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Abstract: Urban floods are very destructive and have significant socioeconomic repercussions in
regions with a common flooding prevalence. Various researchers have laid down numerous ap-
proaches for analyzing the evolution of floods and their consequences. One primary goal of such
approaches is to identify the areas vulnerable to floods for risk reduction and management purposes.
The present paper proposes an integrated remote sensing, geographic information system (GIS), and
field survey-based approach for identifying and predicting urban flood-prone areas. The work is
unique in theory since the methodology proposed finds application in urban areas wherein the cause
of flooding, in addition to heavy rainfall, is also the inefficient urban drainage system. The work has
been carried out in Delhi’s Yamuna River National Capital Territory (NCT) area, considered one of
India’s most frequently flooded urban centers, to analyze the causes of its flooding and supplement
the existing forecasting models. Research is based on an integrated strategy to evaluate and map
the highest flood boundary and identify the area affected along the Yamuna River NCT of Delhi.
In addition to understanding the causal factors behind frequent flooding in the area, using field-based
information, we developed a GIS model to help authorities to manage the floods using catchment
precipitation and gauge level relationship. The identification of areas susceptible to floods shall act
as an early warning tool to safeguard life and property and help authorities plan in advance for the
eventuality of such an event in the study area.

Keywords: Yamuna river; urban flood management; warning tool; decisional support system (DSS)

1. Introduction

Flooding is considered one of the most catastrophic disasters because of its magni-
tude of devastating impacts on overall human well-being [1,2]. It contributed to about
39.26% of worldwide natural disasters and caused USD 397.3 billion worth of damage
between 2000 and 2014 [3,4]. Human activities such as urbanization, deforestation, and
unplanned development all contribute towards the rise in the number of areas vulnerable
to floods [3–5]. Moreover, the changing climate that has manifested the increase in the
frequency of extreme precipitation events is also one of the primary forces behind the
exacerbated flooding problem [6,7].

The limited capacity of river canals, human populations in low-lying areas, and rapid
increase in human settlements without improving draining infrastructure have mainly
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contributed to urban floods [8]. Due to the recurrency of this hazard, particularly in urban
centers and its impact on local, regional, and global economies, the need for an efficient
flood modeling approach to preventing them has become a necessity [9–11].

A comprehensive flood management strategy requires an understanding of its under-
lying causes by assessing the physio-climatic and hydrodynamic parameters as well as
damage and exposure indices related to socioeconomic and ecological parameters [3–5,12].
The overall output of this exercise is finally the calculation of the flood risk that integrates
hazard and vulnerability in assessing the latter’s accumulation and propagation. The flood
risk analysis is exceedingly complex and challenging in developing countries, primarily
because of the data limitations [5]. An assessment of the spatial exposure to floods is the
primary requirement for devising an early warning system [13]. Different methodolo-
gies have been developed to determine the extent and impact of floods. The data type,
processing methods, and spatial representation govern the most appropriate method for
a specific flooding phenomenon [14,15]. Geographic information systems (GIS), geosta-
tistical approaches, and satellite remote sensing (RS) have been at the forefront of these
methodologies to calculate risk, hazard, and vulnerability to floods [16,17]. Collectively,
RS and GIS form the backbone of almost all the earth system modeling approaches [18,19].

Modeling is required for planning efficient and effective flood risk management to
face the challenges of a diverse set of hazard and disaster situations [20–22]. Moreover, the
foundation of a comprehensive flood management plan is based on mapping vulnerable
areas. Only once that is accomplished can various structural (such as dykes, spurs, deten-
tion basins, and reservoirs) and non-structural (such as land-use planning, restoration of
wetlands, and compensation policy) measures to lessen the damage caused by floods be
efficiently formulated and employed.

In India, many flood modeling studies have been carried out to understand the
evolution of floods in order to manage the floods effectively. To understand the magnitude
of damage to bridges during floods, Mazumdar (2009) evaluated hydrologic, topographic,
and morphological characteristics of rivers to derive a relationship between the damage
and exposure [23]. Pramanik et al. (2010) used observational cross-sectional data of the
Brahmani River basin in eastern India to simulate the extent of floods using a hydrodynamic
modeling approach [24]. Similarly, Timbadiya et al. (2012) simulated the floods in the
lower Tapi river using a similar hydrodynamic modeling setup [25]. The work assessed
the sensitivity of Manning’s coefficient on the coastal flood plain of the study area and
calibrated a one-dimensional hydrodynamic model for Manning’s coefficient to set up
the model for flood forecasts. Similarly, Doiphode and Ravindra (2012) focused on time-
varying roughness updates to mimic flows through natural channels using quasi-steady
dynamic wave and full-dynamic wave theory to solve Saint Venant’s equation in the
hydraulic flood routing model [26]. A similar study was carried out by Sankhua et al.
(2012) in the Krishna River’s Karad—Kurundwad reach [27]. Further, Vijay et al. (2007)
demonstrated the working and functioning of the hydrodynamic model used to determine
the degree of inundation vis-à-vis different developmental scenarios in the basin. Although
the model worked on default parameters, the results provided insights about possible
inundations in the eventuality of flood disasters in the stretch of the Yamuna river [28].

For the national capital region of Delhi, India, several flood assessment studies have
been carried out. Vijay et al. (2009) provided a hydrodynamic simulation of the Yamuna
River under several defined flood flows to determine land availability under existing
and modified riverbed geometry, including channel dredging and riverbed dressing [29].
Husain (2018) outlines the approach for flood peak estimation at Hathinkund and Okhla
barrages on the Yamuna River [30]. Kumar et al. (2018) show how they used the POT
technique to estimate floods with varied return periods. The primary goal of this study was
to create a hydrodynamic model for flood simulation in the Delhi segment of the Yamuna
River to determine how vulnerable the hydraulic infrastructure in the Delhi segment of
the Yamuna River is to floods [31]. Flood management measures for the national capital
region of Delhi, India, are described to some extent by Kumar et al. (2019) [32]. To date, the
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use of the maximum possible gauge level scenario—a concept that defines the maximum
inundate area under the maximum flooding scenario in Delhi NCT—has not been carried
out. The mapping of the maximum area under flooding shall help the authorities to develop
comprehensive management and mitigation strategy for the Delhi NCT—the focus of the
present study.

India is one of the world’s most flood-prone countries, with 113 million people exposed
to floods. According to a UN report, India’s average annual economic loss due to disasters
is estimated to be USD 9.8 billion, out of which more than USD 7 billion of the loss is due
to floods [33]. Being one of the most urbanized cities in the country, Delhi is always at
high risk of urban flooding. The rate of urbanization can be gauged from the fact that the
built-up area increased by seven times between the 1970s and 2000s. During this period, as
per the Delhi government’s historical data for floods available for Delhi, 1978 saw the worst
flood ever when the water level reached 207.49 m, with danger level marked as 204.83 m
and discharge of 2.53 lac cusecs at the Old Railway Bridge. Out of this, 7.0 lac cusecs
of water was released from the Tajewala Barrage, which inundated around 130 villages
and 25 urban colonies in Delhi [34–38]. Tajewala is the main barrage that is used by the
Department of Irrigation and Flood Control (I&FC), Government of Delhi to regulate the
Yamuna waters entering Delhi NCT.

The critical analysis of the flood zoning pattern reveals that the high-risk zones are
the areas that have earlier been identified as unplanned or poorly planned areas having
high population densities and sub-standard housing structures [38]. These include areas of
North Delhi and the Trans-Yamuna Area. Some of the colonies that have come up in these
areas are at 3 to 4 m below the 1978 flood levels. The community exposed to the highest risk
from floods comprises the families living in the villages and unauthorized colonies within
the riverbed. There are over 15,000 such families, having over 75,000 persons situated on
the wrong side of the embankments. These people live on the edge of the floods and are
the first ones to find their homes washed away [39–42]. In terms of monetary losses, in the
1978 flooding event, the total damage to crops, houses, and public utilities was estimated
at Rs. 176.1 million. In 1988, floods affected approximately 8000 families. In 1995, floods
rendered about 15,000 families homeless. In 2013, around 10,000 people were evacuated
due to rising water levels and shifted to tents set up at safer places. The worst–affected
areas include Old Railway Bridge, Akshardham, Geeta Colony, Okhla, Garhi Mandu,
Madanpur Khadar, and Usmanpur [43–48].

The present study focused on developing an integrated approach using a geographic
information system (GIS) and field-based approach to map the maximum flood extent in
the eventuality of the highest surge in the flood levels measured at the Old Delhi Railway
gauging station. This is the primary early flood warning gauging station for the whole
Delhi NCT downstream. The study also developed a forecasting regression model based
on gauge level and time series precipitation data in the Yamuna River National Capital
Territory (NCT) of Delhi to assist the existing flood warning system of the Delhi NCT. The
approach used in this study is very significant as the primary cause of the flooding in the
study area is not precipitation alone but the inefficient urban drainage of the study area
of the Delhi NCT. Therefore, using hydrodynamic models such as HEC-RAS alone has
not proved sufficient as an early warning model. It needs to be supplemented with the
GIS-based approach presented in this study to understand the maximum extent of the
flood to warn the maximum number of people affected in the eventuality of an extreme
flooding event.

2. Materials and Methods

The Delhi NCT, occupying an area of 1483 sq km., lies between latitudes 28◦24′15′ ′

and 28◦53′00′ ′ N and longitudes 76◦50′24′ ′ and 77◦20′30′ ′ E with an average elevation
of 233 m (ranging from 213 to 305 m) above the mean sea level (Figure 1). As per the
2011 census, Delhi NCT has three statutory towns, 110 census towns, and 112 villages. The
population of Delhi has increased at a rate of 2.1% per annum during the decade from
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2001 to 2011. Delhi ranks first in terms of population (13.8 million), whereas Lakshadweep,
with 60,650 people, has the lowest population among union territories (Figure 2). Delhi’s
population has grown from a meager 405,800 in 1901 to a staggering 16,753,200 in 2011,
making it one of the largest growing cities in the world [49]. The Delhi region received
the maximum share of foreign direct investment (FDI) compared to other states [50]. This
allowance of 100% FDI in real estate and infrastructure by the Indian government has
made Delhi susceptible to rapid urban growth [51]. Consequently, agricultural and allied
activities have reduced output from the primary sector of Delhi’s economy.
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This predominant shift from agriculture to urban work services created abundant job
opportunities that have attracted people from different states to search for employment [52].
The cultural model of elitism is yet another factor that attracts people to the city [53]. These
factors have exacerbated the recurrent flooding phenomenon in the region that damages
properties, human lives, and the environment.

Sustainability 2021, 132, 12850 5 of 20 
 

Figure 1. Study area map Delhi NCT (National Capital Territory) (B) with respect to India (A), and 
floodplain of NCT Delhi (C). 

This predominant shift from agriculture to urban work services created abundant job 
opportunities that have attracted people from different states to search for employment 
[52]. The cultural model of elitism is yet another factor that attracts people to the city [53]. 
These factors have exacerbated the recurrent flooding phenomenon in the region that 
damages properties, human lives, and the environment. 

 
Figure 2. Population density map of Delhi NCT (revised). 

Delhi can be divided into three major drainage basins, ultimately discharging into 
the Yamuna River: Najafgarh, Barapulaah, and Shahdara basins. The Delhi NCT is prone to 
flooding from the Yamuna river, which has a catchment in Haryana, and the Sahibi River 
(Rajasthan) via the Najafgarh drain. 

The Yamuna River enters Delhi from the northeast near Palla at an altitude of 210.3 
m, and, after a traverse of about 40 km, it leaves Delhi at an altitude of 198.12 m near 
Jaitpur in the south. Nearly every year, there is flooding in the Yamuna River, the intensity 
of which may be low, medium, or high according to the classification set up by the Irriga-
tion and Flood Control Department, Delhi Government (I&FC). According to the I&FC 
department, it is a low flood when the gauge levels are below 204.22 m. Between 204.22 m 
and 205.44 m, floods are classified as medium, and above 205.44 m, floods are classified as 
a high category. The water level of Yamuna in summers is found to be nearly 201.0 m. Dur-
ing this type of flood, the water generally remains within its regime, and no danger is 
created to life and property and is thus referred to as the low category. The floods that reach 
the water level between 203.0 m and 206.44 m are considered medium category floods; the 
water spreads out of the regime and touches the embankments constructed on both sides 
(Table 1). The floods hitting the Yamuna River in 1967, 1971, 1975, 1976, 1978, 1988, 1995, 
1998, 2010, 2013, and 2018 have been the major ones reaching a water level of 206.0 m or 
more and thus have been classified as high category floods [32]. 

  

Figure 2. Population density map of Delhi NCT (revised).

Delhi can be divided into three major drainage basins, ultimately discharging into
the Yamuna River: Najafgarh, Barapulaah, and Shahdara basins. The Delhi NCT is prone to
flooding from the Yamuna river, which has a catchment in Haryana, and the Sahibi River
(Rajasthan) via the Najafgarh drain.

The Yamuna River enters Delhi from the northeast near Palla at an altitude of 210.3 m,
and, after a traverse of about 40 km, it leaves Delhi at an altitude of 198.12 m near Jaitpur in
the south. Nearly every year, there is flooding in the Yamuna River, the intensity of which
may be low, medium, or high according to the classification set up by the Irrigation and
Flood Control Department, Delhi Government (I&FC). According to the I&FC department,
it is a low flood when the gauge levels are below 204.22 m. Between 204.22 m and 205.44 m,
floods are classified as medium, and above 205.44 m, floods are classified as a high category.
The water level of Yamuna in summers is found to be nearly 201.0 m. During this type of
flood, the water generally remains within its regime, and no danger is created to life and
property and is thus referred to as the low category. The floods that reach the water level
between 203.0 m and 206.44 m are considered medium category floods; the water spreads
out of the regime and touches the embankments constructed on both sides (Table 1). The
floods hitting the Yamuna River in 1967, 1971, 1975, 1976, 1978, 1988, 1995, 1998, 2010, 2013,
and 2018 have been the major ones reaching a water level of 206.0 m or more and thus have
been classified as high category floods [32].
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Table 1. Flood level locations at various gauging sites of the Yamuna River.

Site Number Location Name Actual Flood Level Value 1

1 Palla Village 212.30 m
2 Jhangola Village 211.15 m
3 Jagatpur Bund 209.35 m
4 Wajirabad Barrage 208.05 m
5 Old Delhi Railway Bridge 207.11 m
6 Yamuna Barrage 205.06 m
7 Okhla Barrage 200.10 m
8 Jaitpur Village 198.07 m

1 Flood level value obtained from I&FC Department for the year 2013.

For generating the land use land cover (LULC) information map for the Delhi NCT,
we used a Worldview-2 multispectral satellite image, Dated 21 September 2015. Further,
a high-resolution, 1-m digital elevation model (DEM) was developed using Cartosat stereo
pair data (2.5 m spatial resolution). Both of these datasets were procured from the National
Remote Sensing Center, Indian Space Research Organization, Hyderabad (NRSC, ISRO) and
were already pre-processed for radiometric and geometric corrections. A high-resolution
DEM is essential for flood zonation mapping based on gauge level heights. DEM was
generated using ERDAS-IMAGINE OrthoBASE Pro software—a standard image processing
and GIS software suite [54,55].

Land use land cover (LULC) information is vital for understanding the evolution and
management of floods. After analyzing the available ground truth information, it was
decided that categories of specific LULC types should be selected to ensure that accurate
mapping could be performed. Using the visual image interpretation technique at 1:1000
scale, we classified the image into the following categories: water, forest, agriculture,
recreational park, open-land, and built-up [56]. The LULC was validated using ground-
truthing. Using spot height procedure and embankment information, we generated the
potential flood-affected region under the maximum possible gauge levels at the Old Delhi
Railway gauge station (Figure 3). The overall methodology used in the present study is
shown in Figure 4.
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3. Results and Discussion

Disasters wreak havoc on life, property, and overall human well-being [57,58]. Years
of economic development and infrastructural assets are washed off with every flooding
event, particularly in the developing countries of Southeast Asia, such as India, Pakistan,
and Bangladesh [59–63]. The difference between the developed and developing worlds in
the case of managing floods lies in their complex differential socioeconomic setups [64–68].
Moreover, many disasters are localized in nature having a lesser spatial extent of the
damage. However, the flood is spatially an extensive nature’s fury [69]. Hence, to manage
and mitigate floods in the developing world, each aspect of this phenomenon must be
understood. While hydrodynamic models such as HEC-RAS work fine in the United
States, it fails to provide promising results in many parts of the Indian subcontinent
mainly because of the non-availability of the basic modeling parameters [70–74]. Therefore,
an out-of-box approach is usually devised by the researchers to solve such problems.
Using a remote sensing, GIS, and field-based approach, the present study tried to feed the
current flood management plan of the Delhi NCT with the spatial extents of the maximum
flood inundation.

The results show that most of the downstream sections of the catchment and the
various land uses in these areas are at high levels of flood risk. Delhi NCT has an average
elevation of 233 m (ranging from 190 to 313 m) above the mean sea level (Figure 5). The
elevation map of the study area shows that the southern parts of the region are at higher
elevation levels than the eastern and northern parts. The flood plains of Yamuna exhibit
much lower elevations. The South Delhi part has a higher elevation, and the East Delhi
part is near the Yamuna.
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The area under different LULC categories of the study area, i.e., agriculture, river
and water bodies, gardens and parks, and open lands, are shown in Table 2. The Delhi
NCT region is urbanized, with approximately 15% of the total area contributing to built-up
land use, as shown in Figure 6, Table 2. The land use/land cover indicated that built-up
comprises 164.13 sq km (15.32%), open land 252.82 sq km (23.59%), parks 70.64 sq km
(6.59%), water bodies 2.04 sq km (0.19%), forest 131.35 sq km (12.26%), and agriculture
(450.69 sq km, (42.05%).
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Table 2. Area under different land use and land cover in the Delhi NCT as of 2015.

S. No. Class Name Area (km2) Percentage

1 Cultivation land 450.69 42.05
2 Forest 131.35 12.26
3 Water Bodies 2.04 0.19
4 Parks 70.64 6.59
5 Open Land 252.82 23.59
6 Built up 164.13 15.32

According to the estimates of Jain et al. (2016), the built-up percentages of the Delhi
region increased from 7.67% of the total area in 1977 to 38.28% percent of the total area
in 2014 (Figure 7). Similarly, the area under cultivable land decreased from 44.66% in
1977 to 21.91% in 2014 [75]. These area estimates are for the whole Delhi region, whereas
Table 2 shows the area estimates under different LULC categories for Delhi NCT alone.
Nonetheless, it is clearly visible that there is an enormous increase in the impervious
surfaces in the Delhi region, which is one of the causes of an increase in the area exceedingly
vulnerable to floods [75]. The number of flooding events from 1965 until 2019, according
to the three IF&C category floods, are presented in Table 3 and Figure 8. It can be seen
that, although the number of flooding events has almost remained the same in various
decades, the damage caused has increased manifold. As shown in Figure 8, there has
been a tremendous increase (nearly 400%, or 4-fold) in the urbanized area in Delhi [75].
It has created an entirely different scenario for the authorities to mitigate and manage the
recurring flooding events in the capital.
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Table 3. Number of flooding events under different intensity categories from 1963 until 2019, and
percent urban area of Delhi at different time periods.

Time Period
No. of Flooding Events * Percent

Urban Area #Low
(<204.22 m)

Medium
(204.22 m–205.44 m)

High
(>204.44 m)

1963–1973 0 6 5 -
1974–1981 0 3 5 7.67
1982–1990 2 4 3 -
1991–1999 1 4 4 23.26
2000–2009 2 6 2 36.44
2010–2019 1 4 5 38.28

Source: * I&FC Department; # Jain et al. 2016.
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Moreover, the urban drainage system constituting the city’s 18 major drains has also
become inefficient in handling the floods, resulting in their getting overbanked. These
drains were already under the immense pressure of the city’s effluent discharge, which has
reduced their water-holding capacities, resulting in sudden tipping off their banks during
flooding surges.
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R2 = 0.96 for the scatterplot of percent area vs time periods depicts that there has been an enormous increase in the urban
area in Delhi since the 1974–1981 period.

The maximum flood inundation extent was evaluated using an integrated remote
sensing, GIS, and field-based modeling approach. We aimed to find the spatial extent of
the flood when the gauge readings at the Old Delhi Railway gauging station are at 207 m
and 208 m, maximum to date, so that an early warning mechanism is set up for the affected
settlements when the gauge readings reach above specific levels. We have used the linear
regression model results for forecasting gauge levels at 208 m using the time precipitation
data of the Yamuna catchment. Figure 9a shows the gauge levels of flooding events from
1963 until 2019 with the corresponding rainfall values in the Yamuna catchment. Figure 9b
shows the regression plot between the gauge level and rainfall. It has been found that both
are positively correlated with Pearson’s correlation coefficient equal to 0.62, indicating a
strong positive significant correlation between the two. The linear regression results are
shown in Table 4a,b and can be used to forecast gauge levels against the observed rainfall
in the catchment. However, it is pertinent to mention that the flow of Yamuna within
Delhi is primarily influenced by discharge from the Tajewala Headwork 240 km upstream.
In the event of heavy rain in the catchment area, excess water is released from Tajewala.
Depending upon the river flow level downstream, it takes about 48 h for the Yamuna level
in Delhi to rise. The rise in water level also causes a backflow effect on the city’s drains.
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Table 4. (a) Regression Statistics of the linear regression model. (b) Significance of linear regression model.

(a) Regression Statistics of the linear regression model
Multiple R 0.65
R Square 0.41

Adjusted R Square 0.40
Standard Error 0.57
Observations 56

(b) Significance of linear regression model

Coefficients Standard
Error t Stat p-Value Lower 95% Upper 95% Lower 95.0% Upper 95.0%

Intercept 203.70 0.2781 732.45 0.005 203.14 204.25 203.14 204.25
613.607 0.0025 0.00041 6.145 0.005 0.0017 0.0033 0.0017 0.0033

The highest flood level value has been taken from the last 50 years to restrict the
flood boundary. It has been categorized into two categories: actual flood value, i.e., 207 m,
exceeding flood value, i.e., 208 m at the Old Delhi Railway gauging station. The flood extent
derived was used to generate a risk map. The database created was shared with authorities
for decision and planning purposes to help devise strategies during extreme water levels.
The resulting maps and data were helpful in municipal planning and emergency action
plans during floods (Figures 10–13).
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Figure 13. Zoomed in view of flood affected areas.

The results of the total and individual areas affected by the flood are shown in
Tables 5–7. The built-up class affected by the flood is 0.88 sq km at 207 m and 1.00 sq km at
208 m levels.

Table 5. Flood-affected area in km2.

Land Use Level on 207 m Old Delhi
Railway Bridge

Level on 208 m Old Delhi
Railway Bridge

Built up 0.88 1.00
Sand Area 0.02 0.027

Barren Land 3.43 2.59
Cultivation Area 37.87 38.12

Scrub Area 6.16 6.22
Vegetation Area 2.23 0.34

Table 6. District flood boundary area (in km2) (exceeding flood value for 208 m at Old Delhi
Railway Bridge).

District Name Actual Flood Boundary Area Built-Up Area

Southeast 10.71 0.42
East 12.01 0.20

Shahdara 1.101 0.0002
Central 16.05 0.12

Northeast 20.84 0.24
North 8.18 0.005
Total 68.89 1.00
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Table 7. District flood boundary area (in km2) (exceeding flood value for 207 m at Old Delhi
Railway Bridge).

District Name Actual Flood Boundary Area Built-Up Area

Southeast 9.81 0.60
East 11.83 0.20

Shahdara 1.08 0.0002
Central 15.39 0.042

Northeast 20.84 0.024
North 8.14 0.005
Total 67.09 0.88

We have observed that the flood in Delhi NCT is more a consequence of a lousy
drainage system than a traditional precipitation-discharge relationship, which is best mod-
eled using hydrodynamic models such as HEC-RAS and others (Figure 14). We propose
to evacuate the high-risk zone people to higher grounds as soon as the warning is issued.
Prior to any flooding event, there must be policy related to relocation of the settlements of
the high-risk zones. Moreover, to tackle the inefficient urban drainage system of the Delhi
NCT, periodical removal of silt must be ensured to restore their water holding capacity.
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Perrenial flooding in the Delhi segment of the Yamuna River has a devastating effect
on the life and property of the inhabitants, particularly those residing close to the banks.
The damage to infrastructure severely affects the economy and, hence, the development of
Delhi. There is considerable stress on the floodplain, mainly due to rapid urbanization that
has taken place during the past few decades. It is clearly evident from the present study
that a large number of colonies in the low-lying areas of Delhi are at a considerable risk
of flooding, even during moderate-intensity floods. A combination of structural and non-
structural measures can minimize the risk of Delhi floods. We propose the formulation a
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people-friendly policy for the relocation of vulnerable communities and concrete measures
to ensure an efficient urban drainage system.

GIS is ideally suited for planning floodplain management strategies with the help
of post-disaster verification of floodplain extents and depths, which was successfully
implemented in the present work. The study explored the spatial distribution of flooding,
the vulnerability of different assets, particularly concerning buildings, land uses, and flood
control work in the Yamuna floodplain in Delhi under extreme flooding scenarios for the
national capital of India. A baseline framework was established that could be used to assess
the flood disaster risk reduction and to supplement the already existing flood management
infrastructure in the study area to help the planners deal with the floods more efficiently.

4. Limitations and Future Scope

The present work mapped the areas susceptible to flooding under the most extreme
gauge level scenario at the Old Delhi Railway discharge station to date. However, due to
data limitations, many aspects of the present work remained untouched, which can be
added once the data becomes available. In the context, one of the unexplored problems
is the assessment of how the headwater at the Tajewala Barrage could be managed to
regulate the entry of flood waters into Delhi (NCT). To address this issue, a water supply
and demand scenario between these two locations can be modelled using models like
WEAP (Water Evaluation and Planning) [75,76]. The results from this analysis can be
used to depict how much extra water during floods can be allocated towards different
areas/sectors to save the Delhi NCT from excessive damage. This understanding is also
substantiated by the observation from this study that around 38% variation in river gauge
level unexplained during the correlation analysis is actually influenced by an upstream
regulation point, i.e., Tajewala Headworks.

Further, in order to better analyze the urban flooding, the Storm Water Management
Model (SWMM) can be used to assess the efficiency of the present urban drainage system
of Delhi (NCT) [77,78]. The model can simulate storm events and the resulting flooding
scenarios and shall help the I&FC authorities devise an efficient drainage system in the
region. This analysis can be further supplemented with the probability analysis of river
discharges that shall provide insights into how frequently it surpasses the normal levels.

The fulfillment of these information gaps in the present study shall, in the future,
provide a completely different understanding of the Delhi (NCT) flooding process and help
the government devise a more comprehensive flood management and mitigation plan.

5. Conclusions

The integrated approach of remote sensing, GIS, and field surveys for mapping and
modeling current and future flood extents used in this work proved to be very effective
for disaster risk mapping and management. This method has an excellent prospect of
creating a long-term flood preparedness, risk assessment, and relief management database.
This study explored the spatial distributions of flooding and the vulnerability of different
assets and supplemented already existing flood forecasting mechanisms in the Yamuna
floodplain in Delhi. The Yamuna River has caused serious flood problems in the union
territory of Delhi by inundating large areas during flood season. Metro stations, the
Akshardham temple, and sports complexes are encroaching on the Yamuna floodplain and
are examples of shortsightedness and an invitation to disasters. A baseline framework was
established to assess the flood disaster risks and flood risk reduction. The highest flood
level value has been taken from the last 50 years to restrict the flood boundary. Further,
the linear regression model of time series of precipitation and gauge level records proved
essential for forecasting gauge levels in the event of a storm event to formulate an early
warning system for preventing losses to life and property in the study area. The result
shall also help decision-makers generate flood plain boundaries for carrying adequate
risk management policy initiatives. It shall also allow planners to conduct site suitability
analysis for prevention and mitigation measures in the face of potential threats. Further,
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the same data will identify building vulnerability due to flooding to improve construction
practice. The paper shall also effectively contribute to building a decision support system
for planning and mitigating floods. Budgeting (financial impact analysis) for flood-affected
areas can be done based on this study.
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