous increase in the emissions of several
greenhouse gasses (GHGs), including carbon dioxide (CO2), water vapor, methane (CH4),
nitrous oxide (N2O), and fluorinated gases, has aggravated climate change [1,2]. The rise
in GHGs emissions is mostly associated with anthropogenic actions, with the use of fossil
fuels being the largest contributor [3]. The world’s atmospheric CO2 has increased from
~313 ppm (in 1960) to ~411 ppm at present [4]. A high level of CO2 in the atmosphere raises
the acidity of ocean water and affects the marine ecosystem to a significant extent [5,6].
Hence, it is highly imperative at this moment to develop an appropriate strategy to reduce
or stabilize the CO2 content in the atmosphere. Various countries have signed many
international protocols to curb GHGs emissions, e.g., COP26, Kyoto Protocol (1997), and
the Paris agreement (2015).

Two basic approaches for reducing CO2 emissions include (i) the decreased use of
fossil fuels complemented with the increased use of renewable energy sources; (ii) and
carbon capture and storage via various biological, chemical, or physical methods [7,8].
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The physical methods for carbon emission reduction have been extensively explored. Still,
there are several technological and economic limitations with the existing technologies.
Therefore, it is crucial to upgrade the existing technologies as well as develop suitable
alternatives. Among various others, biological CO2 fixation seems to be a relatively cost-
effective and eco-friendly approach in comparison to the physical and chemical methods.
Photosynthetic organisms assimilate CO2 via the dark phase of photosynthesis and play a
key role in maintaining the balance of CO2 levels in the atmosphere. Compared to other
photosynthetic organisms, phytoplankton had higher CO2 fixation efficiency and biomass
productivity [6]. Marine phytoplankton accounts for half of the total global primary pro-
ductivity by fixing ~ 50 gigatons of CO2 annually [6]. In this context, research on CO2
sequestration by microalgae has attracted attention across the globe [9–14]. Microalgae
can assimilate CO2 10–50 times more effectively, compared to vascular plants without
competing or providing food to humans/animals [15–17]. Microalgae have a special mech-
anism to assimilate carbon dioxide known as the carbon concentration mechanism (CCM).
In this mechanism, a specialized organelle i.e., pyrenoid increases the concentration of
CO2 around the thylakoid membranes [18]. The increased concentration of carbon diox-
ide around the thylakoid membrane enhances the efficiency of ribulose-1,5-bisphosphate
carboxylase/oxygenase (Rubisco), an important photosynthetic enzyme for carbon assimi-
lation or sequestration. Rubisco has a low affinity for carbon dioxide as it has been evolved
in high CO2 and low O2 environments, so the pyrenoid constantly provides an environment
for enhanced CO2 fixation [18,19]. It is evident from Table 1 that microalgae grown in vari-
ous cultivation conditions for carbon sequestration showed higher tolerance for increased
CO2 concentration. Some of the investigations also reported that microalgae can also be
used for flue gas (NOx and SOx) sequestration [20]. Microalgae have high biomass yield
and tolerance for adverse environmental conditions. Therefore, microalgae are considered
a potential feedstock for CO2 sequestration and bioenergy production [21,22].

Microalgae are also used for wastewater treatment and biomass production, which can
further be exploited for various applications, including biogas, bioplastics, and fertilizer
production [23,24]. The low nutrition conditions and high photosynthetic efficiency have
made it easy to cultivate algae for their exploitation for various applications. The previously
published reviews extensively majorly explored the carbon sequestration of microalgae
and their physiological mechanism, however detailed information on the role of pyrenoids
in the sequestration of CO2 is missing, which are key aspects with specific reference to
the global CO2 mitigation using algal technologies [25,26]. This review comprehensively
discusses the physiological mechanism of carbon sequestration, the role of pyrenoids, and
the impact of environmental factors in the carbon concentration mechanism. Besides this,
the review also provides the current global CO2 emission status and scenarios.

1.1. Global CO2 Emission Status

Worldwide progress in the economy and the population boom have led to a continu-
ously rapid rise in the emissions of carbon dioxide in the last few decades [27]. The rising
level of CO2 in the atmosphere leads to an increased global average surface temperature,
which directly and indirectly influences the global weather and climatic phenomenon
(e.g., excessive rainstorms, drought) [27,28]. In order to combat the increasing earth’s sur-
face temperature, the Paris agreement came into force, which was ratified by 196 countries
to limit global warming below 1.5 ◦C compared to the pre-industrial era. This can be
achieved through reducing greenhouse emissions by Nationally Determined Contributions
(NDCs). The global carbon dioxide emissions have increased by 0.9% in 2019 compared to
2018. The largest emitters were China, USA, India, EU27 + UK, Russia, and Japan as per the
Emission Database for Global Atmospheric Research (EDGAR) [29,30]. Demographically,
these countries comprise 51% of the global population but contribute to ~67% of CO2
emissions. A detailed CO2 emission scenarios of major contributing countries from 1990
to 2020 is published elsewhere [29,30]. Surprisingly, compared to that in 2018, the level
of CO2 emission in 2019 increased in China and India but decreased in EU28, the USA,
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and Russia (Figure 1). Global carbon emissions showed a 5% drop in the first quarter of
2020 compared to the first quarter of 2019, due to the decline in the demand for coal (8%),
oil (4.5%), and natural gases (2.3%). In another report, the daily, weekly, and seasonal
dynamics of CO2 emissions were presented and estimated a ~8.8% decrease in the CO2
emissions in the first half of 2020 [29,30]. The decline in global CO2 emissions in 2020
was due to the COVID-19 pandemic, which recorded the most significant decline since
the end of World War II [28]. EDGAR estimated that 2020 showed a decline, with global
anthropogenic fossil CO2 emissions 5.1% lower than in 2019, at 36.0 Gt CO2, just below the
36.2 Gt CO2 emission level registered in 2013 [29,30].

In 2019, global carbon emissions (fossil fuels) per unit of Gross Domestic Products
(GDP) showed a declining trend reaching an average value of 0.298 tCO2/k USD/yrs.,
while per capita carbon emissions remained stable at 4.93TCO2/capita/yrs., confirming a
15.9% surge from 1990 [29,30] as published by [29,31].

1.2. Carbon Sequestration Technologies

There are various physical, chemical, and biological methods in operation for reducing
atmospheric CO2 emissions [7,8,32]. The carbon sequestration or fixation strategies are
popularly known as carbon capture and storage/utilization (CCS/U). Carbon emission
reductions in CCS is carried out in various stages such as CO2 capture, separation, trans-
portation, utilization, and storage. A detailed discussion of all these steps is demonstrated
elsewhere [7,8,32]. A major system frequently used for carbon capture comprises (i) pre-
combustion, wherein CO2 is removed before combustion and the fuel is broken down to
yield synthesis gas, a mixture of CO2 and H2; subsequently, CO2 is separated into various
processes, and H2 is used as a clean fuel; (ii) post-combustion, where CO2 is captured
after the combustion of fuels using chemical absorption; (iii) oxy-fuel where the fuel is
combusted in the presence of pure oxygen to produce high levels of CO2; and (iv) chemical
looping combustion, where oxygen carrier (solid metal oxides) particles are continuously
circulated to supply oxygen to react with fuel, wherein the combustion of metal oxide and
fuel produce metal, CO2, and H2O [33]. The separation of CO2 from flue gas also plays a
vital role in carbon capture and storage technologies. Many separation techniques in opera-
tion include absorption/adsorption, membrane separation, and cryogenic distillation [34].
After capture at the source, CO2 needs to be transported to the sink, which requires further
various methodologies described elsewhere [35].

2. Physiological Mechanism of Carbon Sequestration in Algae

Aquatic photosynthetic organisms, mainly phytoplankton, are responsible for 50%
of the global carbon assimilation [36–38]. It has been stated in the literature that 1.0 kg
of cultivated microalgae may assimilate 1.83 kg of CO2 [39,40]. There are three different
processes i.e., photoautotrophic, heterotrophic, and mixotrophic metabolisms, involved
in algae that help CO2 assimilation [41–43]. Microalgae take up inorganic carbon in
three different ways: (i) The transformation of bicarbonates into CO2 by extracellular
carbonic anhydrase that readily diffuses inside the cells without any hindrance; (ii) straight
absorption of CO2 via the plasma membrane; and (iii) direct intake of bicarbonates by
resolute carriers in the membrane, also known as dissolved inorganic carbon (DIC) pumps
(Figure 1A) [44].

2.1. Photoautotrophic Metabolism

The majority of the microalgae are photoautotrophic, requiring inorganic carbon and
light to transform (inorganic) CO2 into carbohydrates by photosynthesis. The algae fix
CO2 through the Calvin–Benson cycle (Figure 1A), where the enzyme Rubisco plays a key
role in converting CO2 into organic compounds [41,45]. In microalgae, the photosynthetic
reaction can be classified as a light-dependent reaction and a light-independent or dark
reaction (Figure 1B). The first phase of photosynthesis is light-driven, and here light trans-
forms NADP+ and ADP into energy-storing NADPH and ATP molecules [46]. The second
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phase, i.e., the dark phase, consists of CO2 fixation and assimilation via the Calvin–Benson
cycle in order to create organic compounds (glucose) with the aid of NADPH and ATP,
produced in the first phase [47]. Here, Ribulose bisphosphate carboxylase/oxygenase
(Rubisco) plays a significant role in the sequestration of CO2 [48,49]. Rubisco catalyzes
the conversion of CO2 to 3-phosphoglycerate. However, due to the oxygenase character,
Rubisco binds very weakly binds with CO2, which makes it a poor CO2 fixer [48,49]. These
phosphoglycerates are then involved in yielding carbohydrates. Furthermore, these phos-
phoglycerates are mostly used to regenerate RuBP, which is then employed to continue the
carbon-fixing cycle. The oxygen ion of Rubisco produces phosphoglycolate, which in turn
hinders the carboxylase function of Rubisco. The phosphoglycolate is further transformed
into phosphoglycerate (3-PGA) by exploiting ATP and releasing CO2. This reaction is
known as photorespiration, in which O2 is utilized and CO2 is released [50]. Therefore,
photorespiration leads to the wastage of carbon and energy, eventually decreasing the
yield of photosynthesis [51]. Nonetheless, atmospheric O2 concentration usually remains
higher compared to atmospheric CO2, thus further favoring the oxygenase functionality
of Rubisco and thereby promoting photorespiration. To counter this situation, microalgae
have developed CO2 concentrating mechanisms (CCMs) to enhance the concentrations of
CO2 within close range of Rubisco [52,53].
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2.2. Heterotrophic Metabolism

Heterotrophic metabolism occurs with or without solar energy, and it requires or-
ganic carbon. Although the majority of microalgae are photoautotrophic, there are cases
where several microalgae can grow via heterotrophic metabolism under dark conditions
or under low-light conditions, which is insufficient for autotrophic metabolism. These
particular algae heterotrophically metabolize a wide range of organic carbon sources in
these light-deprived environments [54–57]. This metabolism follows the pentose phosphate
pathway (PPP), which involves the usage of organic carbons derived from acetate, glucose,
lactate, and glycerol, and different enzymes involved in transportation, phosphorylation,
anabolic and catabolic metabolism, and yielding energy via the substrate or respiration [43].
However, in a few algal strains, heterotrophy can also occur in the presence of light, and
such processes are termed photoheterotrophy [58]. The characteristics of the heterotrophic
microalgae cultivation are (i) comparably higher capacity to assimilate and grow under
light-impoverished conditions; (ii) a fast growth rate; and (iii) the capability to metabolize
various types of resources of organic carbon sources [56]. Numerous microalgal strains
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have been examined in heterotrophic conditions for the production of biomass, and various
important metabolites using glucose as a carbon source [59,60].

2.3. Mixotrophic Metabolism

Mixotrophic metabolism obeys both autotrophic photosynthesis and heterotrophic as-
similation. This metabolism can be considered a derivative of the heterotrophic metabolism
as both CO2 and organic carbon are used together. Mixotrophic metabolism is accompa-
nied by respiration and photosynthesis, resulting in maximum glucose usage [61]. Thus,
mixotrophic metabolism can employ both organic and inorganic carbon, thereby leading to
the high production of biomass [62,63]. The organic carbon is captured via aerobic respi-
ration, whereas inorganic carbon is absorbed through photosynthesis [64]. Mixotrophic
microalgae cultivation delivers higher cell yields per unit of energy input compared to
autotrophic or heterotrophic cultivations [65]. Furthermore, mixotrophic metabolism man-
ifests a lower energy-conversion efficiency compared to heterotrophic metabolism [65].
However, both these mechanisms preserve the important pigments and photosynthetic
carotenoids under solar irradiation [66,67]. There are certain aspects where mixotrophic
cultivation offers extra benefits over photoautotrophic cultivation, such as an increased
growth rate, decreased growth cycles, insignificant decrement of biomass in the dark,
and overall higher biomass yields [68,69]. However, mixotrophic metabolisms have their
own disadvantages, i.e., comparably costly due to the high requirement of organic carbon
resources and are vulnerable to intrusive heterotrophic bacteria in bare pond arrangements
Moreover, balancing two kinds of metabolisms is another challenge for the mixotrophic
mechanism. However, mixotrophic metabolisms have their own disadvantages, as they are
costly due to their necessity of organic carbon resources and are vulnerable to intrusive
heterotrophic bacteria in bare pond arrangements [70]. Moreover, balancing two kinds of
metabolisms is another challenge for the mixotrophic mechanism.

3. Carbon Concentration Mechanism (CCM) in Algae

Microalgae have been studied for several decades as important feedstocks for bioen-
ergy production to reduce global carbon emissions [71]. As explained in the previous
section, the Calvin–Benson cycle (C3 cycle) is the fundamental photosynthetic carbon
metabolic pathway in algae (Figure 1B). CO2 is one of the limiting substrates in the aquatic
system [72]. Bicarbonate is the prevailing CO2 form in the water at pH ≥ 7 and temper-
atures < 30 °C . Aquatic carbon capture involves the bicarbonate form, which is further
required from the growth of algae and creating biomass. The aquatic photosynthetic organ-
isms are continuously exposed to varying degrees of physicochemical stresses depending
upon the water matrix, level of dissolved inorganic carbon (Ci, CO2, and/or HCO3

−),
and geoenvironmental conditions. Hence, aquatic photosynthetic organisms, including
microalgae, have developed carbon concentration mechanisms (CCM) as an adaptive
mechanism to maximize the photosynthetic efficiency under low CO2 or inorganic carbon
conditions [73]. Various environmental factors, such as temperature, pH, alkalinity, etc.,
directly influence the rate of inorganic carbon supply to the phytoplankton. At times,
the water becomes CO2 deficient due to the slower diffusion rate of CO2 in the water,
resulting in comparably lower availability of HCO3

− in the aquatic environment [74]. The
involvement of different CCM strategies in several algal strains has been demonstrated
in numerous previous studies [75–77]. Constant research efforts in this field confirm the
involvement of different CCM strategies in many algae [75–77]. However, detection of the
CO2 deficiency in both intra- and extra-cellular levels in order to understand the structure
and biochemistry behind CCMs or to reveal the nature of the signal responsible for CCM
activation, like many other unexplored functional aspects of CCMs, is yet to be studied.
Furthermore, the CCMs are widely distributed among microalgae, both phylogenetically
and geographically, although they are absent in certain microalgal groups, such as chryso-
phyte and synurophycean. Different organisms have different levels of CCMs. However,
there are three main CCMs, viz. C4 pathways, inorganic carbon transportation, and the
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conversion mechanism, which increase the CO2 concentration around the enzyme and
are commonly available in almost all of the organisms to attain the desired level of CO2
concentrations, and they are as follows:

Biophysical CCMs involve the concentration of inorganic C, Rubisco-rich environ-
ments. These CCM processes occur before the incorporation of inorganic carbon into
organic compounds [78]. Irrespective of being prokaryotic or eukaryotic, algal CCM com-
prises (i) Ci transporters; (ii) carbonic anhydrase for the conversion of Ci to CO2; and (iii) a
microcompartment, packed with Rubisco, where CO2 is delivered. The carboxysome and
pyrenoid are the microcompartments where CO2 fixation takes place in prokaryotic and
eukaryotic algae, respectively (Figure 1).

3.1. C4 Pathways

This CCM is based on the C4 and crassulacean acid metabolism (CAM) pathways,
wherein CO2 is assimilated by PEP to generate oxalo acetic acid (OAA), which is later
decarboxylated to regenerate CO2. This pathway also recaptures the CO2 generated
from the oxygenation of Rubisco via photorespiration, thus maximizing the assimilation
of CO2 [52,79]. The C4 pathway is well understood in higher plants. Although the
existence of a C4 pathway has been reported in the marine diatom Thalassiosira weissflogii,
C3 photosynthesis is predominant in algae [80,81].

3.2. Inorganic Carbon (Ci) Transportation and Conversion Mechanism

Carboxysome, a bacterial microcompartment, serves as the key CO2 fixing machinery
in all cyanobacteria and many chemoautotrophs [81–83]. The CCMs in prokaryotes include
(i) bicarbonate pumps/transporters and membrane-bound hydration enzymes that con-
centrate bicarbonate levels in the cytosol; and (ii) carboxysome, a selectively permeable
protein shell that encapsulates Rubisco and CA, where enhanced levels of bicarbonate are
fed and converted to CO2 to initiate the first step of C3 cycle [75,84]. The encapsulation of
Rubisco and CA by the protein shell restricts the leakage of CO2 (converted by CA) from
the carboxysome into the cytosol, thus elevating the levels of CO2 around Rubisco [75,83].

3.3. Raise of CO2 Concentration around the Enzyme

This is the third type of CCM (Figure 1A) controlled by the pH gradient arrangement
over the chloroplast and thylakoid membrane upon illumination. Commonly, Eukaryotic
algae follow this sort of CCM. Under light, the chloroplast stroma attains a pH around
8.0, whereas the thylakoid lumen achieves a pH between 4.0 and 5.0 This pH gradient is
important as at pKa 6.3, bicarbonate is converted into CO2. However, here, Ci’s HCO3

−

form dominates within the chloroplast stroma, albeit the CO2 group of Ci is found in
a generous amount in the thylakoid lumen. Moreover, the bicarbonate moved inside
the thylakoid lumen would be changed into CO2, thereby raising the CO2 concentration
over the normal range. It is reported that this type of CCM needs Carbonic Anhydrases
(CA) in the acidic thylakoid lumen in order to transform the infiltrating HCO3

− into
CO2 immediately [85]. Besides, HCO3

− is unable to rapidly pass through the biological
membranes [86]. Hence, a transport protein or complex may be there to help HCO3

−

to penetrate through the thylakoid lumen. Thus, the present model suggests that CO2
would not accumulate in the dark since light-supported photosynthetic electron transport
is necessary to create these pH differentials. [37]

In this model, the CCM can be operated by acquiring and delivering the Ci from the
environment to the chloroplast stroma and the generation of elevated levels of HCO3

–

in the chloroplast stroma. The CCM model in Chlamydomonas can be described in three
phases. The first phase includes the acquisition and delivery of Ci from the environment
to the stroma through the concerted action of the functioning of CAs in the periplasmic
and cytoplasmic space and C transporters on the plasma membrane and chloroplast
envelope [87–89]. The second part includes the entry of HCO3

− to the thylakoid lumen
and the generation of high levels of HCO3

− in the lumen by utilizing the pH gradient
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across the thylakoid membrane [87]. Under light conditions, the chloroplast stroma has
a pH ~8.0 while the thylakoid lumen has a pH between 4.0 and 5.0, thus establishing a
pH gradient across the thylakoid membrane [90,91]. Due to this pH gradient, HCO3

− is
the predominant Ci species in the thylakoid stroma, whereas CO2 is the predominant Ci
in the thylakoid lumen. This step is coordinated through CAs located in the stroma and
the thylakoid lumen, as well as the Ci transporter on the thylakoid membrane. The third
phase is not present in all algae, but is in the majority of algae and takes place exclusively
in pyrenoid. Pyrenoid is a membrane-less organelle (or a sub-compartment) found in the
stroma of chloroplasts of most but not all algae [92,93]. The pyrenoid consists of (i) a matrix
that is densely packed with Rubisco; (ii) a starch sheath that surrounds the matrix; and
(iii) membrane tubules that traverse the matrix and are continuous with the thylakoid
network [93–98]. The CO2 produced in the thylakoid lumen diffuses to the pyrenoid
matrix (via tubules) (Figure 2A–H), where it is fixed by Rubisco, thus minimizing Rubisco
oxygenase activity and stimulating the carboxylase activity in the stroma [87,95]. Various
modeling studies have revealed that algae with pyrenoids are likely to be more effective in
maintaining high CO2 levels around Rubisco than those without pyrenoids [96].
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4. Recent Development in Microalgae Carbon Sequestration

During the 1970s, the U.S. Department of Energy (DOE) initiated research on the
application of algal technologies for wastewater treatment using algae, and the biomass
produced during the process was used for methane production. Further, the U.S. Depart-
ment of Energy’s Office of Fuels Development (DOE-OFD) funded a program named the
‘Aquatic Species Program (ASP), and the major aim of ASP was to evaluate the potential
of microalgae in biodiesel production from high lipid-content microalgal biomass grown
in ponds, through the utilization of CO2 emitted from coal-fired power plants. Various
microalgal species were screened and investigated under different physicochemical con-
ditions i.e., varying temperature, pH, and salinity, etc., but the desired results were not
achieved. The two major successes achieved under the aquatic species program included
(i) the establishment of a microalgae culture collection canter; and (ii) a pilot-scale microal-
gae cultivation raceway pond in New Mexico. Fortunately, at the same time, Japanese
researchers were also working on a project related to bio fixation of CO2, and greenhouse
gas emission abatement using closed microalgae photobioreactors (PBRs), which was later
discontinued due to the higher instrumental and maintenance cost of the reactors.

In addition, the US DOE-NETL started PBRs-based microalgae research and devel-
opment. Moreover, Arizona Public Services, ENEL ProduzioneRicerca, EniTecnologie,
ExxonMobil, and Rio Tinto are also taking part the microalgae-based CO2 mitigation
research [98,99].

Seambiotic Ltd. was the first to introduce flue gas usage from a power plant to culti-
vate algae. Seambiotic Ltd., jointly with the Rutenberg coal-fired power plant (based in
the city of Ashkelon, Israel), checked the development of the potential of algae exploiting
CO2 from flue gas, which is 50% better than the uncontaminated CO2. Numerous other
projects are running worldwide, achieving profitable-scale microalgae harvesting amenities
by exploiting flue gas. Across the globe, several microalgae-based research projects and
programs are in action to develop apt strategies to reduce atmospheric CO2 emissions. The
projects are mainly based on reducing the operational cost of carbon sequestration by using
waste resources for algae biomass production. Integrated algal biorefinery systems utilize
the waste resource viz. flue gas and wastewater as a cultivation medium for their growth
and development. The biomass produced during the process can be exploited for other
valuable derivatives productions [100–158]. However, all the research endeavors so far
indicate that utilizing CO2 in the real world by employing microalgae still needs new and
creative ideas to secure scientific and technological progress in this field. Table 1 lists the
investigations carried out with microalgae for CO2 sequestration under various conditions.
It is necessary to merge alternative techniques or co-processes to ensure the expenditure on
microalgae research is a remarkable success and resolves the global CO2 problem. Promis-
ing alternatives involve wastewater management, the generation of beneficial metabolites,
biofuels, animal feed, and biofertilizer creation [103]. The researchers must aim to attain
greater biomass productions, cultivation stability, cost-effective cultivation procedures, and
advanced biomass-to-fuel transformation methods.

Table 1. Chronological order of the studies on CO2 tolerance, sequestration, and sequestration efficiency under various
cultivation conditions.

S NO. Microalgae
CO2

Tolerance
Capacity (%)

CO2
Assimilation
Rate (g/L/d)

CO2
Assimilation

Efficiency (g/L/d)

Cultivation Conditions
Cultivation

System Reference
pH T ◦C CO2(%) Light

Intensity Culture Medium

1. Chlorella sp. 40 0.097 - 7.5–9 30 15 450 # - - [104]

2. Chlorella vulgaris 18 - 76 7.2 30 30 1800 * f/2 APBRa [105]

3. Chlorella sp. 40 2.33 - 6.3–9 26 26 100 $ Modified freshwater
medium FPBR [106]

4. Chlorella sp. 40 0.510 - 8.2 18 10–20 84 # - BCPBR [107]

5. Desmodesmus sp. 100 1.58 - - 30 30 60 # 3N-BBM FBC [108]

6. Chlorella vulgaris 18 2.22 - - 30 - 70 # BG11 BCPB [109]

7. Chlorella pyrenoidosa
Scendesmus obliquus

10
10

0.26
0.28

-
- 7 25 10 180 # BG11 EF [110]
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Table 1. Cont.

S NO. Microalgae
CO2

Tolerance
Capacity (%)

CO2
Assimilation
Rate (g/L/d)

CO2
Assimilation

Efficiency (g/L/d)

Cultivation Conditions
Cultivation

System Reference
pH T ◦C CO2(%) Light

Intensity Culture Medium

8. Chlorella sp. - 0.25
1.7 8 18 0.03 6000 * f/2 and AFW BPR [111]

9. Anabaena sp. 10 1.01 67–79 20–25 5–15 127–250 # BG11 BPR [112]

10. Scenedesmus obliquus 18 0.252 - 7 25 13.8 5496 * f/2 EF [113]

11. Scenedesmus obliquus 18 - 67 - 26 26–28 12,000 * Soil extract APBR [114]

12. Chlorella sp. 40 - 46 10 30 10 30 # - LSF [115]

13. Scenedesmus obliquus 18 - 40.2 - 25 10 12,000 * - APBR [114]

14. Botryococcus braunii 10 - - - 25 5.5 150 # Chu 13 - [116]

15. Chlorella vulgaris 18 0.522 - 7.2 22 22 165 # 3N-BBM CF [117]

16. Chlorella vulgaris 18 0.251 - 6.0 30 30 3500 * FM [118]

17. Chlorella sp. 10 - - - 26 10 300 # AFW BCPBR [119]

18. Chlorella sp. 5 0.35 - 7.18 - 5 100 # BG11 VTPBR [120]

19. Chlorella vulgaris 18 2.664 - 7.02–8.2 25 25 3600 * Synthetic Sea Salt PCPB [121]

20. Chlorella vulgaris 1 6.24 - 8.5 27 0.2 75 $ - MPBR [122]

21. Chlorella 15 0.46 - 8 27 0.2 200 # MA CF [123]

22. Chlorella 10 - 0.57 6 25 10 MBM BCPBR [124]

# in µmol m−2s−1, * in lux, $ in µEm−2s−1. APBR: Air-lift Photobioreactor, BCPBR: Bubble-Column Photobioreactor, VTPBR: Vertical Tubular
Photobioreactor, C.F.: Conical Flask C.F.: Erlenmeyer Flask, LSF: Laboratory Scale Flask, FM: Fermenter, FBC: Feed Batch Cultivation.

5. Factor Affecting Carbon Sequestration in Microalgae
5.1. CO2 Concentration

CO2 is a primary requirement for microalgae’s growth and development to build the
carbon skeleton via photosynthesis. Carbon dioxide fixation is carried out by solubilization
from the gaseous form to the liquid phase. Carbon dioxide concentration tolerance varies
from species to species, as depicted in Table 1. In an investigation, Chlorella vulgaris
showed optimal growth at a 5% (v/v) CO2 concentration and an inhibitory effect on growth
at a 15% (v/v) CO2 concentration [125]. Generally, the growth of microalgae at a high CO2
concentration is inhibited due to acidification [126] in the chloroplast stroma region, which
inactivates the key enzymes of the Calvin–Benson cycle. A detailed report on the effect of
CO2 concentration on individual algal species showed no optimum CO2 concentration to
obtain the maximum biomass [127]. In the same investigations, the microalgae showed a
high tolerance for carbon dioxide, for example, Chlorella vulgaris, Scendesmus obliquus,
Nanochloropsis oculata Microalgae Chlorella sp. T-1, Scenedesmus sp., and Euglena gracilis
studied at different levels of carbon dioxide, i.e., 100%, 80%, and 45%, respectively, showed
the high tolerance, but the maximum biomass productivity was found at 10%, 10–20%,
and 5%, respectively [127]. Similarly, Chlorella sp. KR-1 showed the highest growth rate
at 10% CO2 but could tolerate up to 70% CO2. It is worth noting that the reported values
represent the solubility of a single component in water without the others’ presence. Data
for the solubility of individual components of flue gas in the entire flue gas presence are
not available. Moreover, as the dissolved gases reacts with water and oxygen, new species
are formed that have their own solubility and potential impact on the algal growth system.
Therefore, bench-scale testing is necessary to determine the solubilities of the combined
flue gas constituents. The range mentioned above is important because certain microalgae
can grow with 10–15% carbon dioxide [42]. The range is normally found in flue gases,
an important greenhouse gas source of pollution, but may be an excellent carbon dioxide
source for microalgae [158].

5.2. pH

The microalgae cultivation medium’s pH plays a significant role in regulating nutrient
uptake, photosynthetic activity, and carbon sequestration efficiency. Microalgal culture
mostly shows optimum growth in the ranges of pH 6.5–8.5 except for certain cyanobac-
teria. However, alkaline (High) pH is beneficial for CO2 absorption because alkaline pH
increases the availability of free-CO2 in the culture medium, which favors the growth of
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high-CO2-tolerant algae [128]. A recent study reported that at pH 10.6–7.0 and a carbon
concentration below 9.52 mmol/L, pH does not have a significant effect on carbon absorp-
tion; above the same concentration, pH has a significant effect on carbon absorption [129].
In general, bicarbonate (HCO3

−) is used as a carbon source in the inorganic cultivation
medium. HCO3

−is converted into OH− by carbonic anhydrase, thus increasing the pH
and subsequently altering the equilibrium of different inorganic carbon (Ci) species. It
has been well documented that flue gas containing a high concentration of CO2 (10–20%)
acidifies the algae cultivation medium, thus suppressing the algal growth [90].

5.3. Temperature

Temperature is an important factor in the growth and development of a photosyn-
thetic organism. Microalgae have been reported to grow under temperatures ranging
5–40 ◦C, with the optimum temperature ranging 0–30 ◦C [130]. The optimum temperature
varies from species to species, and the optimum temperature for Nannochloropsis oculata
is 20 ◦C and Chlorella vulgaris is 30 ◦C [131]. A low temperature inhibits the carbon seques-
tration process in algae by reducing the enzymatic activity of ribulose-1,5-bisphosphate
(Rubisco) and carboxylase; the enzyme plays an important role in photosynthesis and
photorespiration. Similarly, extremely high temperatures alter the metabolic activity and
photorespiration of microalgae [132]. In general, the adverse effect of temperature on
microalgae is seen above 40 ◦C, which includes charge separation of PSII and inactivation
of oxygen-evolving capacity. The inactivation of oxygen evolution activity occurs due to
the conformational change in the 33-kDa protein [133]. The temperature has an inverse
relation with CO2 dissolution in the liquid medium, whereby an increase in temperature
decreases the CO2 dissolution in the algae cultivation medium.

5.4. Irradiance

Light is a mandatory requirement for the bioconversion of CO2 by photoautotrophic
and mixotrophic microalgae. There are two phases of the photosynthesis reaction light-
dependent reaction and light-independent reaction. The light-dependent reaction converts
the photon molecules into the biochemical compound in ATP and NADPH. It is used for
carbon sequestration or fixation in the presence of Rubisco in the Calvin–Benson cycle [134].
Therefore, optimum irradiance is required to carry out carbon sequestration (Calvin–
Benson cycle) in microalgae [56]. The low and high light intensities lead to alteration
in the photosynthetic rate. When there is low light energy, microalgae tend to increase
the light capture apparatus (chlorophylls) as efficiently as possible. On the other hand,
high light intensities alter the acceptor-side activity of PS II and block the flow of electron
transfer from QA− to QB−; in this process, increased charge recombination promotes the
formation of P680, which interacts with the oxygen and forms the singlet oxygen [135].
Two well-known phenomena, photoacclimation and photo-limitation, are involved in the
use of light energy by microalgae (i) [136,137]. The photoacclimation concept was defined
as a gradual reduction of the photosynthetic pigments (mainly chlorophylls a and b) in
response to increased irradiance. In the case that an increase in the pigments in cells occurs,
it is possible the photon-molecules are not accessible for all cells, and they need to expand
the photosynthetic apparatus [138]. Due to its highly reactive nature, singlet oxygen caused
oxidative damage in the PS II. It is well established that singlet oxygen or reactive oxygen
species (ROS)-induced oxidative stress is responsible for the low photosynthetic rate and,
consequently, low carbon fixation and biomass yield under high light stress [139,140].
Similarly, the relationship between irradiance and photosynthesis was investigated in a
dynamic model of photosynthesis, the so-called ‘flashing light effect’. In addition to the
irradiance, the light period (photoperiod) also affects the growth and biomass content in
microalgae. The specific growth rate of Botryococcus braunii and Tetradesmus (Scenedesmus)
obliquus were found to increase under continuous light irradiance while the growth of
Neochloris texensis was stimulated under a light/dark cycle under the same irradiance in a
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published detailed review on the enhancement of light intensity leading to high biomass
productivity [141,142].

6. Techno-Economic Challenges with Microalgae

It has been well documented that microalgae can curb CO2 emissions (Table 1), but the
carbon sequestration depends on various other factors discussed in the separate sections.
The challenges associated with algae-based carbon sequestration include the cultivation
system, microalgal strain, flue gas composition, CO2 tolerance capacity, etc. [144]. The
operating cost and energy consumption are higher in the biomass cultivation stage [143].
Various studies showed that an open pond is more cost-effective for algae cultivation, but it
is not a good choice for maintaining the purity of cultures. The heat transfer, irradiance, and
nutrient availability dynamics have been studied and revealed that thermal modeling is
essential for the open raceway as detailed in [145]. The flat-plate photobioreactor provides
high biomass productivity and consumes low energy [146]. Life cycle analysis (LCA) is a
good measure of input–output inventory, energy consumption, cost, and the complete life
cycle. The LCA of microalgae carbon sequestration begins with microalgae cultivation and
leads to the formation of the product. A comprehensive LCA on microalgae production
and flue gas sequestration under outdoor cultivation in raceways ponds showed that the
semicontinuous cultivation system displayed a 3.5-times higher growth rate for biomass
productivity as compared with batch cultivation. The study also reported that flue-gas-fed
outdoor raceways ponds could reduce 45–50% of GHGs emissions than the base case [147].
Another LCA report showed that the biomass production cost is 4.87 US$/kg and the
energy consumption is 0.96 kWh/kg of Chlorella biomass. A study reported that 4000 m3

algae cultivation ponds could sequester up to 2.2 k tones of CO2 per year under natural
daylight conditions [148]. Another study reported that 50 MW power plants could generate
~414,000 t/yrCO2, and a 1000-ha open raceway pond could mitigate ~250,000 t/yrCO2.
In this particular study, algae could reduce 50% of CO2 [149]. However, axenic cultures
are preferred in the food and pharmaceutical industries. One of the major challenges in
the direct capture of CO2 from the industrial flue gas using microalgae is that flue gas
contains 142 chemical compounds that might be toxic for the microalgae [148,150]. The
low concentration of NOx and SOx in the flue gas can serve as a source of nutrients for
microalgae, but higher concentrations can cause toxicity. The solubilization of CO2 in the
culture medium is mainly dependent on pH, temperature, and salt concentration. At high
temperatures, the solubilization of CO2 in the medium decreases. Therefore, it is important
to maintain a cool culture medium. Many culture media contain high salt concentrations,
which increase the osmotic pressure and consequently reduce the solubilization of CO2 in
the medium. Strategies such as fed-batch cultures can be adopted to gradually provide
the salts necessary for microalgal growth [151]. The specialized suitability of algal CO2
sequestration has been shown in various studies; in any case, the significant difficulties
are the key and all-encompassing turn of events of advancements that will improve the
monetary practicality of algal CO2 sequestration and make this a reasonable modern way
to deal with GHG remediation.

7. Future Prospective

Microalgae carbon sequestration is a sustainable approach for global CO2 emission
reduction [152]. The recent development in cultivation techniques, harvesting, CO2 seques-
tration capacity, and LCA studies make microalgae a more suitable candidate for carbon
emission mitigation [152]. Most studies have focused on finding ways to select and culture
various promising microalgae species for efficient CO2 sequestration. Little attention has
been given to the development of large-scale and commercial-scale exploitation of carbon
sequestration using microalgae. Nonetheless, it is essential to consider and exploit the
conditions that influence the microalgae’s CO2 capture capacity when it is scaled up for
commercialization. Indeed, more extensive research on the industrialization of microalgae
science in the practical world is the necessity of this moment. Though the research in
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algae carbon sequestration mainly involves modification in the strain, improving cultiva-
tion techniques, and harvesting, there is a gap in the area involving factors influencing
the carbon sequestration (e.g., change in the light intensity during the day (month, and
year), etc.). Similarly, pyrenoid is the most important sub-cellular organ of microalgae
that plays a significant role (as described above in a separate section) in the carbon con-
centration mechanism, but to date, the research in this area is fragmentary. Besides, it is
necessary to investigate the high-CO2-tolerant microalgae to enhance carbon sequestration.
Further studies must be directed to resolve the minimization techniques of the loss of
remaining untouched carbon [153]. Life cycle estimation designs should be built to cal-
culate the atmospheric repercussions of microalgae-based carbon sequestration [154,155].
Nonetheless, until now, most research is based on lab-based research under restricted
conditions (Table 1), hence the inadequate amount of information accessible on the vying
interplay with other microalgal species and reactor scale-up. There is abundant research
devoted to closed systems. However, more studies need to be carried out on open pond
systems as these are the exceedingly cost-effective alternative for extensive arrangement.
To boost microalgal metabolism, an increased amount of CO2 delivery is a necessary but
costly part of microalgae harvesting. Thus, additional research is desirable to find possible
low-cost choices [42]. Bio-geo-engineering may enhance the capacity of algae in reducing
the escalation in oceanic CO2 and temperature as well. Apart from this, the function of
algae is to increase the current sequestration of CO2 as organic carbon over hundreds and
hundreds of years at the bottom of the sea and in aquatic sediments, diminishing the rate
of augmentation of atmospheric CO2 and at least lessening ‘ocean acidification’ and the
radiative temperature rise by the greenhouse effect of atmospheric CO2. Hence, more
attention is required to understand the physiological mechanism of microalgal carbon
sequestration with special emphasis on the carbon concentration mechanism [156,157].

8. Conclusions

During the investigation, it was realized that carbon sequestration studies using
microalgae, mainly tested at a small scale in a laboratory-controlled environment, showed
the potential for carbon assimilation. Moreover, a few studies carried out at a large and
commercial scale appear promising in reducing major greenhouse gas CO2 emissions and
mitigating global warming. It has been determined throughout the study that microalgae
have a higher CO2 tolerance, carbon assimilation efficiency, photosynthetic efficiency,
and growth rate than terrestrial plants. Carbon sequestration studies of microalgae also
focused on improving CCM, Rubisco, pyrenoid, and photosynthetic machinery. The review
systematically analyzed factors influencing the growth of microalgae and found that
microalgae have a wide range of tolerance and sensitivity for temperature, pH, irradiance,
and nutritional condition, but small changes in the cultivation condition alter the product
yield. The cultivation technologies of microalgae also play an important role in large-scale
production, and recent advancement in the biorefinery-based cultivation system makes us
more hopeful for large-scale carbon sequestration. Lastly, the sustainability and economic
feasibility of microalgae carbon sequestration at a large scale depend on understanding the
photosynthetic mechanism, improving growth factors, and technical infrastructure.
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