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Abstract: Linking wildlife areas with corridors facilitating species dispersal between core habitats
is a key intervention to reduce the deleterious effects of population isolation. Large heterogeneous
networks of areas managed for wildlife protection present site- and species-scale complexity under-
pinning the scope and performance of proposed corridors. In Southern Africa, the Kavango-Zambezi
Transfrontier Conservation Area seeks to link Kafue National Park to a cluster of wildlife areas
centered in Namibia and Botswana. To assess and identify potential linkages on the Zambian side,
we generated a high-resolution land cover map and combined empirical occurrence data for Lions
(Panthera leo), Leopards (Panthera pardus) and Spotted Hyena (Crocuta crocuta) to build habitat suit-
ability maps. We then developed four connectivity models to map potential single and multi-species
corridors between Kafue and the Zambezi River border with Namibia. Single and multi-species
connectivity models selected corridors follow broadly similar pathways narrowing significantly in
central-southern areas of the Kafue-Zambezi interface, indicating a potential connectivity bottleneck.
Capturing the full extent of human disturbance and barriers to connectivity remains challenging,
suggesting increased risk to corridor integrity than modelled here. Notwithstanding model limi-
tations, these data provide important results for land use planners at the Kafue-Zambezi Interface,
removing much speculations from existing connectivity narratives. Failure to control human dis-
turbance and secure corridors will leave Kafue National Park, Zambia’s majority component in the
Kavango-Zambezi Transfrontier Conservation Area, isolated.

Keywords: KAZA; Linkage Mapper; MaxEnt; Transfrontier Conservation

1. Introduction

Expanding human pressures on natural resources and conversion of wildlife habitats to
farmlands and rangelands are driving rapid fragmentation with often detrimental effects to
native wildlife species, due to population isolation and decline [1,2]. Native large carnivores
are particularly sensitive to anthropogenic pressures due to their dependence on prey avail-
ability and exhibit elevated extinction risk with population isolation [3,4]. More than 75% of
terrestrial large carnivores are now experiencing declines in population size and distribution
due to anthropogenic pressures related to habitat fragmentation and loss [5]. Maintaining
free-ranging large carnivore populations is contingent on provision of sufficient habitat and
prey species and limiting the deleterious effects of human disturbances [6].

Given the importance of maintaining structural and functional connectivity between
wildlife managed areas, large scale conservation networks, including Transfrontier Con-
servation Areas, are being developed to address issues surrounding fragmentation and
isolation of wildlife populations [7,8]. These initiatives have important implications for
many large carnivore populations [9], the ecological functionality of the landscapes within
which they reside [5], and the development of wildlife-based land uses and economies [10].
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Understanding and promoting species-level connectivity between wildlife managed
areas is a key objective of the Kavango-Zambezi Transfrontier Conservation Area Pro-
gramme that spans five neighboring countries and ~70 wildlife managed areas across
~520,000 km2 of central southern Africa [11]. The Kavango-Zambezi Transfrontier Conser-
vation Area represents the largest and arguably most important and ambitious conservation
initiative in Africa, covering a wide range of threatened species, habitats and ecosystem
services that provide critical resources and natural wealth to the regions people. However,
much success with key objectives in this program is dependent on maintaining and ex-
panding landscape connectivity. Connecting wildlife subpopulations through protecting
and developing movement corridors within and between wildlife managed area networks
is an increasingly important component in wildlife conservation [8]. The emergence of
Transboundary networks and connectivity narratives in Southern Africa represents impor-
tant political acknowledgement of the prerequisite to manage many vulnerable species at
appropriate scales in human-dominated landscapes [12]. Yet, with the boundaries of many
TFCAs drawn in accordance with subjective, socio-political priorities, much work remains
in order to understand and implement management strategies that will better serve the
movement requirements of target species given limited resources [13]. A recent study by
Hoffman et al. [14] demonstrates the need for planning at transboundary scale for restoring
connectivity and landscape permeability for highly mobile species.

Yet, few of the proposed wildlife managed area linkages in the Kavango-Zambezi
Transfrontier Conservation Area Programme have been sufficiently studied at the species
and scale of interest to provide planners and managers with the empirical evidence neces-
sary for the informed decision making critical to effective natural resource management
and the development of wildlife-based land uses [15,16].

Connectivity between Kafue National Park in central western Zambia and the core
cluster of wildlife managed areas centred on Chobe National Park in Botswana represents
one of the largest questions (and challenges) surrounding natural resource management
in the Kavango-Zambezi Transfrontier Conservation Area Programme. If connectivity
cannot be established or developed, Zambia’s majority component in the program will
effectively be isolated from the broader landscape, with significant implications for low
density, wide-ranging species in Kafue National Park and the potential and promise of the
Kavango-Zambezi Transfrontier Conservation Area Programme as a whole.

However, promoting connectivity and species-level movement at large spatial scales
in heterogenous landscapes is dependent on high quality data of system states and species
level responses to key drivers [17]. The main aim of this study is to assess landscape
connectivity at the large carnivore scale at the interface of Kafue National Park and adjacent
wildlife managed areas, through the Kafue-Simalaha Wildlife Dispersal Corridor and
surrounds. Specifically, the objectives of this study are: (a) to investigate and model the
effect of environmental and anthropogenic factors on the occurrence three large carnivores
between Kafue National Park and the Simalaha Wildlife Recovery Sanctuary; and (b) to
assess the potential of the proposed Kafue-Simalaha Wildlife Dispersal Corridor for single
and multi-species landscape-level connectivity planning.

Our final output has broad applied value for corridor planning and the development
of wildlife-based land uses throughout the Kavango-Zambezi Transfrontier Conservation
Area and beyond, supporting the knowledge base for long term persistence of large
carnivores, the ecological integrity of systems in which they reside and the promotion of
sustainable wildlife-based land uses for the landscapes’ rural poor.

2. Methods
2.1. Study Area

The Kavango-Zambezi Transfrontier Conservation Area (KAZA TFCA) encompasses
a matrix of over 70 wildlife managed areas in IUCN I-VI and Not Reported categories [18],
spanning the borders of Angola, Botswana, Namibia, Zambia and Zimbabwe in central
southern Africa, extending over c.520,000 km2 [16]. Spatially, these wildlife managed areas
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fall into three major clusters and five periphery clusters, with Kafue National Park and
surrounding wildlife managed areas representing the major northern cluster (Figure 1).
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Protected = IUCN Not Reported (adapted from [19]).

Kafue National Park is Zambia’s oldest and largest protected area, the largest National
Park in the Kavango-Zambezi Transfrontier Conservation Area and the 2nd largest National
Park in Africa at 22,480 km2 [18]. In concert with nine surrounding IUCN category VI
Game Management Areas, the effective unfenced area known as the Greater Kafue System
covers c.68,000 km2, representing 9% of Zambia’s land area [20].

Zambia maintains a wide spectrum of protected areas by category, status, designation
and management effectiveness [21]. New protected areas are emerging e.g., Simalaha Com-
munal Conservancy, while some existing areas e.g., Bombwe Forest Reserve are subject to
down listing or degazettement from the National protected area estate due to the extent of
human impacts. To reflect the uncertainty surrounding unclassified areas [22], emerging or
failing protected areas have been designated a Nominally or Potentially protected category.
The Greater Kafue System (GKS) has been included as Zambia’s majority component in
the Kavango-Zambezi Transfrontier Conservation Area programme, encompassing c.25%
of the programs” wildlife estate [16]. Terrestrial connectivity to adjacent clusters of wildlife
managed areas comprises a minor potential linkage routing west-southwest to Sioma
National Park, spanning ≥210 km, and a major potential linkage routing south-southwest
towards Chobe National Park, at the heart of the Kavango-Zambezi Transfrontier Conser-
vation Area—the focus of this study. This linkage, termed the Kafue-Simalaha Wildlife
Dispersal Corridor [16], passes through a mosaic of nominally, potentially and possibly
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protected wildlife managed areas including Mulobezi and Sichifulo Game Management
Areas, Nachitwe, Martin and Machili Forest Reserves, the Nyawa communal areas, and
Simalaha Communal Conservancy (Figure 2). In concert, these wildlife managed areas
extend the Greater Kafue System to around 7.3 m ha and provide a contiguous matrix
of wildlife managed areas spanning 140–170 km from the Kafue National Park border
south-southwest towards the Zambezi River at the confluence of Zambia, Namibia and
Botswana, broadly following the Machili watershed [23]. Periphery areas, considered
outside of any formal wildlife protection category, are known as ‘Open’ Communal Areas,
and fall under statutorily land tenure authority of the local Chiefdom [24].
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In order to achieve the objectives of the study, we produced a landcover map for
3.8 m ha using high resolution satellite imagery, combined with ground truth data. Then we
incorporated empirical occurrence data for Lions (Panthera leo), Leopards (Panthera pardus)
and Spotted Hyena (Crocuta crocuta) throughout ten wildlife managed areas covering
~1 m ha to produce species-level habitat suitability maps. Finally, we constructed connec-
tivity models to investigate potential for single and multi-species corridors in support of
conservation and land use planning for this vast, heterogenous and increasingly human-
impacted landscape.
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2.2. Landcover Mapping

A landcover map of the study area was produced using a time-series of Sentinel
2 images in an object-oriented image analysis (OBIA) environment using the software
eCognition [25]. Sentinel 2 is a constellation of two polar-orbiting satellites launched
by ESA under the program Copernicus [26]. Due to the large size of the study area
(32,812 km2), and the fact that it fell within two paths of the Sentinel 2 orbit, the study area
was split in two parts and analyzed separately.

The eastern part was mapped using a time series of three images acquired in January,
April and August 2016 while the western part was mapped using a time series of three
images acquired in May, September and December 2016. The reason for using a time
series rather than a single image for classification was in order to capture the phenological
variation of the vegetation imposed by the apparent seasonality of precipitation and the
respected vegetation responses. In total, 24 image tiles were processed which cover the
entire study area. The images were geometrically and atmospherically corrected prior to
segmentation and classification. During the classification process various spectral ratios
were calculated including Normalized Difference Vegetation Index (NDVI;), Normalized
Difference Wetness Index (NDWI), Normalized Difference Moisture Index (NDMI), Near
InfraRed/Red (NIR).

The first step in any image analysis using the OBIA approach is the creation of
meaningful image objects by using segmentation algorithms that group neighboring pixels
according to certain criteria of homogeneity. The size and shape of the objects depend
primarily on the selected scale parameter (which determines the degree of homogeneity
in the resulted objects) as well as by the shape and compactness criterion. Various scale
parameters were tested, with the aim of generating objects that have low internal variation
and low spatial autocorrelation, and the results were visually inspected. The adopted scale
parameter was set at 100 while the color and homogeneity criterion were set at 0.3 and 0.5,
respectively. The minimum mapping unit was set at 0.25 ha.

The training data set for the semi-automatic image classification was provided by
in-situ observations. Six classes were identified in the field resulting in a training data set
consisting of 172 in-situ observations. The identified classes were Arable land, Kalahari,
Mopane and Teak woodland, seasonally flooded grasslands and permanent water. A vector
dataset containing the settlements (comprising areas encompassing borders of housing
aggregations), which were digitized manually using Google Earth, was integrated in the
final classification product in a GIS environment [27].

Random Forests was the classifier which was found to perform better in this study
area and with the data used, compared to Classification Trees, Support Vector Machines
and K Nearest Neighbor.

The two land cover maps that resulted from the classification of the two separate
parts of the study area were then merged in eCognition and the accuracy assessment was
performed for the entire land cover map. The method proposed by [28] was employed for
the accuracy assessment which uses an error matrix based on a TTA mask.

2.3. Habitat Suitability Modelling

To map the suitability of the GKS landscape for providing habitat for the three carni-
vore species, we relied on statistical habitat suitability modelling. This type of modelling
relates environmental factors (physical and human) to the presence or absence of the
species; the resulting model can be projected and mapped as a cartographic layer depicting
the density or probability of species occurrence [29]. The habitat suitability maps for lions,
leopards and spotted hyaena were generated using MaxEnt [30], as this software has
been found to perform well compared to other modelling techniques that use presence
only data [31], and has been repeatedly used to model the distribution of large carnivores
in diverse geographical contexts (e.g., [32–35]). We incorporated empirically generated
occurrence data from on-going research and monitoring in the area, from [23], In total,
102 × 4 km transects, optimized for site conditions, were surveyed on foot three times
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by the first author and two experienced local trackers from the safari hunting industry,
amounting to 1224 km of spoor transects during the dry season of May–October 2015.
To account for any sampling bias, we spatially rarefied occurrence records for all species
by thinning (using a 500 × 500 m pixel-size grid of the area). In total, 43 occurrence
records were used for lions, 84 for leopards and 78 for spotted hyenas. While we sought
to incorporate occurrence data for the entire extant large carnivore guild known from the
GKS, sample sizes were too small for cheetahs (Acinonyx jubatus) and African wild dogs
(Lycaon pictus) to include in final analyses. Occurrence data for lions, leopards and spotted
hyenas are shown in the Supplementary Figure S1.

The full set of predictor variables utilized is presented in Table 1. All vegetation-
related variables (except Enhanced Vegetation Index), as well as proportion of arable land,
distance to and proportion of settlements, and distance to water were derived from the
land cover map generated using the Sentinel imagery described above. Roads layers,
provided by Peace Parks Foundation, were modified using ground truthing, and distances
to roads calculated in [36]. Bioclimatic parameters exhibit little spatial variability across the
study area, so we did not use them as predictor variables [37]. To account for collinearity,
we retained all uncorrelated variables (r < 0.7). In our case, only variables related to
anthropogenic pressures and elevation were correlated (Table 1).

In terms of variable selection, to keep models as simple as possible to aid in the interpre-
tation of the species’ distribution and its environment drivers, we strived for “parsimonious
and interpretable models” [38]. In all models, through a backwards stepwise process, we
excluded all variables that when added in the models did not produce any increase in AUC.
For the same reasons (parsimony and interpretability), we run models using only linear and
quadratic features (as suggested by [38]). Following standard practice (e.g., [39–42]), we
trained the models using a randomly selected sample (70%) of the occurrence data, and we
used the remaining 30% of the occurrence data to evaluate the models. Fifty model iterations
were run, with 10,000 background points. The resulting habitat suitability map provides a
habitat suitability value between 0 and 1 for each grid cell/pixel.

Table 1. Predictor variables used in the model building process. Source key: (1) [43], (2) Expert
knowledge/ground truthing, (3) Landcover map (this paper), (4) ASTER Global DEM, (5) MODIS
Vegetation Index Products, (5) From Sentinel 2.

Predictor Variables

1 Proportion of arable land (3) 10 Distance to minor roads (unpaved) (1,2)

2 Proportion of Kalahari woodland (3) 11 Distance to major and minor
roads, combined (1,2)

3 Proportion of Mopane woodland (3) 12 Distance to major, minor roads &
rail, combined (1,2)

4 Proportion of Teak woodland (3) 13 Distance to train tracks (1)

5 Proportion of grassland (3) 14 Altitude (DEM) (4)

6 Proportion of settlements
(at 1, 2 and 3 km radius) (3) 15 Topographic Position Index (4)

7 Distance to water (4) 16 Slope (4)

8 Distance to settlements (4) 17 Enhanced Vegetation Index (5)

9 Distance to major roads (paved) (2)

2.4. Connectivity Modelling

To provide insights into scope, scale and any species-level overlap of potential ecologi-
cal flows in the Kafue-Simalaha Wildlife Dispersal Corridor we developed three individual
species, and one multi-species model using Linkage Mapper [44], as this software provides
robust estimates of connectivity for large carnivores in heterogenous landscapes [45–47].
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The Pathway Tool was chosen to identify and model potential linkages between core areas,
graphically displaying least-cost corridors where species would encounter more features
facilitating, and less features impeding, movement between core areas based on predeter-
mined site and species-specific resistance layers—the inversed habitat suitability maps
generated by MaxEnt [44]. Parameterising Linkage Mapper requires the identification of
paired nodes between which patch-based graphic analyses of connectivity can be under-
take. Given Kafue National Park represents a single source population of all three target
species, with a border extending c120 km within the study area, we tested the effect of
multiple source nodes along the Kafue National Park border on least-cost path outcomes,
finally settling on three roughly equidistant nodes at the northwest, central and southwest-
ern points bordering a representative cross-section of adjacent Game Management Areas,
implying target species could move between any of these nodes to the southern node at
the Simalaha Wildlife Recovery Sanctuary.

3. Results
3.1. Land Cover Mapping

The final landcover map (Figure 3) had an overall classification accuracy of 91.6% and
a Kappa Statistic of 0.88, indicating an excellent classification performance. The dominant
land cover is Kalahari woodland (56.2%), followed by Mopane woodland (15.6%) charac-
teristic of south-central floodplains. Seasonally flooded grassland (13.0%) dominates the
floodplains and drainage lines and are closely associated with water (0.2% and arable land
(4.6%). Teak woodland (10.3%), formerly representing extensive closed-canopy forest tracts,
has been heavily denuded by extractive activities, and further suppressed by fire [48].
Settlements (0.1%) are closely associated with drainage lines (available surface water),
grasslands and agricultural areas. Surface water is depicted here for dry season (May-Nov).
After heavy rains most all grassland areas are commonly inundated for many months.
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3.2. MaxEnt Habitat Suitability Models

Three habitat suitability models were built, one for each species (Figure 4). The models
for lion had the best AUC (0.81), followed by leopards (0.80) and spotted hyenas (0.79).
All models identified Kafue National Park as core habitat with extensive areas of Mulobezi
and Sichifulo Game Management Areas, and to decreasing extent the Forest reserves of
Nachitwe and Martin. Machili Forest Reserve has been identified as largely unsuitable
for all three species. Further south, increased variability was exhibited between wildlife
managed areas and species, though western areas of Simalaha present poor suitability.
Interestingly, east of Simalaha was identified as common suitable habitat.
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According to model output, the three species distributions are affected by different
variables (see Table 2). Notably the proportion of settlement, a proxy of human population
density, had a negative effect on all species. The proportion of arable land had strong
negative effects on leopard and hyena while linear anthropogenic features, such as road
and/or rail infrastructures have negative impact on all three species. The proportion of
Kalahari woodland cover was positively associated with all species, with Lion positively
associated with proportion of all woodland landcover classifications. The proportion of
grasslands (lion and hyena) and distance to water (leopard and hyena) were also notable
predictor variables.

Table 2. Variable importance for the Maxent models, based on AUC using a single variable. Light
grey represents variables with a negative contribution to relative habitat suitability.

Predictor Variable Lion Leopard Spotted Hyena

Proportion of arable land - 0.67 0.64

Proportion of settlements 0.57 0.53 0.52

Distance to settlements - - -

Distance to major roads (paved) - - 0.65

Distance to minor roads (unpaved) - - -

Distance to major and minor roads (combined) 0.72 - -

Distance to major and minor roads and rail (combined) 0.70 -

Distance to train tracks - - -

Proportion of Kalahari woodland −0.64 −0.56 −0.52
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Table 2. Cont.

Predictor Variable Lion Leopard Spotted Hyena

Proportion of Mopane woodland −0.64 - -

Proportion of Teak woodland −0.55 - -

Proportion of grassland −0.58 - −0.60

Distance to water - −0.60 −0.59

Topographic Position Index −0.64 - -

Slope - −0.65 -

3.3. Connectivity Modelling

Pathways analyses indicates broadly similar spatial routing for all three species, with
least-cost corridors consistently following the Kafue National Park border, indicating
optimal (core) habitat within Kafue National Park (Figure 5). Irrespective of source nodes,
all models produced least-cost corridor exiting Kafue National Park at the southern border,
at the closest spatial point to the southern node, routing through eastern Mulobezi Game
Management Areas, Sichifulo Game Management Areas, the border areas of Martin Forest
Reserve and Nyawa Communal Areas, then through the eastern section of Simalaha
Communal Conservancy, extending notably east of Simalaha in the case of Lion into
Open Communal Areas. The Spotted Hyena model provided the largest spatial extent
of moderate to highly suitable corridor area (depicted as yellow/green/blue shading),
followed by Leopard then Lion.
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Minimum corridor width, identified as moderately to highly suitable areas, was 5.1 km
for lion, 4.3 km for Leopard and 3.2 km Spotted Hyena. All three species’ paths narrowed
noticeably in southern areas, and all reaching the Simalaha Wildlife Recovery Sanctuary at
the northeast corner.

The derived multi-species model (Figure 6) exhibits broadly similar corridor routing
and spatial extent through Kafue National Park and eastern Mulobezi Game Management
Areas into Sichifulo Game Management Areas, before displaying greater variability and a
reduction in common corridor routing and current flow strength in central southern areas.
A ~25 km long stretch of low current flow, starting at the interface of the Nyawa West
Communal Area and the adjacent Open Communal Area, indicate potential constraints
to species movement. Moderate to highly suitable current flow, though narrow (<2 km
width), converges again within ~10 km from the northeast corner of the Simalaha Wildlife
Recovery Sanctuary.
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4. Discussion

Connectivity is an increasingly threatened ecological process and predicted to deteri-
orate due primarily to issues surrounding human population growth and encroachment
around core wildlife areas [49], with severe implications for many wide-ranging, low-
density species [5,50]. Maintaining and promoting connectivity in wildlife managed area
networks is thus considered an important intervention for the conservation of free-ranging
large carnivore populations, elevating the value of the proposed Kafue-Simalaha Wildlife
Dispersal Corridor, and providing a test case for explicit goals and outcomes within the
Kavango-Zambezi Transfrontier Conservation Area Programme.

Developing linkages in heterogenous landscapes presents practical and theoretical
challenges surrounding the identification of land that will best meet the requirements for
focal species to move between core wildlife managed areas, and how to translate resource
selection measurements into resistance [51]. By choosing a multi-species approach that
focuses on wildlife with high susceptibility to human disturbance and resource competi-
tion, and those driving broader ecological processes, our approach serves as a model for
a collective umbrella under which a wider range of species and processes are factored in,
creating a broadly applicable approach pertinent to the wider Kavango-Zambezi Trans-
frontier Conservation Area landscape and beyond. Considering that our approach is based
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on often available species occurrence data and free to use Sentinel images, it could serve as
a general approach in other data-poor regions in Central Southern Africa and beyond.

The current study reveals the negative impact of all anthropogenic structures (settle-
ments, agricultural land, road and rail network) on the distribution of large carnivores in
the proposed Kafue-Simalaha Wildlife Dispersal Corridor, with important implications
for landscape and wildlife management in the area. While well documented case studies
highlight the occurrence of resident Spotted Hyena and Leopard populations in and around
human settlements, in our case the area under study is not heavily urbanized nor populated
as in other cases in the literature [52,53]. Our findings indicate that the effects of settlements
are context dependent, demonstrating the importance of understanding broader area and
management characteristics [54,55]. Road and rail infrastructure in various combinations
impacts all species. While literature indicates wide-ranging impacts of transport infrastruc-
ture on vertebrate populations [56,57], there are significant limits to our understanding
of how transport links affect carnivore populations, though by providing people access
to remote areas there are likely broader issues surrounding negative synergistic effects of
access at larger scales [58].

With all species being habitat generalists, we had expected a strong relationship to
a cross-section of habitat types. Lion exhibit a strong preference for woodland cover,
a localized characteristic found by [59], and likely a response partly driven by spatial
avoidance of humans [60,61] and preferred prey availability [62]. The more catholic diet
of leopard and hyena allows both species to exploit a wider range of habitats and food
sources [63]. The relationship of leopard and hyena to dry season surface water poses
questions surrounding disturbance competition by seasonal shifting pastoralist activities
at water points, including elevated poaching pressure [10], charcoal production [64] and
impacts of fire [48].

Our modelled corridor routing for single and multi-species models broadly compli-
ments existing outputs [65,66], indicating limited habitat suitability in southern and central
areas, increasing habitat suitability towards Kafue National Park, and also preferential
corridor routing along eastern areas of the proposed Kafue-Simalaha Wildlife Dispersal
Corridor. At the wildlife managed area scale our output indicated elevated habitat suitabil-
ity within Kafue National Park which is intuitively encouraging given Kafue National Park
is a significant core wildlife area, and specifically for the region’s large carnivores [67–69].
Given extensive areas of northern and eastern Mulobezi Game Management Area are
ostensibly free of direct and much indirect human pressure (Lines, expert opinion) there
was an expectation for elevated current flow in these areas, though evidently least-cost path
models prioritized Kafue National Park and proximity to the destination node, though this
doesn’t preclude availability of suitable habitat and prey in remote areas of Mulobezi Game
Management Area [23]. Further south, beyond the Forest Reserves and into the Communal
Areas, current flow closely matched expectations, with constrained current flow for all
species, and the possibility of a connectivity bottleneck south of Bombwe, representing an
area where movement is funneled, curtailed or severed, and connectivity diminished or
lost [70], in support of the hypothesis offered by [23].

Notwithstanding expectations, and given likely compounded error through occur-
rence, land cover and habitat suitability analyses, the corridor modelling, both at species
and multi-species level, clearly reflects reduced connectivity moving south from Kafue Na-
tional Park into more human disturbed areas. From a connectivity management perspective
this is a particularly important area to keep intact, as loss of this area might disproportion-
ally compromise connectivity [46]. A greater understanding of implications concerning
species-level demography on movement would be a valuable addition to these outputs.

Our integrated approach has extended the analytical framework to provide higher
resolution understanding of localized corridor characteristics—notably overlap in multi-
species corridor routing and spatial constraints in habitat suitability for central-southern
extents of the proposed Kafue-Simalaha Wildlife Dispersal Corridor. This has important
implications for practical corridor planning and interventions to counter effects limiting
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movement. While landscape dynamics will affect individual vs population level move-
ments [71], and species-scale demographics will likely influence dispersal mechanisms [59],
our approach has clearly provided valuable supplemental detail and understanding to
existing broader-scale, species-specific models.

What is clear from the land cover map is the extensive settlement and agricultural
development along the majority of watercourses, even deep into Game Management
Areas where settlement and agriculture should be precluded from core wildlife zones.
The eastern areas of Sichifulo Game Management Area, almost all of the Machili Forest
Reserve and eastern Nyawa areas have been heavily affected by slash and burn agricultural
development as with the central and western sections of Simalaha. Intensive settlement
and agricultural development are occurring in all periphery areas bordering the proposed
Kafue-Simalaha Wildlife Dispersal Corridor with the exception of the western extents of the
Open Communal area bordering Nyawa East and Simalaha. We urge additional research
and support in this area as a priority addition to wildlife-based land use planning for the
Kafue-Simalaha Wildlife Dispersal Corridor.

5. Conclusions

Integration of land cover, habitat suitability and corridor modelling at the landscape
level produced an output broadly in line with existing literature and implying constriction
of connectivity for all three species approaching the southern areas of the Kafue-Simalaha
Wildlife Dispersal Corridor, but identified a potentially important new area in which to
focus conservation efforts. Additionally, at the Kavango-Zambezi Transfrontier Conser-
vation Area scale, the fencing of the Simalaha Wildlife Recovery Sanctuary and effects of
the Zambezi River on wildlife movement south to the central cluster of wildlife managed
areas centered on Zambezi Region in Namibia and Chobe National Park in Botswana have
not been modelled.

With the human population increasing, and expanding conversion of wildlife habi-
tat for agriculture, any existing bottlenecks hindering wildlife movement, both for large
carnivores and their prey, will likely increase in the absence of effective land use planning
and implementation, including control of poaching and human-wildlife conflict. Nonethe-
less, our analyses have produced the first empirical data for evidence-based corridor
planning for Zambia’s key linkage in the Kavango-Zambezi Transfrontier Conservation
Area Programme.
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