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Abstract: Many modern vehicles today are equipped with an on-board e-call system that can send
information about the number of passengers in the event of an accident. However, in case of fire
or other major danger in a road tunnel, it is very important for rescue services to know not only
the number of passengers in a given vehicle that has an accident and called help via e-call but how
many people are in the tunnel in total. This paper deals with the issue of passenger detection and
counting using the TPH3008-S Thermal camera and the VIVOTEK IP7361 IP Cameras noninvasively,
i.e., the cameras are placed outside the vehicle. These cameras have their limitations; therefore, we
investigated how to improve conditions and how to make detection better for future work. The
main goal of this article is to summarize the achieved results and possibilities of improvement of
the proposed system by adding other sensors and systems that would improve the final score of
passenger detection. The experimental results demonstrate that our approach has to be modified
and we have to add additional sensors or change methods to achieve more promising results. The
results, findings and conclusions might be later used in tunnels and highways and also be applied
in telematics and lead to better, safer road transport and improvement of existing tunnel systems
sustainability by utilizing resources in a smarter way.

Keywords: traffic safety; safe passenger detection; digital image processing; computer vision; tunnel;
data analysis; vehicle occupation; camera systems; transportation sustainability

1. Introduction

Counting passengers in cars, trucks and buses all the time is a difficult and very
important task in terms of passenger safety and monitoring the migration and traffic
density. Passenger counting has multiple applications starting with high-occupancy vehicle
lanes, faster and more precise intervention of rescue services, better understanding of traffic
load or predictive maintenance based on abrasion [1].

The general question in road tunnel safety is how many people are in there during
major events such as floods, fire, explosion of hazardous materials and other incidents [2,3].
E-call service is not suitable or meant to be used to actively count passengers; thus, this is
where existing tunnel systems or newly installed systems or devices come into play.

Main issues with counting passengers are rapidly moving vehicles are drastic changes
in the lightning and visibility conditions (heavy rain, fog, smog, smoke, sunny and bright
day) when external cameras are used. Another approach might be counting passengers
with cameras installed inside the vehicle; however, this introduces privacy concerns, as
well as an e-call system with its microphones installed inside the vehicle. Because of these
privacy issues, we chose a noninvasive path and decided to use external cameras instead. It
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is also difficult to tell apart face masks and dummies for the camera; thus, we proposed the
use of the thermal camera TPH3008-S. By using a thermal camera, we do not compromise
passenger privacy very much. In addition to this, we also proposed the use of two IP
cameras VIVOTEK IP7361.

Our methods consist of two stages. First, we propose passenger detection using the
classical method with the use of the Viola–Jones algorithm invented in 2001 used in the
Haar cascades, which are still used in many devices today. This method of detection in
combination with thermal images has very serious drawbacks, for which it cannot be
used either in road tunnels or on motorways. The main disadvantage is the fact that this
thermal imager TPH3008-S cannot capture the energy of the passengers inside vehicle and
thus the accuracy of detection with the vehicle windows closed is zero. The algorithm as
such is excellent for real-time image data processing with relatively good accuracy. With
this drawback, we decided to capture images with car windows opened. In our previous
research, we wanted to verify the success of thermal camera detection and evaluation. In
practice, such an approach with open windows is impossible, but the system designed in
this way is planned to expand with a hyperspectral camera, and this approach serves as a
basis for future work.

After detecting passengers with the help of a thermal camera, we try to detect passen-
gers using industrial IP cameras. We had 2 pieces of VIVOTEK IP7361 IP cameras available
for laboratory experiments. We tried to simulate the conditions in the road tunnels and
when the vehicle is stopped on a ramp. For passenger detection, we used an existing
pretrained neural network based on the YOLO version 3 algorithm, and we also trained
the model on our own image data.

Later, we investigate limitations of passenger detection. Environmental and weather
conditions such as sun, snow, fog, heavy rain, smog, gloss of materials and other physical
properties that make the alternative detection of passengers play an important role. It
seems appropriate to count the smartphones or other devices that each passenger has with
them to achieve at least a 90% success rate. It is assumed that the success rate of passenger
detection is around 50% with the use of cameras we have. In this work, we try to achieve a
better result.

The next sections of this paper are organized as follows: Section 1.1 presents a literature
review of similar work. In Section 2, we give detailed information about our experiments.
In Section 3, we explain details and results of our models based on Haar cascade and deep
neural network. Section 4 presents the limitations of noninvasive passenger detection. In
Section 5, we propose alternative methods for passenger detection, and the last chapters
are discussion and the conclusions.

1.1. Literature Overview

Paper [4] proposes a tiny convolutional model to count onboard passengers with the
use of in-vehicle thermal imager. They created a data set with the total 1284 images with
the number of passengers in limits between 0 and 5. Then, they augmented the data set
with the use of rescale and rotation, and in the end, they achieved 25,680 images and used
for training and testing neural models. In the end, the results of this invasive approach
(camera was placed inside the vehicle) are comparable to the state of the art. Article [5]
compares and analyzes the performance of existing deep learning models and proposes
vehicle occupancy detection algorithm.

Reference [6] provides the background for detecting and counting passengers using
on-car monocular vision. This system is based on the human perception model in terms of
spatio-temporal reasoning, which means the slight movements of passenger silhouettes.
They proposed an efficient pipeline method to leverage a convolutional neural network on
inferring the number and position of passengers.

Project [7] explains about detecting passengers and classifying each person as a child or
adult based on an image from a camera placed inside car. The main, widely used technique
of detection is the Haar Cascades for detection. The concept is based on Raspberry Pi with
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a night-vision camera with adjustable focusing. The main goal of this project is to prevent
airbag deployment in a car near children, because it can kill children below 12 years due
to the rapid action and a lot of force. Paper [8] presents a new optimization problem for
decision support in occupation detection in cars, especially when the front seat is occupied
with a child in order to disarm airbags.

Experiment [9] proposes a cost-effective system of detecting people based on Arduino
platform and AMG8833 IR sensor with fast detection in 8× 8 matrix. With some limitations,
it is possible to differentiate seated and nonseated positions in the car. It was found that the
sensor can detect front-position people and back-seated people blend into the ambience.
However, with more sensor nodes and thoughtful placement, it is a possible and low-cost
solution.

Review [10] presents the possibilities of autonomous passenger detection for system
e-call. There are many solutions for passenger detection from the inside of the vehicle—
starting from seat-belt-based solutions, IR-based optical methods, TOF (time of flight)
cameras, gas sensors or OWS (occupant weight sensors). Reference [11] proposes an
antenna sensor on the basis of electromagnetic coupling between a transmitter and a
receiver patch antenna placed under the passenger.

The results of [12] show that the detection and localization of passengers based on
finding heads is achievable using a stereo camera. This paper also focuses on airbag safety
such as [7] and provides necessary information whether and how an airbag should be
deployed in the case of an accident. By using monocular color camera, researchers in [13]
achieved excellent performance for passenger head detection.

Bus passenger detection is also very difficult task especially during rush hours. In
paper [14], the authors propose an optimized tiny YOLO network model, which can
be applied in embedded systems and mobile terminals. This model can achieve good
detection results and is robust enough to be applied to embedded devices. Paper [15]
proposes a vision-based system to track and count passengers. The main disadvantage
is changing dimensions of the passenger body size when moving toward or away from
the top-mounted camera. Older papers [16] propose an algorithm for detecting the car
first and then the windshield, and finally, the segments for the passengers and study [17]
provide the necessary foundations about HOV lane violations. Reference [18] specifies
the problems and solutions for the imaging aspect of automatic passenger detection. The
authors in [19] are also interested in passenger detection in public places.

High-occupancy vehicle lanes (HOV) are lanes reserved for vehicles with multiple
passengers and are designed to encourage people to travel together. Reference [20] proposes
a system based on analysis of visual images and combines the results of different types
of classifiers to achieve robust and real-time detection. Paper [21] presents an AI-based
vehicle passenger detection system to enforce HOV/HOT lane movement. The system
automates and improves the identification of HOV violators and assigns faces and tolls to
users. Paper [22] presents a machine learning approach for semiautomatic or automatic
front-seat vehicle occupancy detection with great accuracy. Reference [23] uses the Fisher
vector image representation to achieve occupancy detection. It is clear that the Fisher-
vector-based image classification approach outperforms the state-of-the-art model and
yields accuracy rates above 95%.

The majority of the solutions mentioned above are based on the concept of detecting
passengers from the inside of the vehicle-like [24,25] but not from the outside and sending
this information wirelessly to the nearest superior receiver [26]. This is why we tried to
create two small data sets of images taken from the outside and decided to train models
to achieve similar results while being noninvasive. The new and modern approach also
uses IoT [27,28] to meet the user, society and industry requirements. Some of the proposed
methods in this section might be implemented into a mesh wireless sensor network and
also communicate with other cars.
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2. Materials and Methods

Proposed system is mainly designed to be used in road tunnels. Camera placement
must be chosen carefully to mitigate effects of weather and lightning. Appropriate place-
ment is inside tunnel about 30 m or more depending on tunnel shape and position behind
entrance to reduce or fully remove effects of bright light from sun, rain or fog. Same
goes for the exit; best place to attach cameras is still in the tunnel and not outside, where
lightning conditions change rapidly. Two IP cameras are used to reduce blind spots, see
Figure 1. Placement of thermal cameras is chosen for passenger cars; in case of trucks or
tall buses, it is required to place another cameras and sensors.

Figure 1. Proposed solution for placement of IP cameras and thermal cameras in two-lane tunnel.
Height of IP cameras is approximately 1580 mm and 2110 mm and cameras are facing cars at an
angle of 20° with respect to the walls of the tunnel; in case of thermal camera, proposed height is
1230 mm, and camera is facing perpendicular to the road.

For our future work, an experiment might be demonstrated with multiple cameras
in multiple heights to count for different types of vehicles—buses, trucks, minivans and
passenger cars, supercars and motorcyclists are also very important but unlikely to get
stuck in tunnel.

Acquired data sets are limited and not very accurate, as we originally planned. Because
of restrictions in people meeting, we could not man all passenger seats to achieve manifold
data set ranging from 0 to 5 passengers in cars. Our data set ranges from 0 to 3 passengers
in a car with different lighting conditions, passenger position, car high beams and more.
In future work, we have to collect more images to guarantee best data set possible with
higher variety of passengers.

2.1. Data Set for Haar Cascades

During our image capture session with TPH3008-S, we obtained 47 negative pictures,
61 positive pictures and 13 videos, where we extracted 1263 cropped passenger silhouettes
for out training based on Haar cascades with detailed description in [29]. In this case, we
decided to expand our data artificially. We apply random magnification, panning, rotation
and brightness change to our data to increase the volume of data. Here, 2–3 new images
were created from each original image. In total, we acquired 1263 positive images before
expanding (3367 after) and 1415 negative images before expanding (3188 after).

For training, we used parameters such as number of stages 20, number of threads 16,
minimum hit rate 0.995, and maximum false alarm rate 0.5. We trained this cascade on a
processor AMD Ryzen 7 3700X. It took over 5 h of training on all 8 cores (16 threads).
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As we can see from the Figure 2, the use of a thermal imager has one very fundamental
problem: it cannot “see” through the glass (windows are half down, and we can observe
only half of the head energy being properly detected). Scanning the occupants from the
side view of the vehicle with the windows open is the only usable approach using this
thermal imager. The front view is unusable, as the thermal imager cannot capture the
energy radiated by the passenger.

Figure 2. Comparison of images captured with thermal imager (b) and in visible spectrum (a). It is
obvious, that thermal imager TPH3008-S cannot capture energy of passengers through glass.

For training our Haar cascade, we used Cascade trainer GUI. It is an easy tool used
for training and testing cascade classifiers from images or videos. Later, we used created
cascade in OpenCV with Python in PyCharm environment to create program for testing
our model and later for detecting number of passengers. Sample images used for training
are shown in Figure 3.

(a) negative images (b) positive images

Figure 3. Sample positive (b) and negative (a) images used for training Haar cascade.

2.2. YOLOv3

The abbreviation YOLO is well known in the artificial intelligence community. It comes
from the English phrase “you only look once”. It is considered to be one of the fastest
algorithms for object detection. However, this is not accompanied by the highest accuracy,
but it is a good compromise for applications requiring real-time data processing [30].
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Theoretical Framework

Here, we mainly explain the theoretical framework of the occupancy detection in this
article using YOLOv3 convolutional network [31,32].

Abbreviation YOLO stands for “you only look once”. This is object detection algorithm
based on features learned by a deep convolutional network. YOLO is considered fully
convolutional network (FCN) with 75 convolutional layers with skip connections and
upsampling layers. Prediction is performed using a convolutional layer based on 1 × 1
convolutions; for detecting small objects, final convolution is 255 × 1 × 1 with batch size
52, 52, 255; for medium objects batch size is 26, 26, 255; and for big objects batch size is
13, 13, 255. Output is a feature map, and the size of prediction map is exactly the size of
feature map before. This prediction map is interpreted the way that each cell can predict a
fixed number of bounding boxes.

YOLO has (B ∗ (5 + C)) entries in the feature map, where B is number of bounding
boxes each cell can predict, C represents class confidences for each bounding box. Each
bounding box can have 5 + C attributes that describe dimensions (w, h), center coordinates
(x, y), objectness score p0 and confidence C.

2.3. Making Predictions

Network output can be presented with following formulas:

bx = σ(tx) + cx

by = σ(ty) + cy

bw = pw exp (tw)

bh = ph exp (th),

(1)

where bx, by, bw, bh are the x, y center coordinates, width and height of prediction; tx, tw, th
is network output; cx, cy are top-left coordinates of the grid; pw, ph are anchors dimensions
for the box; and σ represents sigmoid function.

2.4. YOLO Loss Function

The loss function indicates performance of the model. YOLO loss function is defined
as equation:
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where Ci is objectness-confidence score of whether there is object or not; pi(c) is classifi-
cation loss; wi, hi is width and height of anchor box; xi, yi is location of the center of the
anchor box; 1noobj

ij and 1obj
ij are masks for each cell that predicts an object in a cell it there is

or is not; λs are constants; λcoord represents the weight of the coordinate error; and λnoobj

represents scalar to weight loss in confidence in each bounding box. ∑S2

i=0 represents part,
where we compute losses for each of 13 × 13 cells and ∑B

j=0 represents part where we
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compute losses for each anchor box. Ĉi represents confidence score of the j th bounding
box in grid. In YOLOv3, there are used 3 boxes across 3 different scales.

2.5. Yolo Data Set

To train the model based on YOLOv3, we created a data set consisting of captured
images in different camera positions and the state of the environment. In the LabelImg tool,
we marked the people in the vehicle in about 600 pictures in total, and we split our data set
and saved about 100 images for testing.

Images were captured with variety of scenarios. With the use of interior lighting,
windows down and up, turned high beams on to simulate forced blinding of the cameras
and many others. Example of captured images are shown in Figures 4 and 5.

Figure 4. Sample images captured with IP cameras VIVOTEK in position opposite to each other.

For training our model, we decided to use Google Colab with Nvidia Tesla T4 graphics
card based on 12 nm chip. Training our model took more than 9 h. Histogram of testing set
is in Figure 6.

Figure 5. Sample images captured with IP cameras VIVOTEK in position above each other.
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Figure 6. Histogram of number of passengers in a vehicle in test sample in YOLOv3 model.

3. Results

The neural-network-based passenger detection tool has one huge advantage over the
Haar cascade-based tool—it can detect passengers even if the car’s windows are closed
or the car is facing the camera directly due to the technical specifications of our thermal
imager TPH3008-S. In the future work, we might combine both tools if we can precisely
align and match images from regular camera and thermal imager.

To evaluate the success of the detection, we used 1 video without passengers, 4 videos
with 2 passengers, and 1 video with 3 passengers as a test set. The passengers sat in
different places, and the position of the windows also changed to check if we could detect
people in the vehicle even with the windows not fully open. Since the available TPH3008-S
thermal imager only allows us to take photos, we had to capture the videos with an external
camera. Therefore, their quality is not at the highest level. It was also necessary to turn off
the display indicators on the camera display. The total accuracy for the confusion matrix
can be calculated as the average of the values lying on the main diagonal of the matrix:

overall accuracy =
number of right predictions

number of all predictions
,

When calculating the success of the detection of the number of passengers, we
achieved the success of 60.52%. Out of the 1117 people in the images, model detected 676.
The result is quite good, given the artifacts that are found when capturing images. Detailed
results can be seen in Table 1 and Figure 7.

Table 1. Results of passenger detection with video explanation for model based on Haar cascade
with images from thermal imager TPH3008-S.

Number of Frames Overall Accuracy Caption

Video 1 618 98.87% All windows closed.
Video 2 280 86.54% Driver + 1 back passenger.
Video 3 351 73.79% Driver + 1 back passenger.
Video 4 444 84.46% Driver + 1 front, windows half.
Video 5 364 70.60% Driver + 1 front passenger.
Video 6 309 75.08% Driver + 2 passengers.
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Video 1 Video 2

Video 3 Video 4

Video 5 Video 6

Figure 7. Confusion matrices of videos of model based on Haar cascade.

Figures 8 and 9 show detection results of created programs. Both programs allowed
user to choose different parameters and data sources and were used for evaluation process.
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Figure 8. Result of passenger detection and counting the number of passengers (including driver)
using Haar cascades with thermal image data set with car windows down.

Figure 9. Result of passenger detection (including driver) using model based on modified YOLOv3.

For the evaluation process of YOLOv3 model, we used the same metrics as in the
previous model. We used 101 randomly selected images for testing. The total final ratio
of images used for testing and training is approximately 1:5. As can be seen from the
confusion matrix, both cases do not show false detection, i.e., an error of the first type.
While detecting, models are set to search only for objects that have a probability of more
than 50%.

The detection capability before starting this work was expected to be at least 50%,
which means that we wanted to detect at least half of all passengers. However, when
considering a different metric, we achieve a detection of 65.3%. This number represents
the number of persons detected in the test images relative to the total number. Out of
199 persons, 130 were detected. In the case of the pretrained network, this is a ratio of
110 detected to 199 persons, which is 55.3%. Thus, from the point of view of passenger
detection, this is a good final percentage. Basic confusion matrices can be seen in Figure 10
and detailed evaluation using precision, recall, accuracy and F1 score are in Tables 2 and 3.
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Expanded YOLOv3 model Basic YOLOv3 model

Overall accuracy: 46.535% Overall accuracy: 26.733%

Figure 10. Confusion matrices of model based on Yolov3.

When we compare Tables 2 and 3, we find expanded YOLOv3 model achieves better
performance in detecting passengers than unmodified, basic YOLOv3 model. Both tables

Table 2. Confusion matrix evaluation using precision and recall for expanded YOLOv3 with own
image data.

No. of Passengers Precision Recall Accuracy F1 Score

0 passenger 1.00 0.33 86.14% 0.50
1 passenger 0.70 0.39 72.28% 0.50
2 passengers 0.47 0.53 59.41% 0.49
3 passengers 0.19 1.00 75.25% 0.32

Table 3. Confusion matrix evaluation using precision and recall for basic, unmodified YOLOv3.

No. of Passengers Precision Recall Accuracy F1 Score

0 passenger 1.00 0.13 55.88% 0.24
1 passenger 0.25 0.17 61.76% 0.20
2 passengers 0.25 0.65 61.76% 0.36
3 passengers 0.13 1.00 73.53% 0.23

The neural-network-based passenger detection tool has one huge advantage over the
Haar cascade-based tool—it can detect passengers even if the car’s windows are closed
or the car is facing the camera. When comparing results between thermal image data set
and neural network data set, we can say that by using expanded YOLOv3 model, we can
achieve better passenger detection up to 10% when comparing between basic YOLOv3, up
to 15% when comparing between Haar cascades and up to 65% when assuming windows
on cars are closed and camera PTH-3008S cannot detect any passengers. Matrix evaluation
of Haar cascades can be seen in Appendix A in Tables A1–A6.

4. Limitations

Video detection using computer algorithms, machine learning and artificial intelli-
gence has made great strides in recent years. However, it also has its pitfalls. The main
limitations and shortcomings of computer vision are described in the following subsections.

4.1. Noise and Artifacts

The process of digitizing reality is almost always accompanied by inserting noise into
the data. All cameras, even those on mobile phones, can create breathtaking images, and
they improve every year. However, saturation, white balance, color intensity and all other
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parameters only help to capture reality as faithfully as possible. As mentioned in previous
lines, the limiting elements include the artifacts we encountered in thermal imaging. These
are image distortions that can be caused by a number of things, e.g., number of frames
per second, lens flare, image compression itself and much more. There are algorithms
that try to combat the artifacts, but this is an area that still requires a lot of effort. In
our case, we cannot improve the output image when detecting with a thermal imager
TPH3008-S. Therefore, it would be appropriate to try more types of thermal cameras with
better properties.

4.2. Weather Conditions and Lighting

For machine vision, incorrectly selected sensor, viewing angles and material flare
are among the most serious problems that can completely compromise the reliability of
detection or other system functions. For systems that rely on cameras to work properly,
lighting is an essential area that should not be forgotten. Even when changing sensors,
there is little chance that object detection improves in low light. Then, the appropriate
lighting and placement of observation equipment come to the rescue. Poor placement
can result in not being able to detect anything at all. Experts have tried to figure out the
principle of circumventing the inconveniences associated with shiny objects. The main
tools include: using backlight, using different wavelengths in scanning, changing the color
of light, using polarized light, changing ambient lighting, using advanced sensors or other
unusual trick. Various experiments with backlight or other colors or types of lighting can
result in highlighting the contours of objects, reducing the glare of shiny objects due to the
different interaction of wavelengths with different objects. If the system operates in the
black and white spectrum, adding blue lightens it, and adding orange creates darker spots.
Polarized light is also very often used in computer vision applications because shining
polarized light on a glossy surface can reduce reflections. However, polarized light is not
always the best solution. We need to position the polarized light precisely; otherwise,
the reflections may be much worse. The use of advanced sensors and chips can solve the
abovementioned problems. It is often assumed that the use of 3D laser scanners and 3D
vision eliminates the problems associated with 2D vision. However, in some cases, it is also
necessary to create a new algorithmic solution. Therefore, one must choose wisely. The use
of advanced technology can also bring more complex problems, which we tried to solve at
the beginning.

5. Alternative Detection

In case the detection of passengers using video systems fails, it is advisable to try
to estimate the number of passengers by other methods. Mostly all modern passenger
cars already have a built-in passenger counting using a central computer in the vehicle
or, according to multiple surveys, from 70% to 90% of people carry mobile phones during
transportation. These facts can be used to estimate the number of passengers in vehicles.

It is also worth mentioning that passenger detection might be achieved using radars [24]
or using a Wi-Fi probe request [33]. When using a Wi-Fi probe request, passengers have
to enable Wi-Fi in smartphones in order to properly count passengers. All other invasive
methods are summarized in the chapter of the literature review.

6. Discussion

For future work, we need to think about the following questions and practical so-
lutions. Not all passengers, especially children, sit in a straight and correct way. Many
passengers also lay down and sleep. It is also possible that there are more people in the
vehicle than its prescribed capacity or full capacity, but passengers are too close to each
other. These are difficult obstacles that the system has to deal with and are a topic for future
research. Vehicle speed is another huge problem. During our experiments, we considered
speed up to 20 km/h. If our test vehicle was traveling faster, the output from cameras
was blurry. If we want to deal with higher speeds, it is necessary to use high-speed traffic



Sustainability 2021, 13, 12928 13 of 17

cameras to capture smooth video outputs. In real life, there are limited speeds in road
tunnels; in our country, the maximum speed is 100 km/h.

The expected accuracy is a difficult question for discussion. For example, if there are
100 vehicles in a tunnel, and all of them have four passengers, if the system detects three
passengers in half of them, many passengers are not detected. This is a huge problem, but
in terms of alarming rescue services, the rough information about the number of people
in tunnel is sufficient enough to help the commander of rescue services to dispatch the
adequate amount of vehicles and man force. When there are fewer people in rendezvous,
rescue services know the rough estimate of the number of people still in tunnel. Current
systems do not provide any pieces of information about the number of passengers. In
addition, if an accident happens in the center of a tunnel, the vehicles in front of the
accident continue, and there might be half of the people left in tunnel. According to the
commander of firefighters in a local department, the starting point of required accuracy
is about 80%. Despite the European Union’s great efforts to improve and enhance in-
vehicle safety systems, it is estimated that up to 50% of vehicles over the next 15 years
will not include these smart support systems. At the same time, it is assumed that car
manufacturers must actively bring new services—reporting the number of passengers for
the needs of tunnel systems and others. Until then, tunnel system operators must rely
on external solutions for counting the number of passengers in vehicles. The integration
of information from different external and internal systems provides a prerequisite for a
significant improvement in passenger estimates.

This paper is our first stage of passenger detection in tunnels. Based on available
options, we decided to compare tools based on machine learning and neural networks. By
utilizing thermal camera THP3008-S, we found out that this method would not be right
choice, but for comparison and evaluation, we decided to test it with open windows. This
approach is not a solution for utilizing thermal cameras because with closed windows,
the accuracy drops to 0%. With the maximum transmission of car windows at 70% and
lower with the use of tinting or film, thermal cameras have serious limitations. However,
thermal cameras might be used in interesting applications [34,35], but in this field, they do
not find great success. For our future work, we are planning to use multiple sensors and
hyperspectral cameras with different wavelengths 380–1000 and 900–1700 nm and active
illumination to achieve better performance. We are also planning to change our current
approach from image to image based, meaning we are evaluating accuracy based on single
images. We are currently working on improved models with tracking and precise counting
using hyperspectral cameras to achieve more promising results.

Passenger privacy also plays a huge role in this kind of system. Depending on the
implementation of the existing systems (e.g., e-call), it may become maliciously activated
without a crash taking place. Moreover, the car passengers have no control over the remote
activation of the microphone, making it extremely vulnerable to eavesdropping. For our
future work, we are planning to propose smart external cameras capable of sending only
pieces of information such as the number plate, number of passengers, date and time of
entry to the tunnel if our algorithms are not resource dependent—not whole video stream.
Existing tunnel systems and cameras upload videos to remote clouds, where they can
be compromised.

7. Conclusions

This paper proposes ideas that can be used to determine the number of passengers in
public infrastructure noninvasively. Thermal imager and IP cameras are used, and results
are compared. Passenger estimation is accomplished using a thermal image data set with
Haar cascade model and using images in visible spectrum using the YOLOv3 model. This
was tested during lockdown in laboratory experiments. In order to increase the accuracy
of passenger detection noninvasively, the fusion from multiple systems have to be used
or try to use a different approach—counting the number of mobile devices connected to
cellular network. If we keep our methods, we might approach the passenger counting not
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only as detecting persons in individual frames and then counting but by using line ROI
(region of interest). This might have a little drawback, and we do not count with cars in
the opposite direction of flow or reversing cars. There are many options, and we need to
choose the right one for our future improvements.
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Abbreviations

The following abbreviations are used in this manuscript:

YOLO You only look once
ROI Region of interest
E-call Emergency call
TOF Time of flight
OWS Occupant weight sensor
IR Infrared
HOV High-occupancy vehicle
HOT High-occupancy toll
GUI Graphical user interface

Appendix A

Confusion matrix evaluation using precision, F1 score and recall for Haar cascade
matrices.

Table A1. Confusion matrix evaluation for Video 1.

No. of Passengers Precision Recall Accuracy F1 Score

0 passenger 0.99 1.00 98.87% 0.99
1 passenger 0 0 98.87% 0
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Table A2. Confusion matrix evaluation for Video 2.

No. of Passengers Precision Recall Accuracy F1 Score

0 passenger 1.0 0.90 93.93% 0.95
1 passenger 0.77 0.60 80.36% 0.67
2 passengers 0.34 1.00 86.43% 0.51

Table A3. Confusion matrix evaluation for Video 3.

No. of Passengers Precision Recall Accuracy F1 Score

0 passenger 1.0 0.81 84.33% 0.89
1 passenger 0.35 0.56 76.64% 0.43
2 passengers 0 0 87.46% 0
3 passengers 0 0 99.15% 0

Table A4. Confusion matrix evaluation for Video 4.

No. of Passengers Precision Recall Accuracy F1 Score

0 passenger 1.0 0.92 94.14% 0.96
1 passenger 0.26 0.18 84.91% 0.21
2 passengers 0.53 1.0 90.09% 0.69
3 passengers 0 0 99.77% 0

Table A5. Confusion matrix evaluation for Video 5.

No. of Passengers Precision Recall Accuracy F1 Score

0 passenger 1.0 0.71 74.73% 0.83
1 passenger 0 0 82.14% 0
2 passengers 0.34 1.0 84.34% 0.50

Table A6. Confusion matrix evaluation for Video 6.

No. of Passengers Precision Recall Accuracy F1 Score

0 passenger 0.99 0.79 82.85% 0.88
1 passenger 0.25 0.52 82.2% 0.34
2 passengers 0.50 0.95 89.00% 0.56
2 passengers 0.08 1.0 96.12% 0.14
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