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Abstract: The global trend towards renewable energy sources, especially solar energy, has had a sig-
nificant impact on the development of scientific research to manufacture high-performance solar cells.
The issue of creating a model that simulates a solar module and extracting its parameter is essential
in designing an improved and high performance photovoltaic system. However, the nonlinear nature
of the photovoltaic cell increases the challenge in creating this model. The application of optimization
algorithms to solve this issue is increased and developed rapidly. In this paper, a developed version
of eagle strategy GBO with chaotic (ESCGBO) is proposed to enhance the original GBO performance
and its search efficiency in solving difficult optimization problems such as this. In the literature,
different PV models are presented, including static and dynamic PV models. Firstly, in order to
evaluate the effectiveness of the proposed ESCGBO algorithm, it is executed on the 23 benchmark
functions and the obtained results using the proposed algorithm are compared with that obtained
using three well-known algorithms, including the original GBO algorithm, the equilibrium optimizer
(EO) algorithm, and wild horse optimizer (WHO) algorithm. Furthermore, both of original GBO
and developed ESCGBO are applied to estimate the parameters of single and double diode as static
models, and integral and fractional models as examples for dynamic models. The results in all
applications are evaluated and compared with different recent algorithms. The results analysis
confirmed the efficiency, accuracy, and robustness of the proposed algorithm compared with the
original one or the recent optimization algorithms.

Keywords: solar energy; static PV models; dynamic PV models; optimization; GBO; eagle strategy
GBO; chaotic maps

1. Introduction

Recently, since the surge in fossil fuel prices, the world’s attention has turned to
renewable energy sources, such as wind and solar energy. Solar energy has several ad-
vantages beyond resources. These advantages are simple in installation, low maintenance
activities, and suitable for different sizes. Although the mentioned advantages of solar
energy are still weak regarding high efficiency [1], increased interest in renewable energy
sources has led to an increase in researchers’ interest in developing these systems and
increasing their efficiency. Developing an optimal mathematical model that simulates the
natural photovoltaic system is one of the biggest challenges for researchers. The difficulty
of developing these models is due to the nonlinear properties of solar cells [2].

Different types of PV models are proposed in the literature. The static model based
on the main characteristics of the PV cell as it consists of two semiconductor materials
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(p-type and n- type) to achieve simple P-N junction characteristics, is considered the base
element of the PV system. The PV module is a connection of series and shunt PV cells [3].
The simplest static model is a single diode model (SDM), which has one diode connected
with series and shunt resistance [4–7]. The development in this type of models is based
on increasing the accuracy of the models by representing other effects. The double diode
model (DDM) is developed to represent the recombination effect in the PV cell. DDM
consists of two diodes with one series and one shunt resistance. The total estimated pa-
rameters in the DDM are seven parameters, making it more complex than SDM [8,9]. By
increasing the number of diodes, other effects can be represented in the model, reflected in
increasing the model accuracy; on the other hand, the estimated parameters for the model
is also increased, reflected in increasing the model complexity. This idea is illustrated in
the three diode model (TDM) [10–12]. TDM has three diodes to represent the effect of
leakage current and grain boundaries. TDM has nine estimated parameters, so although
the model is more accurate, it is considered more complex. The balance between accuracy
and complexity is determined according to the application [13]. Although the static model
has a wide range of developments in the literature and is more representative to the PV
system, the representation of the load connection, variation, and switching are missed.
The dynamic model has been proposed in the literature to overcome this problem by
representing the load connection in the model [14–17]. The dynamic models proposed in
the literature are the integer and fractional dynamic models. The integer dynamic model
is considered the more popular dynamic model and the fractional model has been devel-
oped to increase the accuracy of the integer model [18]. All these models have different
parameters. These parameters control the model output (dependent variable) based on
the model input (independent variable). The well estimation of these parameters has a
direct effect in the model accuracy, for which many researchers have proposed to discuss.
Parameters estimation using optimization algorithms has been discussed by several re-
searchers. A review about the applied optimization techniques to estimate the parameters
of the PV models is proposed in [19]. The numerical/analytical methods are applied for
the optimization problems but these methods achieve low accuracy solutions. Population
based algorithms are applied widely for these problems as it is simple in application with
more accurate results. Population based algorithms are too many to discuss in this paper,
but one example includes the recently proposed Whippy Harris Hawks Optimization
Algorithm (WHHO) [20]. WHHO is an enhancement for HHO proposed by [21]. HHO is
inspired by a group of hawks in catching their prey. WHHO improves the weak in HHO
by reducing the local optima problem occurrence besides increasing the algorithm search
speed. This meta-heuristic method is a derivative-free optimization method. It has no
restrictions on the objective function and has a great advantage in solving multimodal
problems. Therefore, it is employed to solve many optimization problems, such as the high
performance SPR sensor design [22], solar-based DG allocation [23], optimal reactive power
dispatch [24], and parameter estimation of photovoltaic [25–27]. One recent application
of meta-heuristic algorithm for PV parameters estimation is the application of wild horse
optimizer (WHO) for parameter estimation of modified double-diode and triple-diode
photovoltaic models proposed in [28]. Another interesting work is the application of an
improved bald eagle search algorithm for parameter estimation of different photovoltaic
models proposed in [29]. The improved algorithm has been tested through three static
PV models SDM, DDM, and TDM. Moreover, three modified static PV models MSDM,
MDDM, and MTDM. The study in [28,29] is interesting due to it using recent algorithms
with modified static models, but the dynamic PV models are missed.

The GBO algorithm is considered a metaheuristic optimization algorithm inspired
by gradient descent and the Newton method [30]. GBO has advantage of rapid conver-
gence due to gradient search rules and also reducing probability of escaping from local
optima. ESCGBO is a modified version of GBO proposed in this paper. The ESCGBO
technique is an enhancement applied to the GBO using eagle strategy (ES) with chaotic
method to enhance the balance between global search or exploration and local search or
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exploitation and then increasing the original algorithm performance. The ES has been used
in several studies to improve the performance of the conventional algorithms, such as an
improved particle swarm optimization (PSO) algorithm [31,32], adaptive Nelder–Mead
simplex algorithm [33], and JAYA algorithm and Nelder–Mead simplex method [34], eagle
strategy with flower algorithm [35], while chaotic maps were also used to enhance several
optimization algorithms, such as developing chaotic HHO algorithm [36], chaotic artifi-
cial ecosystem-based optimization (CAEO) algorithm [37], chaotic JAYA algorithm [38],
and chaotic salp swarm algorithm (CSSA) [39]. In this article, the ESCGBO algorithm is
proposed and applied to estimate different PV static and dynamic PV models. The results
from all applications are analyzed and evaluated.

The principal contributions of this article are summarized as follows:

• Proposing a developed version of GBO algorithm based on the eagle strategy with the
chaotic method to enhance the performance and avoiding the local optima.

• Applying the conventional GBO and ESCGBO as well as other well-known optimiza-
tion algorithms for parameter estimation of different PV models, such as static and
dynamic PV models.

• The results confirm that the proposed ESCGBO has the capability to enhance the
performance and increase the effectiveness of the conventional GBO and improve the
convergence rate

The remainder of this paper is arranged as follow: Section 2 presents the static and
dynamic PV models. ESCGBO is proposed in Section 3. The results and analysis is
discussed in Section 4. Section 5 presents the conclusion.

2. PV Static and Dynamic Models

PV models should accurately describe the characteristics of the PV systems for differ-
ent types of PV models proposed in literature in order to achieve this target. In this section,
the most popular static and dynamic models are discussed.

2.1. Static SDM and DDM

SDM has one diode connected with series resistance and parallel resistance to the
photo generated current, represented with current source connected parallel with the diode.
SDM has five parameters; therefore, it is considered the simplest model. Consider x is
a vector of model parameters x = (x1, x2, x3, x4, x5) equivalent to (Rs, Rsh, Iph, Is,
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SDM equivalent circuit is shown in Figure 1 and represented by Equations (1) and (2).
The DDM is developed to represent the effect of recombination in the PV cell, and this is
achieved by adding a second diode to the SDM circuit as shown in Figure 2. The DDM has
seven parameters x = (x1, x2, x3, x4, x5, x6, x7) equivalent to (Rs, Rsh, Iph, Is1, Is2,
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2.2. Dynamic PV Model

The integral and fractional dynamic PV models are two popular dynamic models, and
are selected to be discussed here.

The integral dynamic model (IOM) is a second order model consists of constant voltage
source Voc and series resistance RS to represent the static model as shown in Figure 3. The
dynamic part is represented by capacitor C for junction capacitance and resistance Rc for
conductance. The connected cables inductance is represented by the coil inductance. The
load is represented by RL.The total number of unknown parameters are three parameters
(Rc, C and L), the IOM is represented by Equations (7) and (8).
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The fractional order model (FOM) is developed to represent fractional capacitor in case
of low values of Rc due real frequency dependence on fractional capacitance impedance,
as shown in Figure 4. The fractional order of capacitance and inductance are represented
by α and β, respectively. The total number of FOM is five parameters (Rc, C, L, α and β),
the IOM is represented by Equations (9) and (10).

iL(s) =
Voc

s
a11(sα + b1) + b2(sα − a11)(
sβ − a22

)
(sα − a11)− a12a21

(9)

(
a11 a12
a21 a22

)
=

 −1
Cα(Rc+Rs)

−RS
Cα(Rc+Rs)

RS
Lβ(Rc+Rs)

−[RLRc+RsRc+RLRs ]
Lβ(Rc+Rs)

 ,

(
b1
b2

)
=

 1
Cα(Rc+Rs)

Rc
Lβ(Rc+Rs)

 (10)
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3. Optimization Methodology

This section describes the basic variant of the gradient-based optimizer (GBO). After,
the process of the proposed EGCGBO algorithm is presented.

3.1. Original Gradient-Based Optimizer (GBO) Algorithm

The GBO algorithm is a proposed metaheuristic optimization algorithm, which is
presented in reference [30]. This algorithm uses the Newton’s gradient-based method to
explore the whole search space. This algorithm uses two main machinists, namely gradient
search rule (GSR) and local escaping operator (LEO) to achieve the best solution.
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3.1.1. GBO Initialization

Like many algorithms, the GBO comprises N vector (members of populations) in the
D-dimensional search space. The initial population is randomly generated by the following
equation [40]:

Xn = Xmin + rand(0, 1)× (Xmax − Xmin) (11)

where Xn refers to the nth vector, Xmin, Xmax are the limits of the solution space in each
problem and rand(0, 1) denotes a random number defined in the range of [0, 1].

3.1.2. Gradient Search Rule (GSR)

In the GBO algorithm, GSR is based on the gradient-based method where the aim of
using the GSR is exploration tendency improvement and increasing the convergence rate.
Therefore, the new position Xn+1 is defined as:

Xn+1 = Xn −
2∆x× f (Xn)

f (Xn + ∆x)− f (Xn − ∆x)
(12)

The Equation (12) will be adjusted to include the population-based search theory,
which is presented by Equation (13).

GSR = randn× 2∆x Xn

(xworst − xbest + ε)
(13)

where randn is a random number with a normal distribution, xworst, xbest denote the worst
and best solutions obtained during the process of optimization, ε denotes a small number
within the interval [0, 0.1], and ∆x refers to the change in position at each iteration. From
the previous equations, the GSR can be defined as:

GSR = randn× ρ1 ×
2∆x Xn

(xworst − xbest + ε)
(14)

where ρ1 denotes the randomly generated parameter and it calculated from the following
equation:

ρ1 = (2× rand× α)− α (15)

α =

∣∣∣∣β sin
(

3π

2
+ sin

(
β

3π

2

))∣∣∣∣ (16)

β = βmin + (βmin − βmin)

(
1−

( m
M

)3
)2

(17)

where α represents a sine function for the transference from exploration to exploitation,
βmin and βmax are constant values 0.2 and 1.2, respectively, m is the current number of
iterations, and M represents the total number of iterations. The change ∆x between the
best solution xbest and a randomly chosen position xm

r1 is given by:

∆x = rand(1 : N)× |step| (18)

step =

(
xbest − xm

r1
)
+ δ

2
(19)

δ = 2× rand×
(∣∣∣∣ xm

r1 + xm
r2 + xm

r3 + xm
r4

4

∣∣∣∣− xm
n

)
(20)

where rand(1 : N) denotes a random vector with N dimensions, r1, r2, r3, and r4
(r1 6= r2 6= r3 6= r4 6= n) are different integers randomly chosen from [1, N], step de-
notes a step size. The new position Xn+1 represents an updated version based on the GSR
as follows:

Xn+1 = Xn − GSR (21)
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The direction of movement (DM) is added for better exploitation of the nearby area of
Xn which can be calculated as:

DM = rand× ρ2 × (xbest − xn) (22)

ρ2 = (2× rand× α)− α (23)

Therefore, the new position X1m
n is calculated from the following equation after taking

the GSR and DM into consideration:

X1m
n = xm

n −GSR + DM (24)

X1m
n = xm

n − randn× ρ1 ×
2∆x× xm

n
(xworst − xbest + ε)

+ rand× ρ2 × (xbest − xm
n ) (25)

The GBO used another position to increase the local search by putting the best-so-far
solution (xbest) rather than the position xm

n . The new position (X2m
n ) is calculated as follows:

X2m
n = xbest − randn× ρ1 ×

2∆x× xm
n

(ypm
n − yqm

n + ε)
+ rand× ρ2 × (xm

r1 − xm
r2) (26)

where

ypn = rand× (
[zn+1 + xn]

2
+ rand× ∆x) (27)

yqn = rand× (
[zn+1 + xn]

2
− rand× ∆x) (28)

According to the positions X1m
n , X2m

n , and the current position (Xm
n ), the new position

at the next iteration (xm+1
n ) is defined as:

xm+1
n = ra × (rb × X1m

n + (1− rb)× X2m
n ) + (1− ra)× X3m

n (29)

X3m
n = Xm

n − ρ1 × (X2m
n − X1m

n ) (30)

3.1.3. Local Escaping Operator (LEO)

The LEO is applied to enhance the performance of the GBO algorithm and to escape
the local solutions for solving the complicated problems. The LEO generates an appropriate
solution (Xm

LEO) by using several solutions, which include xbest, the solutions X1m
n , and

X2m
n , two random solutions xm

r1 and xm
r2, and a new randomly generated solution (xm

k ). The
solution Xm

LEO is formulated as:

i f rand < pr
i f rand < 0.5

Xm
LEO = Xm+1

n + f1 ×
(
u1 × xbest − u2 × xm

k
)
+ f2 × ρ1 × (u3 × (X2m

n − X1m
n )

+u2 ×
(

xm
r1 − xm

r2
)
)/2

Xm+1
n = Xm

LEO
Else

Xm
LEO = xbest + f1 ×

(
u1 × xbest − u2 × xm

k
)
+ f2 × ρ1 × (u3 × (X2m

n − X1m
n )

+u2 ×
(
xm

r1 − xm
r2
)
)/2

Xm+1
n = Xm

LEO
End
End

(31)

where f1 denotes a uniform distributed random number in the range of [−1, 1], f2 is a
random number from a normal distribution with a mean of 0 and a standard deviation of
1, pr is the probability, and u1, u2, and u3 are random values generated as follows:

u1 =

{
2× rand i f µ1 < 0.5
1 otherwise

(32)
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u2 =

{
rand i f µ1 < 0.5
1 otherwise

(33)

u3 =

{
rand i f µ1 < 0.5
1 otherwise

(34)

where rand represents a random number in the range of [0, 1], and µ1 refers to a number in
the range of [0, 1]. The above equations are simply explained as follows:

u1 = L1 × 2× rand + (1− L1) (35)

u2 = L1 × rand + (1− L1) (36)

u3 = L1 × rand + (1− L1) (37)

where L1 denotes a binary parameter with a value of 0 or 1. If parameter µ1 < 0.5, the value
of L1 = 1, otherwise, L1 = 0. The solution xm

k is generated as follows:

xm
k =

{
xrand i f µ2 < 0.5
xm

p otherwise (38)

xrand = Xmin + rand(0, 1)×(Xmax − Xmin) (39)

where xrand is a random generated solution, xm
p is a randomly chosen solution of the

population (p ∈ [1, 2, . . . , N]), and µ2 represents a random number in the range of [0, 1].
Equation (38) is simplified as:

xm
k = L2 × xm

p + (1− L2)× xrand (40)

where L2 denotes a binary parameter with a value of 0 or 1. If µ2 < 0.5, the value of L2 = 1,
otherwise, L2 = 0.

3.2. Eagle Strategy and Chaotic with Gradient-Based Optimizer (ESCGBO) Algorithm
3.2.1. Eagle Strategy

The eagle strategy is proposed for solving real-world optimization problems that
is developed by Yang et al. [35]. It is inspired by the foraging behavior of eagles that
fly randomly in analogy to the Levy flights. It is the two-stage method: global search
randomization stage and an intensive local search [31]. The first stage aims mainly to
investigate the search space globally and rapidly obtain a promising solution, while the
target of the second stage is to obtain the optimal solution through making an intensive
local search based on the achieved solution in the first stage. The benefit of this strategy
is that there is no limit to the kinds of techniques or algorithms used in each stage. Any
technique that is able to achieve better results in a flexible way could be used in any
stage [31].

During the iteration of the proposed technique, the new candidate solution is gener-
ated by Levy flight as follows:

Xn+1 = Xn − γ(Xn − Xbest)
⊕

Levy(λ) = Xn +
0.01u

|v|1/λ
(Xn − Xbest) (41)

where γ is the step scaling size, the
⊕

refers to the process of element-wise multiplications,
λ is the Levy flight exponent, while u and v can be expressed as:

u ∼ N
(

0, σ2
u

)
, v ∼ N

(
0, σ2

v

)
(42)
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The standard deviations σu and σv are explained as:

σu =

 sin
(

λπ
2

)
· Γ(1 + λ)

2(λ−1)λ · Γ
(

1+λ
2

)
1/λ

, σv = 1 (43)

where Γ is the Gamma function.

3.2.2. Chaotic Maps

Chaotic systems are deterministic systems that present unpredictable conduct, whose
action is complex and similar to that of randomness [41]. In [41], chaos-based exploration
rate to enhance the performance of three well-known optimization algorithms was pro-
posed. Based on this proposal, the real random number (v) in Equation (41) was replaced
by a chaotic number in the eagle strategy. This modification makes the value of v linearly
decreased from 2 to 0 throughout the course of iterations. The steps of the proposed
ESCGBO are presented in the flowchart illustrated in Figure 5.
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4. Results
4.1. Performance of the Proposed ESCGBO Algorithm

In this subsection, the effective and performance of the proposed ESCGBO technique
were evaluated on several benchmark functions, including statistical measurements, such
as best values, mean values, worst values, and standard deviation (STD) for the solutions
obtained by the ESCGBO technique, the original GBO algorithm as well as the two recent
optimization algorithms, including the equilibrium optimizer (EO) algorithm [42] and
wild horse optimizer (WHO) algorithm [43]. The results obtained with the proposed
ESCGBO algorithm were compared with these well-known optimization algorithms. All
mentioned techniques were executed for the maximum number of the iterations’ function
of 500 and population size of 50 for 20 independent runs using Matlab R2016a’working on
Windows 8.1, 64bit. All computations were performed on a Core i5-4210U CPU@ 2.40 GHz
of speed, and 8 GB of RAM. Figure 6 shows the qualitative metrics on F1, F3, F4, F5, F8, F12,
F15, and F18, including 2D views of the functions, search history, average fitness history,
and convergence characteristics curve using the proposed ESCGBO algorithm.
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Tables 1–3 present the statistical results of the proposed ESCGBO algorithm and
other recent techniques when applied for unimodal benchmark functions, multimodal
benchmark functions, and composite benchmark functions, respectively. The best values
were obtained with the proposed ESCGBO, GBO, WHO, and EO algorithms shown in
bold. It is clearly seen that the proposed ESCGBO technique achieves the optimal solution
for most of the benchmark functions. The convergence curves of these algorithms for
the unimodal benchmark functions are shown in Figure 7 and the boxplots for each
algorithm for this type of function are presented in Figure 8. Additionally, Figure 9 displays
convergence curves of all algorithms for the multimodal benchmark functions, named F8 to
F13 and Figure 10 shows the boxplots for each algorithm for these functions. Furthermore,
the convergence curves of these algorithms for the composite benchmark functions are
presented in Figure 11 while Figure 12 illustrates the boxplots for each algorithm for this
type of benchmark function. From those figures, it is obvious that the proposed algorithm
reached a stable point for all functions and the boxplots of the proposed algorithm are
narrow for most functions compared to the other algorithms. Table 4 shows the values of
the average CPU time of different algorithms on the 23 benchmark functions.

Table 1. The statistical results of unimodal benchmark functions using the proposed technique and other well-
known algorithms.

Function ESCGBO GBO WHO EO

F1

Best 2.20 × 10−136 1.44 × 10−136 2.83 × 10−57 3.89 × 10−51

Worst 1.14 × 10−129 6.32 × 10−128 3.53 × 10−47 6.09 × 10−47

Mean 1.33 × 10−130 7.41 × 10−129 1.78 × 10−48 4.11 × 10−48

std 3.38 × 10−130 1.86 × 10−128 7.90 × 10−48 1.36 × 10−47

F2

Best 2.31 × 10−71 2.89 × 10−70 8.31 × 10−33 5.47 × 10−29

Worst 2.33 × 10−65 1.84 × 10−66 9.82 × 10−29 1.3 × 10−27

Mean 1.39 × 10−66 2.39 × 10−67 1.39 × 10−29 3.65 × 10−28

std 5.2 × 10−66 4.92 × 10−67 2.48 × 10−29 3.47 × 10−28

F3

Best 8.7 × 10−116 1.6 × 10−115 6.42 × 10−36 5.41 × 10−17

Worst 6.7 × 10−104 3.9 × 10−101 6.83 × 10−28 1.39 × 10−11

Mean 3.4 × 10−105 1.9 × 10−102 5.22 × 10−29 2.34 × 10−12

std 1.5 × 10−104 8.7 × 10−102 1.66 × 10−28 4.08 × 10−12

F4

Best 1.58 × 10−64 8.91 × 10−64 5.07 × 10−22 4 × 10−14

Worst 3.03 × 10−58 1.63 × 10−59 3.71 × 10−19 6.87 × 10−12

Mean 1.72 × 10−59 1.6 × 10−60 4.56 × 10−20 1.2 × 10−12

std 6.75 × 10−59 3.65 × 10−60 9.74 × 10−20 1.77 × 10−12

F5

Best 19.99698 18.52388 23.60955 24.44135
Worst 25.02491 24.02389 86.19444 25.0421
Mean 21.68888 21.22658 34.30228 24.81639

std 1.324568 1.169705 20.97713 0.201379

F6

Best 1.14 × 10−9 5.23 × 10−9 3.67 × 10−8 1.39 × 10−8

Worst 1.61 × 10−7 1.07 × 10−6 2.02 × 10−5 3.8 × 10−7

Mean 3.35 × 10−8 7.89 × 10−8 1.42 × 10−6 9.07 × 10−8

std 3.91 × 10−8 2.35 × 10−7 4.46 × 10−6 9.27 × 10−8

F7

Best 0.000176 0.000111 4.5 × 10−5 9.73 × 10−5

Worst 0.001732 0.001663 0.00184 0.001432
Mean 0.000578 0.000528 0.000857 0.00068

std 0.000427 0.000392 0.000514 0.000358

The best values obtained are in bold.
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Table 2. The statistical results of multimodal benchmark functions using the proposed technique and other well-
known algorithms.

Function ESCGBO GBO WHO EO

F8

Best −1881.33 −1909.05 −1789.02 −1798.26
Worst −1668.99 −1659.76 −1600.49 −1715.16
Mean −1733.03 −1771.42 −1705.23 −1751.04

Std 54.18392 83.01581 49.62292 21.99425

F9

Best 0.00 0.00 0.00 0.00
Worst 0.00 0.00 0.00 0.00
Mean 0.00 0.00 0.00 0.00

Std 0.00 0.00 0.00 0.00

F10

Best 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 20
Worst 8.88 × 10−16 8.88 × 10−16 20.00111 20
Mean 8.88 × 10−16 8.88 × 10−16 1.005259 20

Std 0.00 0.00 4.471221 1.23 × 10−10

F11

Best 0.00 0.00 0.00 0.00
Worst 0.00 0.00 0.00 0.00
Mean 0.00 0.00 0.00 0.00

Std 0.00 0.00 0.00 0.00

F12

Best 9.51 × 10−12 1.45 × 10−10 1.18 × 10−11 1.42 × 10−10

Worst 1.62 × 10−7 0.103669 0.103669 1.98 × 10−7

Mean 9.05 × 10−9 0.005183 0.01555 1.25 × 10−8

Std 3.61 × 10−8 0.023181 0.037979 4.37 × 10−8

F13

Best 9.97 × 10−9 2.29 × 10−8 7.36 × 10−8 1.63 × 10−8

Worst 0.054779 0.054779 0.397801 0.108359
Mean 0.01043 0.016351 0.035814 0.018527

Std 0.014444 0.019872 0.093881 0.037211

The best values obtained are in bold.

Table 3. The statistical Results of composite benchmark functions using the proposed technique and other well-
known algorithms.

Function ESCGBO GBO WHO EO

F14

Best 0.998004 0.998004 0.998004 0.998004
Worst 0.998004 0.998004 3.96825 0.998004
Mean 0.998004 0.998004 1.543534 0.998004

Std 0.00 0.00 0.936299 1.76 × 10−16

F15

Best 0.000307 0.000307 0.000307 0.000307
Worst 0.001594 0.001223 0.020363 0.020363
Mean 0.000528 0.000445 0.001676 0.002359

Std 0.00046 0.000335 0.004424 0.006161

F16

Best −1.03163 −1.03163 −1.03163 −1.03163
Worst −1.03163 −1.03163 −1.03163 −1.03163
Mean −1.03163 −1.03163 −1.03163 −1.03163

Std 2.28 × 10−16 2.28 × 10−16 1.35 × 10−16 2.1 × 10−16

F17

Best 0.397887 0.397887 0.397887 0.397887
Worst 0.397887 0.397887 0.397887 0.397887
Mean 0.397887 0.397887 0.397887 0.397887

Std 0.00 0.00 0.00 0.00

F18

Best 3.00 3.00 3.00 3.00
Worst 3.00 3.00 3.00 3.00
Mean 3.00 3.00 3.00 3.00

Std 8.7 × 10−16 4.2 × 10−16 5.85 × 10−16 6.76 × 10−16

F19

Best −0.30048 −0.30048 −0.30048 −0.30048
Worst −0.30048 −0.30048 −0.30048 −0.30048
Mean −0.30048 −0.30048 −0.30048 −0.30048

Std 1.14 × 10−16 1.14 × 10−16 1.14 × 10−16 1.14 × 10−16
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Table 3. Cont.

Function ESCGBO GBO WHO EO

F20

Best −3.322 −3.322 −3.322 −3.322
Worst −3.2031 −3.2031 −3.08668 −1.84092
Mean −3.28633 −3.28633 −3.31023 −3.12852

Std 0.055899 0.055899 0.052619 0.370083

F21

Best −10.1532 −10.1532 −10.1532 −10.1532
Worst −5.0552 −5.0552 −2.68286 −5.0552
Mean −8.8787 −8.3689 −9.52706 −8.88098

Std 2.264846 2.494761 1.966723 2.260817

F22

Best −10.4029 −10.4029 −10.4029 −10.4029
Worst −2.7659 −5.08767 −2.75193 −2.7659
Mean −7.82681 −8.5426 −8.96998 −9.75532

Std 2.973254 2.601082 2.948831 2.02859

F23

Best −10.5364 −10.5364 −10.5364 −10.5364
Worst −5.12848 −2.80663 −2.87114 −2.42173
Mean −9.18443 −8.25715 −9.148 −10.1307

Std 2.402536 2.907055 2.855393 1.814497

The best values obtained are in bold.
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Table 4. CPU time (s) of four algorithms on 23 benchmark functions.

ESCGBO GBO WHO EO

F1 2.24173 2.045234 1.666734 0.340013
F2 1.831693 1.549915 1.43607 0.3331
F3 2.615374 1.913063 1.671268 0.365052
F4 1.945816 1.773811 2.09404 0.35823
F5 2.032641 2.028365 1.704013 0.414698
F6 1.88023 1.661728 1.679613 0.326943
F7 2.077834 1.637886 1.454167 0.371617
F8 1.795602 1.540629 1.430021 0.341869
F9 1.842514 1.602524 1.657841 0.3381
F10 1.761122 1.503307 1.394121 0.35016
F11 1.780045 1.608481 1.64313 0.416369
F12 1.746382 1.505388 1.366705 0.33033
F13 1.99615 1.835235 1.43058 0.352283
F14 2.417839 1.952414 1.608765 0.561999
F15 1.985862 1.682823 2.037507 0.96656
F16 1.754978 2.052051 1.407174 0.342419
F17 1.72506 1.415434 1.564904 0.375495
F18 2.746123 1.617294 2.4928 0.506535
F19 1.891536 2.200207 1.470604 0.363025
F20 1.792942 1.509464 1.532523 0.360518
F21 2.009832 2.13849 1.56471 0.332705
F22 2.330221 2.10297 2.356706 0.375617
F23 2.127842 2.027598 1.530525 0.360371

4.2. Real-World Application

This results section is concerned with testing the proposed algorithm behavior from
different sides and through different scenarios. Scenario 1 presents the results of the
parameters estimation process for static SDM and DDM. Scenario 2 presents the results of
the parameters estimation process for dynamic IOM and FOM.

4.2.1. Scenario 1

This scenario proposes the results and the analysis of the SDM and DDM parameters
estimation process for has 57 mm diameter commercial silicon R.T.C France solar cell. The
data captured from the cell at irradiance of 1000 W/m2 and at temperature 33 ◦C [29]. The
estimation process was carried out by ESCGBO and compared with the original algorithm
GBO and some recent algorithms. The compared algorithms were artificial ecosystem-
based optimization (AEO) [37] and jellyfish search optimizer (JS) [44]. The upper and lower
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constrains for all estimated parameters are presented in Table 5. The control parameters
for all the compared algorithms have been presented in Table 6. The estimated parameters
by ESCGBO and other algorithms of SDM and DDM are presented in Tables 7 and 8,
respectively. The upper and lower limit used in the optimization are listed in Table 1.
The best results of the compared algorithms were determined by the best RMSE values of
the compared algorithms Equation (44). The obtained RMSE for parameters estimation
of the SDM and DDM by all algorithms are listed in Tables 7 and 8 respectively. For
SDM the compared algorithms have the same RMSE except JS algorithm. For DDM, the
ESCGBO had the best RMSE followed by the AEO algorithm. The convergence curve of all
algorithms for SDM are displayed in Figure 13. The convergence curve of all algorithms for
DDM are displayed in Figure 14. The best convergence behavior was achieved by ESCGBO
for DDM, as can be seen in Figure 14. The robustness of the proposed and the compared
algorithms are analyzed using statistical analysis. The statistical analysis of 30 independent
runs of all algorithms for SDM and DDM are presented in Tables 9 and 10, respectively,
and graphically analyzed using boxplot figures in Figure 15. The best standard deviation
(STDEV) is achieved by ESCGBO that refer to its stability and robustness. To check the
behavior of the estimated models PV current—voltage characteristics and power—voltage
characteristics are presented for SDM and DDM in Figures 16 and 17, respectively. Further
details on current absolute error (Equation (45)) and power absolute error (Equation (46))
for SDM and DDM are presented in Figures 18 and 19 respectively.

RMSE =

√√√√ 1
N

N

∑
K=1

f 2(Vtm, Itm, X) (44)

Current Absolut error = 2
√
(I − Iestimated)

2 (45)

Power Absolut error = 2
√
(P− Pestimated)

2 (46)

Table 5. Upper and lower constrains for all estimated parameters.

Parameter Solar Cell

Lower Limit Upper Limit

Rs 0 5
Rsh 0 100
Iph 0 2
Is1 0 1
Is2 0 1
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Table 6. Parameters setting for all compared algorithms.

Algorithm Control Prameters

ESCGBO nP = 50 pr = 0.5 CM = 4

GBO nP = 50 pr = 0.5 CM = 4

AEO PopSize = 50 r1 = rand

JS Npop = 50

WHO N = 50 PS = 0.2 PC = 0.13

EO Particles_no = 50 a1 = 2, a2 = 1 GP = 0.5
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Table 7. Estimated parameters and RMSE of ESCGBO and other algorithms for SDM model.

ESCGBO GBO AEO JS

Rs (Ω) 0.036377 0.036377 0.036377091 0.035989122

Rsh (Ω) 53.71853 53.71852 53.71853164 57.40304457

Iph (A) 0.760776 0.760776 0.76077553 0.760889273

Is (A) 3.23 × 10−7 3.23 × 10−7 3.23 × 10−7 3.61 × 10−7
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Table 9. The statistical results of SDM for all other algorithms.

Minimum Average Maximum STD

ESCGBO 0.000986022 0.000986026 0.000986032 5.507 × 10−9

GBO 0.000986022 0.000989455 0.000996022 5.688 × 10−6

AEO 0.000986022 0.000989555 0.000996022 5.608 × 10−6

JS 0.001025784 0.001525784 0.002025784 0.0005
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Figure 19. Power and current absolute error for DDM estimated by all algorithms.

4.2.2. Scenario 2

This scenario is concerned with the application of ESCGBO for parameters estimation
of dynamic PV models (IOM and FOM). The applied dataset were captured from PV
module at a temperature of 25 ◦C and irradiance level of 655 W/m2 through connected
load of Rl = 23.1. The ranges for all the estimated parameters are presented in Table 11. The
obtained results are also compared with other recent algorithms. The three estimated pa-
rameters for IOM (Rc, C and L) and RMSE obtained by all algorithms are listed in Table 12.
The five estimated parameters for FOM (Rc, C, L, α and β) and RMSE obtained by all
algorithms are listed in Table 13. The best RMSE was achieved by ESCGBO in case of
IOM and FOM. The convergence curves of all the compared algorithms are presented
for IOM and FOM in Figures 20 and 21, respectively. The load current curve for the real
experimental data and all algorithms for IOM and FOM are presented in Figures 22 and 23,
respectively. The current absolute error curve of all algorithms for IOM and FOM are
presented in Figures 24 and 25 respectively. In the previous figures comparison, the results
obtained by the ESCGBO are better than other algorithms and the results obtained for FOM
are more accurate than IOM.

Table 11. Upper and lower constrains for all estimated parameters.

Parameter Solar Cell

Lower Limit Upper Limit

Rc 0 20
C 2 × 10−8 6 × 10−5

L 5 × 10−6 100 × 10−6

α 0.8 1.1
β 0.8 1.1

Table 12. Estimated parameters of IOM model for all algorithms.

ESCGBO GBO AEO JS

Rc 5.583588 5.624748753 5.624748647 5.6247490

C 8.30 × 10−6 8.16 × 10−6 8.16 × 10−6 8.15726 × 10−6

L 7.43 × 10−6 7.47 × 10−6 7.47 × 10−6 7.47323 × 10−6

RMSE 0.008259444 0.008493067 0.008493067 0.008493067262
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Table 13. Estimated parameters of FOM model for all algorithms.

ESCGBO GBO AEO JS

Rc 4.617127916 5.005984283 4.550201539 4.698924713

C 5.81 × 10−5 5.04 × 10−6 1.46 × 10−5 4.08 × 10−5

L 1.50 × 10−5 1.35 × 10−5 1.73 × 10−5 1.44 × 10−5

A 0.8 1.026120535 0.917230623 0.833404373

β 0.950840763 0.957165925 0.940654537 0.953192785

RMSE 0.007951289 0.008236017 0.00819598 0.007995872
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5. Conclusions

This work proposed a new modified metaheuristic optimization algorithm named
ESCGBO. It is considered an enhancement for the original GBO to enhance the balance
between exploration and exploitation and completely enhance the algorithm performance.
First, the proposed ESCGBO’s performance was tested on the 23 benchmark functions. The
proposed technique achieved better than three well-known optimization techniques, such
as EO and WHO as well as the original GBO. Then, the new algorithm was applied to
estimate the parameters of static SDM and DDM models through application 1, which used
the real data of 57 mm diameter commercial silicon R.T.C France solar cell, and dynamic
IOM and FOM models through application two„ using the dataset, were captured from the
PV module at temperature 25 ◦C at an irradiance level of 655 W/m2 through connected
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load of Rl = 23.1. The obtained results were analyzed in different ways to evaluate the
performance of the proposed algorithm. The accuracy of the algorithm was tested through
calculation of the RMSE and IAE, then by comparing it for all algorithms. The robustness
was also checked by running the algorithms with 30 independent runs and analyzing the
results through statistical analysis. From all the analysis, the proposed ESCGBO is more
accurate and robust when compared with other recent algorithms. The static DDM is more
accurate than SDM and dynamic IOM is more accurate than FOM. For future work, this
study contributes to research that focuses on studying the applicability of ESCGBO PV
parameters’ estimation for the large and complex PV system.
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Nomenclature

Symbol Description
SDM Single Diode Model
PV Photo Voltaic
V Terminal voltage
Iph Current source generated from photons
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1 Ideality factor for the first diode (Diffusion current components)
Rs Series resistance to represent the total semiconductor material at neutral regions resistance.
Is1 Current passing through the first diode
K constant of = 1.380 × 10−23(J/Ko)
DDM Double Diode Model
I PV module output current
RMSE Root Mean Square Error
T (Ko) Photo cell temperature (Kelvin)
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