
sustainability

Article

Analyzing Static Analysis Metric Trends towards Early
Identification of Non-Maintainable Software Components

Thomas Karanikiotis 1,2,* , Michail D. Papamichail 1 and Andreas L. Symeonidis 1,2

����������
�������

Citation: Karanikiotis, T.;

Papamichail, M.D.; Symeonidis, A.L.

Analyzing Static Analysis Metrics

Trends towards Early Identification of

Non-Maintainable Software

Components. Sustainability 2021, 13,

12848. https://doi.org/10.3390/

su132212848

Academic Editors: João M. Fernandes,

Nelly Condori-Fernandez, Rafael

Capilla and Patricia Lago

Received: 30 September 2021

Accepted: 17 November 2021

Published: 20 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Cyclopt P.C., 55535 Thessaloniki, Greece; mpapamic@cyclopt.com (M.D.P.);
symeonid@ece.auth.gr or asymeon@cyclopt.com (A.L.S.)

2 School of Electrical and Computer Engineering, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece

* Correspondence: thomas.karanikiotis@issel.ee.auth.gr or tkaranikiotis@cyclopt.com

Abstract: Nowadays, agile software development is considered a mainstream approach for software
with fast release cycles and frequent changes in requirements. Most of the time, high velocity in
software development implies poor software quality, especially when it comes to maintainability.
In this work, we argue that ensuring the maintainability of a software component is not the result
of a one-time only (or few-times only) set of fixes that eliminate technical debt, but the result of
a continuous process across the software’s life cycle. We propose a maintainability evaluation
methodology, where data residing in code hosting platforms are being used in order to identify
non-maintainable software classes. Upon detecting classes that have been dropped from their project,
we examine the progressing behavior of their static analysis metrics and evaluate maintainability
upon the four primary source code properties: complexity, cohesion, inheritance and coupling. The
evaluation of our methodology upon various axes, both qualitative and quantitative, indicates that
our approach can provide actionable and interpretable maintainability evaluation at class level and
identify non-maintainable components around 50% ahead of the software life cycle. Based on these
results, we argue that the progressing behavior of static analysis metrics at a class level can provide
valuable information about the maintainability degree of the component in time.

Keywords: software maintainability; software quality; software evolution; trend analysis; static
analysis metrics

1. Introduction

Given the increasing demand to reduce the time-to-market, while coping with con-
tinuously changing user requirements, agile development methodologies have become
state-of-practice. In this context, software development is an iterative process of introduc-
ing new and updating existing features while at the same time maintaining software. This
last part, i.e., maintaining software, is often overlooked during the agile life cycle. One of
the most important reasons for this is that in the “speed vs. quality” dilemma, faster release
cycles appear more beneficial in a short term perspective. However, in a mid- to long-term
perspective, maintaining software at good quality ensures that risks are mitigated more
easily, while technical debt does not “explode”, this way leading to failure or challenged
(in cost and time) software projects. Given this constant change combined with the modern
software paradigm that involves multiple contributors and technology stacks, the need to
produce maintainable software is evident.

According to ISO/IEC 25010:2011 [1], software maintainability is defined as the
“degree of effectiveness and efficiency by which a product or system can be modified by the
intended maintainers” and is composed of the following five characteristics: Modularity,
Reusability, Analyzability, Testability and Modifiability [2]. The importance of maintainability
as a quality attribute is indicated by several studies [3,4], which conclude that only 30–40%
of the total man effort refers to development, while the remaining 60–70% refers to purely

Sustainability 2021, 13, 12848. https://doi.org/10.3390/su132212848 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-6117-8222
https://orcid.org/0000-0001-8973-0293
https://orcid.org/0000-0003-0235-6046
https://doi.org/10.3390/su132212848
https://doi.org/10.3390/su132212848
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su132212848
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su132212848?type=check_update&version=2


Sustainability 2021, 13, 12848 2 of 19

maintenance costs. This is also more than evident considering the fact that 90% of the
software life cost is related to its maintenance phase [5]. At the same time, software
sustainability is defined as “the capacity of the software to endure in time” [6], which is
closely related to software maintainability and may even use the same ISO definitions
to be quantified [7]. It is, thus, obvious that improving software maintainability directly
improves software sustainability and so the need for methodologies and tools to assess
and understand maintainability emerges.

Given the importance of maintainability towards achieving effective software devel-
opment, various metrics have been proposed that can be used as the information basis
upon which maintainability predictors and evaluators can be built. While various systems
have been proposed that quantify maintainability from different perspectives, most of
these systems assess maintainability on a snapshot of the source code, do not provide
explainability on the reasons why maintainability is poor and do not capture the rate that
the maintainability is degrading.

In this work, we propose a continuous maintainability evaluation methodology that
is explainable and provides actionable insights to software engineers. The proposed
methodology is based on the primary source code properties and the static analysis metrics
they consist of in order to identify software components that will eventually become non-
maintainable. Our approach employs data residing in code hosting platforms to create the
ground truth, upon which the progressing behavior of the software quality metrics will be
analyzed. The upward trend, along with the actual value of the metrics of a component
that has proven non-maintainable (has been dropped from the project it belongs to for
quality-related criteria) can provide valuable information and be the basis for actionable
recommendations towards the developers.

To this end, we extend our previous methodology proposed in [2]. There, we proposed
a methodology for evaluating the maintainability degree of a software package over time
on a per release basis. Specifically, we examined each new release and evaluated the static
analysis metrics regarding the primary source code properties per release. Our current
work differentiates from the previously proposed methodology in various axes. First, the
analysis of the static analysis metrics is performed on a weekly basis and not per release,
which goes hand in hand with the actual development process followed by the developers,
since new functionality is usually added constantly at the development stage (on a weekly
or biweekly sprint basis). Additionally, we propose the evaluation of the maintainability
degree at a class level, since it follows the way the developers actually organize their
functionality, without the need to aggregate metrics, which is a vital step of the package-
level analysis. To that end, we will also refer to the single class under examination as a
software component. The use of classes as the base of our approach introduces the need to
examine different metrics and create different models. Finally, while in [2] the only selected
feature that is used to train the different models is the trend of each single metric over time;
here, we argue that the final value of each metric (i.e., the value of the metric in the last
examined week) can also provide valuable information about the (non)maintainability of
the software artifact (which is now defined as a class software component).

The rest of this paper is organized as follows. Section 2 reviews current literature
approaches on maintainability evaluation using static analysis metrics, while Section 3
defines non-maintainability and presents the concepts included in our analysis. Section 4
describes the designed methodology along with the benchmark dataset and the training
procedure of the proposed maintainability evaluation models, while Section 5 evaluates
our methodology on a set of diverse axes. Finally, Section 6 examines the limitations that
threaten the validity of our system, and Section 7 provides insight for further research and
concludes this paper.

2. Related Work

The importance of maintainability as a quality attribute along with its widely recog-
nized value as a way to manage technical debt has drawn the attention of researchers for



Sustainability 2021, 13, 12848 3 of 19

years [2,8,9]. Various approaches suggest employing code metrics as a way to quantify
the extent to which a software component is maintainable. One of the most dominant
approaches proposed is the “maintainability index” [10], which aggregates the Halstead
Volume (HV), Cyclomatic Complexity (CC) and Lines of Code (LOC) metrics. Various stud-
ies use the maintainability index (MI) as is [10–12] or modify it [13] in order to best fit the
empirically validated results. However, its applicability and accuracy are under discussion
since it uses fixed thresholds which are both project and technology dependent [8].

Estimating software maintainability through static analysis metrics is a non-trivial
task and often requires the aid of quality experts to manually examine the source code.
Obviously, the manual examination of source code can be very tedious, or even impossible
for large and complex software projects and/or projects that change on a regular basis.
This is the case for the vast majority of today’s projects, given the constantly increasing
demands both in terms of functional and/or non-functional requirements. On top of
that, using pre-defined thresholds has a negative impact on the ability of the constructed
maintainability evaluations models to generalize as they fail to incorporate the individual
characteristics of each software project under evaluation.

In an effort to overcome such restrictions, researchers have proposed deriving metrics
thresholds and/or acceptable intervals by applying machine learning techniques on bench-
mark repositories [14–18]. These techniques involve fitting the values of metrics into prob-
ability distributions [19], performing ROC Curve analysis [20] or even bootstrapping [21].
Additional maintainability evaluation approaches suggest the usage of Artificial Neural
Network (ANN) models [9] and Adaptive Multivariate Regression Splines (MARS) [22].

In the same context, Schnappinger et al. [23] resorted to engaging experts in order
to manually label a set of data regarding their maintainability degree and made use of a
set of various metrics to evaluate maintainability. Other recent research works examine
various metrics and approaches for evaluating maintainability, such as the examination
of open source projects and their maintainability degree [24], the combination of machine
learning techniques such as the Bayesian networks and association rules [25], the use of
soft computing techniques such as the neuro-fuzzy model [26] or employing ensembles to
predict maintainability on imbalanced data [27]. Other approaches involve the analysis of
software releases as a way for evaluating the maintainability degree of software. Samo-
ladas et al. [28] examine the maintainability degree of open-source software projects by
investigating how the maintainability index (MI) changes over the releases.

However, all approaches are still confined by the empirical evaluation of the software
projects towards the formulation of the necessary ground truth, which involves determining
the software components that are non-maintainable.

In order to overcome the aforementioned limitation, our previous approach involves
employing information residing in online software repositories and combining it with the
values of static analysis metrics [29]. Although using metrics can provide useful informa-
tion regarding the maintainability degree of software components, it is still restricted by
the fact that it can only identify non-maintainability after its occurrence, and thus, it is
unable to act in a preventive manner.

In this context, in an effort to predict non-maintainability at an earlier stage, we
resort in performing a full life cycle analysis across releases that harnesses the progressing
behavior of various static analysis metrics, which quantify certain primary source code
properties towards evaluating the degree to which a software component is maintainable.
In [2], we proposed a maintainability evaluation methodology, based on software releases,
which identifies non-maintainable packages at an earlier stage. The evaluation of the
maintainability degree is performed at package level and on a per release basis. Specifically,
the releases of a software project are examined, and the primary code properties are
evaluated. The values of these metrics form a time-series over releases, which is then
analyzed in order to calculate the trend of each property over time. Finally, a model is
created per each property, which aspires to identify components that eventually become
non-maintainable.



Sustainability 2021, 13, 12848 4 of 19

In this work, we aspire to extend our previous methodology proposed in [2]. To that
end, the contributions of this paper span the following axes:

• Although effective, analysis on a per release schedule does not take into account
state-of-practice software development approaches; we argue that a per week analysis
is even more suitable.

Obviously, the evaluation of the maintainability degree per release of the software
project can provide stability, since a software release contains only completed functionalities
and architectural design choices and resembles an actual maturity level. However, such
a choice may have certain inherent weaknesses. The release schedule that is followed in
projects is usually not stable in time, which could bias the models and result in false positive
predictions. We consider that an analysis per week is more proper and goes hand-in-hand
with the actual development schedule the developers follow. Following this approach, one
can identify low degrees of maintainability at the time they occur and provide actionable,
yet on time, recommendations.

• We argue that the static analysis metrics at the class level can provide valuable infor-
mation that is lost at the package level.

At the same time, the maintainability evaluation in [2] is performed at a package
level, since the fluctuations in class-level static analysis metrics can lead to less accurate
results. Although true, one may argue that these fluctuations come from the way the
developers actually produce software, working on classes separately. Thus, it is a valid
hypothesis to assess maintainability from a developer’s perspective and identify non-
maintainable components at class level. Additionally, the averaging that takes place during
the calculation of the static analysis metrics at package level flattens the distribution of the
metrics, causing many times the loss of valuable information.

• We further extend our previously proposed modeling with the addition of the actual
value of each static analysis metric in the final week of analysis.

Finally, while the trend of a static analysis metric can be a good indicator of the
maintainability degree of the metric, it may not be adequate enough to indicate non-
maintainability. The final value of each software quality metric should also be taken
into account, as it reflects the current status of the software component’s maintainability.
Combining the current value of the static quality metrics along with their trends can
provide significant predictive ability to designate non-maintainability in advance.

In this work, we further extend our previous work [2] in order to include the afore-
mentioned modifications. Specifically, we employ data from code hosting platforms, as
well as their static analysis metrics, in order to examine the progressing behavior of these
metrics on a per week basis. Many models are created that aspire to evaluate the main-
tainability degree of a class derived from the trend of its software quality metrics and the
actual values these metrics appear. Different models are built for the evaluation of the
(non-)maintainability of a software component upon each metric, as well as the aggregation
of the decisions of these models upon each primary source code property. Finally, a general
model aspires to provide the final evaluation of the maintainability degree of a software
component, based on the respective predictions of the property models.

3. Quantifying Non-Maintainability Using Metrics Trends

In this section, we analyze the basic concepts that are connected to maintainability
and constitute our approach to evaluate the maintainability degree of a given compo-
nent. We discuss the definition of maintainability (and non-maintainability), as well as its
interconnection with software quality metrics.

Following the ISO/IEC 25010:2011 standard [1], the maintainability degree of a soft-
ware component is composed by various sub-characteristics; Modularity, Reusability, Ana-
lyzability, Testability and Modifiability, which are described at length in [30]. While a lot of
different metrics have been proposed that could constitute predictors for evaluating main-
tainability, we only select metrics that correspond to primary source code properties that



Sustainability 2021, 13, 12848 5 of 19

are closely related to the quality characteristics proposed in the aforementioned standard,
which are the Complexity, Cohesion, Inheritance and Coupling properties.

In [2], we depict the relation that appears between the selected primary source code
properties and the quality characteristics that are related to maintainability. We argue
that Coupling and Inheritance affect all of the quality characteristics with a negative impact,
while Cohesion has a positive influence on all of them (i.e., the greater the value of the
Cohesion property, the stronger the characteristic). Complexity only affects Analyzability,
Modifiability and Testability in a negative manner (the lower the degree of Complexity is,
the more maintainable a software component is).

While the static analysis metrics provide a good reflection of the current status of
the software component under inspection, examining the progressing behavior of these
metrics can provide predictive ability and power. We argue that the identification of
metrics that appear to have a negative trend over time (have the tendency to get worse)
lead to actionable recommendations that could help the developers take action before the
component becomes non-maintainable and is dropped. Additionally, as already mentioned,
we claim that the design choice of examining the progressing behavior of the metrics not
per release but per week can identify non-maintainable components at the time they occur.
Figure 1 illustrates the degree of the Nesting Level (NL) metric of a given class selected
randomly from our dataset, as it is calculated by an analysis performed on a weekly basis
and the respective one performed after each software release. The blue line reflects the
NL of the class as it is measured on a weekly analysis, while the red line refers to the
NL calculated at each software release. It is obvious that the analysis per week is able to
identify fluctuations that, given that software releases are performed at random times, they
are unable to point out.

Figure 1. Trend of software quality metrics on per week and per release analyses.

In this work, we employ data residing in code hosting platforms in order to analyze
the progressing behavior of the software quality metrics that affect the primary source code
properties and influence maintainability. Towards evaluating maintainability and identify-
ing non-maintainable classes, we argue that components that have been dropped and left
out of the project can be used as a good indicator in combination with requirements set from
the quality point of view. A component that has been dropped from the software projects
that are examined not for functionality-related issues but due to non-maintainability can
provide useful information about the progressing behavior of the software quality metrics
until non-maintainability. Table 1 depicts the primary source code properties along with
the main static quality metrics they consist of. These metrics have been the basis upon
which our maintainability evaluation methodology has been built.



Sustainability 2021, 13, 12848 6 of 19

Table 1. Primary source code properties and static quality metrics.

Static Analysis Metrics

Source Code Property Metric Name Metric Description

Complexity
NL Nesting Level

NLE Nesting Level Else-If
McCC McCabe’s Cyclomatic Complexity

Cohesion LCOM5 Lack of Cohesion in Methods 5

Inheritance

DIT Depth of Inheritance Tree
NOC Number of Children
NOP Number of Parents
NOD Number of Descendants
NOA Number of Ancestors

Coupling

CBO Coupling Between Object classes
NOI Number of Outgoing Invocations
NII Number of Incoming Invocations
RFC Response set For Class

4. Materials and Methods

In this section, we present our maintainability evaluation methodology that aspires to
assess the maintainability degree of software components based on specific source code
properties. As already mentioned before, our analysis is performed at a class level, so we
aspire to identify each class that eventually becomes non-maintainable.

4.1. Overview

Our analysis towards evaluating maintainability of software components is illustrated
in Figure 2 and it comprises multiple steps. First, we retrieve the necessary information
from popular Java repositories from GitHub (https://github.com/, Access Date: 19 Novem-
ber 2021). Using this information for each repository, we extract the set of classes that are
included in the project, as well as the information about when each class first appeared in
the project and the last week it existed within the repository, i.e., the life cycle of each class.
In the next step towards the maintainability evaluation of each class, we perform static
analysis at class level, in order to calculate the static analysis metrics of the primary source
code properties that are highly related to maintainability: complexity, cohesion, inheritance
and coupling. The maintainability degree of each class is assessed based on these source
code properties.

GitHub

Repositories
Information

Java 
Repositories

Class 
Selection

Static analysis
metrics

Week 
Analysis

Metrics
Trend

Maintainability
Evaluation 

Maintainability 
Models

Complexity

Cohesion

Coupling

Inheritance

McCC, NL, NLE
models

DIT, NOC, NOP, NOD, NOA
models

LCOM5
model

CBO, NOI, NII, RFC
models

Figure 2. System overview.

Having calculated the static analysis metrics for each class of the software projects,
in the next step, we calculate the trend of each metric across the weeks the class “lived”

https://github.com/


Sustainability 2021, 13, 12848 7 of 19

in the project. The trend reflects the progress of each class across weeks and can provide
valuable information about the maintainability of the class. With the trend information
about each class, the class life cycle details and the actual values of the static analysis
metrics of each source code property, we can create our models, evaluating maintainability
from each metric’s perspective. Then, we combine the maintainability “score” provided
by the modeling of each of the static analysis metrics by creating a separate model for
each primary source code property, i.e., the complexity model, the cohesion model, the
inheritance model and the coupling model. Our design choice for training different models
for each static analysis metric firstly and for each primary code property secondly relies in
the fact that we want to provide useful and actionable recommendations to the developers
that can be interpreted easily and lead to maintainability improvements of the software
project under evaluation. Finally, in the last step of our approach, we aggregate the output
of the four models into a single score that reflects the maintainability degree of the class
and predicts whether the class will be dropped soon due to maintainability-related inability
to sustain.

4.2. Dataset

Towards creating our system, we need to employ a dataset that contains a set of
different projects along with the static analysis metrics calculated for every class of the
software components. The projects need to exhibit some characteristics: They should have
a long life cycle (i.e., number of weeks the project is active and under development), a
number of different contributors that vary between them and a large number of different
classes. At the same time, the number of issues opened and closed per week needs to
be taken into account, as it depicts that new features are introduced constantly, while
the project is always under maintenance. We select three repositories as representative
for building the benchmark for our methodology that exhibits the defined characteristics:
antlr4 (https://github.com/antlr/antlr4, Access Date: 19 November 2021), aws-sdk (https:
//github.com/aws/aws-sdk, Access Date: 19 November 2021) and grails-core (https://
github.com/grails/grails-core, Access Date: 19 November 2021). Table 2 depicts some
statistics about the selected projects as they are calculated across their life cycle.

Table 2. Selected projects’ statistics.

Metric antlr4 aws-sdk Grails-Core

Total Lines of Code Analyzed 13,398,112 42,671,286 34,387,547
Number of Classes 2369 1168 2448
Number of Non-Maintainable Classes 1207 348 1864
Number of Contributors 263 6 237
Length of Life Cycle (Weeks) 440 434 584

The three selected projects contain a quite large amount of classes, which span across
a long project’s life cycle. There is a big number of classes that have been dropped at some
point in the software’s “life”, which can constitute our ground-truth towards identifying
components that eventually become non-maintainable and can be used to train our models.
Additionally, the number of contributors varies between the selected projects in an attempt
to examine projects developed by a varying number of developers and, thus, different
characteristics appear. The dataset is publicly available (https://doi.org/10.5281/zenodo.
5539789, Access Date: 19 November 2021).

As has already been mentioned before, our methodology is applied at a class level
and on a per week basis. As developers work and complete tasks almost per week, the
evaluation of the maintainability degree of the software components they develop at a
similar interval could provide actionable and applicable results towards the identification
of the components that could result in being non-maintainable. Figure 3 presents the
histogram of the length in weeks of the life cycle of all the classes from the three selected

https://github.com/antlr/antlr4
https://github.com/aws/aws-sdk
https://github.com/aws/aws-sdk
https://github.com/grails/grails-core
https://github.com/grails/grails-core
https://doi.org/10.5281/zenodo.5539789
https://doi.org/10.5281/zenodo.5539789


Sustainability 2021, 13, 12848 8 of 19

projects. The life cycle of a class is easily found by identifying the first and the last week
the class exists in the static analysis metrics of the dataset.

Figure 3. Histogram of the life cycle of each class in the dataset.

Figure 4 illustrates the distribution of the average lines of code per class (in logarithmic
scale) for the three different projects. The diversity both in the size of each software
component and in the number of weeks the class has been active and under development
can provide a generalization capability to our models.

10,000
 5000

 2000
 1000

Figure 4. Histogram of the life cycle of each class in the dataset.

4.3. Preprocessing

After creating our dataset by collecting all classes from the projects antlr4, aws-sdk
and grails-core, as well as their static analysis metrics, we need to process the data before
applying our models. First, we identify the classes that have been dropped at some point
of the project development time span, which will be used in the next steps of our modeling
procedure. Next, we filter the data in order to detect classes that have not been dropped
due to maintainability issues, discard these occurrences and eliminate biases. Additionally,
we inspect the evolution of the static analysis metrics over time, compute the trends and,
finally, we examine the trend coefficients in order to discard any outliers that could bias
the models.

The identification of the classes included in the three projects that have been dropped
at some point can be easily accomplished by making use of the static analysis information
and the weeks the name of each class appears on the dataset. Each class that does not exist
in a specific week of the software component under examination constitutes a possible
candidate for the non-maintainable classes.

As software classes can be dropped for various other reasons, such as change in
functionality or design choice, and not only for maintainability reasons, we need to examine
whether a class that has been dropped is, indeed, non-maintainable. To that end, we apply a
series of different filters to discard classes that were dropped for not maintainability-related
issues.



Sustainability 2021, 13, 12848 9 of 19

First, we filter out classes that do not have at least one of the static analysis metrics
with a positive trend. As all of the examined static analysis metrics affect maintainability in
a negative manner, a positive trend indicates a decrease in the metric and, thus, a decrease
in class maintainability. Consequently, a class that appears to have all of its static analysis
metrics improving over time is probably dropped due to changes in features, obsolete
functionality or other reasons with no quality-related criteria. On the other hand, a class
that has at least one metric that becomes worse over a long period of time constitutes a
probable candidate for the non-maintainable classes, especially when this period is long
enough.

Additionally, we keep only the classes that appear in the project for at least four weeks
before being dropped. This design choice is based on the fact that classes that are dropped
in less than a month usually constitute one-off components, which are discarded due to
change in functionality. A class that exists within the project for a long time constitutes a
basic component of the software development process, implements core functionality and
they can possibly be dropped due to maintainability reasons.

Finally, we identify classes that are identical and provide the same functionality based
on the examination of the static analysis metrics and code cloning detection techniques in
order to exclude the cases where a class has been renamed or has been placed in another
directory over time.

Having identified the non-maintainable classes, the next step of our approach involves
the computation of the trend of each metric. The metrics that refer to a specific class
and are calculated on a weekly basis constitute a time-series of values, which refers to
the evolution of the metric over time. We can approximate this time-series with a linear
regression approach, which can be used to calculate the trend of a metric based on the
following equations:

Ẏi = α · Xi + β (1)

N

∑
i=0

[(α · Xi + β)− Yi]
2 (2)

In Equation (1), the approximation Ẏi of the real metric value Yi is calculated with
response to a specific week Xi, where α refers to the slope and β to a constant factor. The
approximation coefficients α and β are calculated with regard to minimizing the sum of
squared error from the trend line, calculated in Equation (2). These equations differ from
the respective ones defined in [2] on the basis upon which these values are calculated. While
in [2], these values refer to a release basis, the aforementioned equations are calculated on
a weekly basis.

From the trend calculation described above, we make use of the slope α of the trend
line, as it refers to the tendency of each quality metric to increase. However, the upward
trend of a metric may not be adequate enough to indicate non-maintainability, as, in
many cases, the actual value of the metric itself can also provide useful information. For
example, a high value of McCabe’s Cyclomatic Complexity [31] can be a significant sign of
non-maintainability, even with a small trend. Consequently, we also make use of the current
value of the metric as an additional input to our models for evaluating maintainability.

In the last step of our preprocessing stage, we need to examine the generated trends
for each metric and apply some filters in order to eliminate any outliers that could bias the
models. To that end, we calculate the 1% and the 99% quantiles of both the final values of
the metrics and the slopes of the trend lines and discard any class whose values are beyond
these limits.

4.4. Models Construction

In the previous steps of our approach, we have identified the classes that have been
dropped due to maintainability issues. In the next step, we construct our models, training
a different model for each static analysis metric from the list of quality metrics of Table 1.
We select to use different models for each metric, as our primary target is the creation



Sustainability 2021, 13, 12848 10 of 19

of a system that can effectively provide actionable recommendations to the developers,
allowing them to easily interpret the results and apply targeted maintainability-related
fixes to their software components. For the modeling procedure, we select the Support
Vector Machines One-Class (SVMs One-Class).

The identification of a maintainable class is not a trivial task, and safe conclusions
cannot be made, since a class that exists within a project even in the final analyzed week
could be dropped in the next week of development. Thus, we can only identify the non-
maintainable classes, that have been dropped within the software development procedure.
Thereby, we select to use one class models (specifically the SVM One-Class models) that
aspire to identify classes that cannot be maintained. Table 3 depicts the number of non-
maintainable classes identified for each static analysis metric from the three selected
projects described above and the complete set of classes they contain. From the Table, we
can easily notice that the McCabe’s Cyclomatic Complexity (McCC), the Coupling Between
Object classes (CBO) and the Response set For Class (RFC) are the metrics with the most
identified non-maintainable classes.

Table 3. Number of non-maintainable classes per static analysis metric.

Static Analysis Metric # Non-Maintainable Classes

NL 281
NLE 276
McCC 777
LCOM5 453
DIT 453
NOC 265
NOP 447
NOD 266
NOA 453
CBO 735
NOI 496
NII 429
RFC 776

For the tuning of the meta-parameters of each SVM One-Class model, we perform
a grid search among all possible values of the ν and γ parameters of the model. The ν
parameter corresponds to the fraction of training errors and support vectors, while the
γ parameter is the kernel coefficient that reflects the distance in which a training sample
influences new samples under prediction. The final selection of the meta-parameters is
based on minimizing the percentage of False-Negative (FN) decisions of the model. Table 4
depicts the final values of the meta-parameters for each model, along with the percentage
of FNs.

The percentages of False-Negative predictions in the static analysis metric models
are significantly small, and they appear to have slightly higher values in the models that
include only few training samples, e.g., the NOD model. However, all the SVMs One-Class
can model the non-maintainability of a class based on a static analysis metric with a quite
high accuracy.

The models created for each static analysis metric can evaluate the maintainability
degree of a class component from the metric’s point of view and output a score that reflects
their prediction on whether the examined class will be dropped. In the next step, we
aggregate the decisions of each metric’s model by creating a model for each primary source
code property and, specifically, for complexity, cohesion, inheritance and coupling. Each of
these models evaluate the maintainability degree of a component based on the software
quality metrics it contains, which are listed in Table 1. The creation of these models follows
exactly the same procedure described above for the metrics models. Table 5 depicts the
number of non-maintainable classes identified per each primary source code property.



Sustainability 2021, 13, 12848 11 of 19

Table 4. Meta-parameters selection per model.

Static Analysis Meta-Parameters
Metric Model Nu Gamma FNs

NL 0.01 0.1 1.67%
NLE 0.04 2.5 2.85%
McCC 0.0.01 0.1 1.67%
LCOM5 0.02 3 1.32%
DIT 0.01 3.7 0.44%
NOC 0.03 3.4 4.62%
NOP 0.01 0.3 0.45%
NOD 0.04 0.1 6.09%
NOA 0.01 0.1 0.44%
CBO 0.04 2.6 2.31%
NOI 0.07 2.1 4.64%
NII 0.01 0.3 4.66%
RFC 0.09 3.6 5.03%

Table 5. Number of non-maintainable classes per primary source code property.

Source Code Property # Non-Maintainable Classes

Complexity 245
Cohesion 453
Inheritance 210
Coupling 239

The meta-parameters ν and γ of the SVM One-Class model were once again selected
based on grid search and the percentage of False-Negative predictions. Table 6 depicts the
selected meta-parameters and the percentage of FNs for each model for the primary source
code properties.

Table 6. Meta-parameters selection per property model.

Source Code Meta-Parameters
Property Model Nu Gamma FNs

Complexity 0.01 0.6 0.82%
Cohesion 0.01 0.45 0.22%
Inheritance 0.1 0.2 2.50%
Coupling 0.01 0.95 0.84%

The trained maintainability evaluation models, based on different primary source
code properties, appear to have quite low percentages of False-Negatives and are able to
identify non-maintainable classes that will be dropped. The complexity model contains
three static analysis metrics: NL, NLE and McCC. The selected meta-parameters values for
ν and γ are 0.01 and 0.6, respectively, and the percentage of false negatives is 0.82%. The
cohesion model includes only the LCOM5 metric, and the meta-parameters ν and γ have
the values of 0.01 and 0.45, respectively, while the FN percentage is 0.22%. The inheritance
model consists of 5 different software quality metrics, which are DIT, NOC, NOP, NOD and
NOA. The percentage of false negatives is 2.50%, and the values of the meta-parameters are
0.1 for ν and 0.2 for γ. Finally, the coupling model contains 4 metrics: CBO, NOI, NII and
RFC. The selected values for the meta-parameters ν and γ are 0.01 and 0.05, respectively,
while the percentage of false negatives is 0.84%.

The last step of our approach involves the aggregation of the maintainability eva-
luations of the four primary source code properties and the decisions of the respective



Sustainability 2021, 13, 12848 12 of 19

models into a final maintainability evaluation that reflects the probability of a class to be
dropped. The procedure remains the same; each source code property model outputs its
score that reflects its prediction on whether the examined class will be dropped based on
the quality characteristic under examination. These scores are given as input into the final
SVM One-Class model, which models the probability of a class being dropped according
to all of the examined static analysis metrics and source code properties. Table 7 depicts
the number of non-maintainable classes that were identified, meeting the requirements set
for each metric and property.

Table 7. Number of non-maintainable classes.

Model # Non-Maintainable Classes

General 197

A grid search is once again performed in order to select the optimal ν and γ meta-
parameters for the final model based on the optimal number of false positives. Table 8 depicts
the selected meta-parameters and the percentage of false positives for the general model.

Table 8. Meta-parameters selection for the general model.

Meta-Parameters
Model Nu Gamma FNs

General 0.01 0.1 0.67%

The general model aggregates the decisions made by the four primary source code
properties models; complexity, cohesion, inheritance and coupling. The selected values for the
ν and γ parameters are 0.01 and 0.1, respectively, while the percentage of false negatives
is 0.67%.

5. Methodology Evaluation

In this section, we present the assessment of our proposed methodology for evaluating
maintainability in software components and identifying non-maintainable classes. The
evaluation is performed on two axes. First, we assess the ability of our designed system
to evaluate the maintainability degree of classes from various randomly selected projects,
as well as the ability to identify the non-maintainable ones from a quality perspective.
Consequently, we evaluate the effectiveness of our approach in practice and, specifically, in
predicting non-maintainability before it actually happens.

5.1. Maintainability Evaluation

With respect to evaluating the effectiveness of our proposed methodology, we an-
alyze the ability of our system to assess maintainability and identify non-maintainable
classes from a quality perspective. To that end, we randomly select a number of classes
and extract their static analysis metrics over the weeks the class existed in its project.
These metrics are provided as input to our system, which evaluates the maintainability
degree of the component based on all metrics and predicts the (non-)maintainability of the
examined class.

Table 9 depicts the first class under examination, called AuthorizationUtil, along with
the trend of its metrics, the final value of each metric at the last analyzed week, as well as
the predictions of the metrics models and the primary source code properties models. The
column Metric Maintainable refers to the maintainability predictions of each separate metric
model (e.g., the NL model, the NLE model and the McCC model), while the column Category
Maintainable depicts the predictions of the aggregated category model (e.g., the Complexity
model). It is obvious that the class is complex, as the Nesting Level, Nesting Level Else-If
and the McCabe’s Cyclomatic Complexity metrics have both a high value and an upward



Sustainability 2021, 13, 12848 13 of 19

trend that negatively affects the complexity over time. Additionally, Figure 5 illustrates
the upward trend of the three quality metrics (NL, NLE and McCC). Upon applying our
methodology, each metric’s model identifies the class as non-maintainable, leading to an
overall non-maintainability classification from the complexity model. In this example, even
though the values of the rest of the metrics are within acceptable limits, the system can
alert the developers that the class suffers from high complexity, which will eventually lead
to the inability of refactoring and maintaining the component.

Table 9. Maintainability evaluation on static analysis metrics of the AuthorizationUtil class.

Category Name Trend Final Metric Category
Slope Value Maintainable Maintainable

C
om

pl
ex

it
y NL 0.3 9 7

7NLE 0.34 9 7

McCC 0.46 11.2 7

C
oh

es
io

n

LCOM5 0.08 3 X X

In
he

ri
ta

nc
e DIT 0.05 2 X

X
NOC 0.02 1 X
NOP −0.01 2 X
NOD 0.02 7 X
NOA 0.12 4 X

C
ou

pl
in

g CBO 0.42 5 X

X
NOI 0.00 1 X
NII 0.01 7 X
RFC 0.11 3 X

Figure 5. The upward trend and high values of the AuthorizationUtil class of the complexity metrics:
NL, NLE and McCC.

Table 10 depicts the results of the examination of another class, called QueueFile.
Contrary to the previous example, this class has acceptable values for the complexity
metrics. However, the class lacks cohesion (LCOM5), while it appears to have a quite large
number of incoming (NII) and outgoing (NOI) invocations. It should be noted here that,
even if the tendency of the three metrics is small, the large values the metrics appear to have
at the analysis point make the component non-maintainable. In this case, the developers
should turn their focus on how to improve these metrics in general and not over time, as
they have only a small increase per week. Figure 6 illustrates the progressing behavior of



Sustainability 2021, 13, 12848 14 of 19

the LCOM5, NOI and NII metrics, where we can easily notice that the increase per week is
relatively small, contrary to the actual value of each metric.

Table 10. Maintainability evaluation on static analysis metrics of the QueueFile class.

Category Name Trend Final Metric Category
Slope Value Maintainable Maintainable

C
om

pl
ex

it
y NL 0.1 4 X

XNLE 0.09 4 X

McCC 0.12 3.33 X

C
oh

es
io

n

LCOM5 0.13 41 7 7

In
he

ri
ta

nc
e DIT 0.06 3 X

X
NOC 0.02 6 X
NOP 0.05 2 X
NOD 0.12 3 X
NOA 0.11 2 X

C
ou

pl
in

g CBO 0.00 8 X

7
NOI 0.15 29 7
NII 0.12 58 7
RFC 0.05 11 X

Figure 6. The upward trend and high values of the QueueFile class of the complexity metrics: LCOM5,
NOI and NII.

5.2. Early Non-Maintainability Identification

The identification of a non-maintainable component as early as possible is critical, since
it directly affects the effort and time needed to refactor the code and improve the quality of
the software. We argue that our methodology successfully leads to early identification of
non-maintainabilities and provides actionable recommendations to the developers.

To support our claims, we follow the same evaluation approach followed in [2] in
order to examine whether our approach can be effective in identifying components that will
become non-maintainable at a latter stage of their life cycle. However, instead of counting
the life cycle of a given component in software releases, we have selected the weeks as the
basis of a software component’s life. Thus, we aspire to evaluate the number of weeks,
expressed as percentage of the life cycle of the component, and our approach can earlier
predict the non-maintainability of a given component before it actually happens.



Sustainability 2021, 13, 12848 15 of 19

To that end, we make use of the metrics of a given class until the current week under
examination and calculate the trend of each metric using only the values of the previous
weeks. Given, for instance, a class that exists in its project for 100 weeks until it is dropped,
we examine the maintainability degree produced by our system in each week until the
last one. At week 50, we employ the static analysis metrics of the class for the 50 first
weeks of the life cycle, calculate the trend and predict the maintainability of the component.
If the class is predicted as non-maintainable, it means that we were able to identify the
non-maintainability 50% ahead of the component’s life cycle. Obviously, the earlier we
can identify the non-maintainability, the higher this percentage will be, which reflects
early detection.

Figure 7 illustrates the ability of the models of the four primary source code properties
(Complexity, Cohesion, Inheritance and Coupling) to identify the non-maintainability of a
given class in an early stage in a comparative way to Figure 8 of [2], which is illustrated
in Figure 8. The horizontal axis refers to the percentage of the component’s life cycle the
non-maintainability has been identified (starting from 100% ahead of the life cycle’s end). It
should be noted once again that the life cycle is measured in the number of weeks, contrary
to [2], where it reflects the number of releases. The vertical axis refers to the percentage
of the examined classes that have been identified as non-maintainable as opposed to the
previous work of [2], where the non-maintainable components examined are packages.
The four figures, i.e., Figure 7a–d, refer to the four primary source code properties models,
i.e., the Complexity, Cohesion, Inheritance and Coupling models, respectively.

100%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
Percentage of Lifecycle

Pe
rc

en
ta

ge
 o

f C
la

ss
es

Full Lifecycle

First Week Last Week

0%
4.7% 6.2%

17.6%

35.9%

62.1% 68.3%

70.4%

95.6% 99,1%
100%

100%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
Percentage of Lifecycle

Pe
rc

en
ta

ge
 o

f C
la

ss
es

Full Lifecycle

First Week Last Week

0% 8.9%

10.4%
18.2%

45.1% 48.2%

60.2%

78.5%

91.4%
99,3%

100%

(a) (b)

100%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
Percentage of Lifecycle

Pe
rc

en
ta

ge
 o

f C
la

ss
es

Full Lifecycle

First Week Last Week

0%

11.2%
14.3% 18.1%

38.1%

71.9%
80.0%

82.7%
89.4%

97.0%
100%

100%
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

90% 80% 70% 60% 50% 40% 30% 20% 10% 0%
Percentage of Lifecycle

Pe
rc

en
ta

ge
 o

f C
la

ss
es

Full Lifecycle

First Week Last Week

0% 2.8% 4.9%

20.0%

36.2% 38.4%

49.3%

60.3% 67.1%

90.2%

100%

(c) (d)

Figure 7. Prediction of non-maintainability during the life cycle of a class for the (a) complexity model, the (b) cohesion
model, the (c) inheritance model and the (d) coupling model.



Sustainability 2021, 13, 12848 16 of 19

Figure 8. Prediction of non-maintainability during the life cycle of a package for the (a) complexity model, the (b) cohesion
model, the (c) inheritance model and the (d) coupling model.

The results indicate that the four models are able to identify a non-maintainable
component at least 40–50% ahead of the week the non-maintainability occurs for almost
60% of the examined classes. The identified non-maintainable components overcome the
respective ones from [2], where 60% of the non-maintainable packages are identified around
40% earlier than the non-maintainability point. At the same time, in almost any point of
the percentage of components’ life cycle, the percentage of non-maintainable components
identified by our current work (Figure 7) is quite larger than the respective one from our
previous work (Figure 8).

6. Threats to Validity

In this work, we presented our approach towards evaluating the maintainability
degree of a software class and identifying software components that eventually become
non-maintainable, based on the primary source code properties and static analysis metrics.
Based on the evaluation performed, we argue that our system achieves high internal
validity. The only limitation that arises and threatens the internal validity of our system is
the inability to evaluate our approach on software components that are not dropped, as we
argue that the existence of a software component within a project does not guarantee its
maintainability; the component could be recognized as non-maintainable and be dropped
in the exact next week of the final analysis.



Sustainability 2021, 13, 12848 17 of 19

As far as the external validity of our approach is concerned, one should take into
account the following limitations: (1) the use of the classes that were dropped as a non-
maintainability indicator and (2) the use of the current value of the static analysis metric as
an extra input to the maintainability models.

Our methodology for evaluating maintainability and identifying non-maintainable
components is mostly based on the recognition of the classes that were dropped from
their projects. We make use of this information as a non-maintainability indicator, upon
which our models are built and trained. However, leaving a class out of the project may
not be only due to non-maintainability, but it could be based on a set of different reasons,
such as changes in functionality or features or even a renaming of the component. In
order to cope with this limitation, we applied a series of filters, aspiring to identify only
the classes that were dropped due to quality criteria. First, code cloning techniques and
manual examination on the classes of the dataset have been performed in order to discard
identical classes. In addition, a class is considered dropped and added to our dataset only
if there is at least one static analysis metric that seems to negatively affect maintainability
over time and, also, only if the component has been existed within the project for at least
4 weeks, thus discarding temporarily used components. That way, we were able to limit
the biases that the aforementioned limitation introduces to our models.

Additionally, the prediction of the metrics models was based not only on the trend of
the respective metric, but also on the value the static analysis metric has at the time the
evaluation takes place. While the extra input to the model may bias the decisions, as the
model could be affected, for instance, by quite high values of the respective metric, our
evaluation strategy confirmed that the use of this value can help the system improve its
sensitivity in identifying non-maintainable components.

7. Conclusions and Future Work

In this work, we proposed a maintainability evaluation approach that depends on a
weekly analysis of a software project and, based on the static analysis metrics and their
trend over time, identifies non-maintainable components at the class level. Our approach is
formulated on the assessment of the maintainability degree of the progressing behavior of
four primary source code properties. These primary source code properties are Complexity,
Cohesion, Inheritance and Coupling. The maintainability evaluation of these properties breaks
down into a lower level by creating a single model for each one of the most important
static analysis metrics that each property comprises. The evaluation of our approach in
various axes indicates that our system can effectively identify non-maintainable classes
by analyzing their trend over time. The results of our modeling approach seem valid
both from qualitative and quantitative points of view, and the system can indicate the
source code property, as well as the static analysis metric, which are responsible for
the non-maintainability of the software component, this way providing actionable and
interpretable recommendations to the developers. Additionally, our system is capable of
detecting the non-maintainability of a given class almost 50% ahead of the point in time it
actually happens, which allows the developers to refactor the code, keep the component
maintainable and avoid extra effort, time and costs.

Future work lies in various axes. First, the selection of the components that are
dropped from the project they belong to as non-maintainability indicators needs to be
further examined in order to eliminate potential false positives in non-maintainable compo-
nents. Additionally, the calculation of the trend a static analysis metric exhibits over time
can be modeled in more detail by adding polynomial or non-linear types that could incor-
porate more information about the way a metric changes in time. Finally, more projects
with various characteristics could be incorporated, in order to examine the effectiveness of
our system under different conditions.



Sustainability 2021, 13, 12848 18 of 19

Author Contributions: Conceptualization, T.K., M.D.P. and A.L.S.; methodology, T.K., M.D.P. and
A.L.S.; software, T.K., M.D.P. and A.L.S.; validation, T.K., M.D.P. and A.L.S.; formal analysis, T.K., M.D.P.
and A.L.S.; investigation, T.K., M.D.P. and A.L.S.; resources, T.K., M.D.P. and A.L.S.; data curation, T.K.,
M.D.P. and A.L.S.; writing—original draft preparation, T.K., M.D.P. and A.L.S.; writing—review and
editing, T.K., M.D.P. and A.L.S.; visualization, T.K., M.D.P. and A.L.S.; supervision, T.K., M.D.P. and
A.L.S.; project administration, T.K., M.D.P. and A.L.S.; funding acquisition, T.K., M.D.P. and A.L.S. All
authors have read and agreed to the published version of the manuscript.

Funding: This research has been co-financed by the European Regional Development Fund of the
European Union and Greek national funds through the Operational Program Competitiveness,
Entrepreneurship and Innovation, under the call RESEARCH–CREATE–INNOVATE (project code:
T2EDK—00550).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this approach are publicly available at https://doi.
org/10.5281/zenodo.5539789 (Access Date: 19 November 2021).

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. ISO/IEC 25010:2011. 2011. Available online: https://www.iso.org/obp/ui#iso:std:iso-iec:25010:ed-1:v1:en (accessed on 19

November 2021).
2. Papamichail, M.D.; Symeonidis, A.L. A generic methodology for early identification of non-maintainable source code components

through analysis of software releases. Inf. Softw. Technol. 2020, 118, 106218. [CrossRef]
3. Malhotra, R.; Chug, A. Software Maintainability: Systematic Literature Review and Current Trends. Int. J. Softw. Eng. Knowl. Eng.

2016, 26, 1221–1253. [CrossRef]
4. Jones, C. The Economics of Software Maintenance in the Twenty First Century; Software Productivity Research, Inc.: Hendersonville,

NC, USA, 2006.
5. Dehaghani, S.M.H.; Hajrahimi, N. Which factors affect software projects maintenance cost more? Acta Inform. Medica 2013, 21, 63.

[CrossRef] [PubMed]
6. Venters, C.; Capilla, R.; Betz, S.; Penzenstadler, B.; Crick, T.; Crouch, S.; Nakagawa, E.; Becker, C.; Carrillo Sánchez, C. Software

Sustainability: Research and Practice from a Software Architecture Viewpoint. J. Syst. Softw. 2017, 174–188 . [CrossRef]
7. Aljarallah, S.; Lock, R. A Comparison of Software Quality Characteristics and Software Sustainability Characteristics. In

Proceedings of the 2019 3rd International Symposium on Computer Science and Intelligent Control, Amsterdam, The Netherlands,
25–27 September 2019; pp. 1–11. [CrossRef]

8. Seref, B.; Tanriover, O. Software Code Maintainability: A Literature Review. Int. J. Softw. Eng. Appl. 2016, 7, 69–87. [CrossRef]
9. Arvinder, K.; Kaur, K.; Malhotra, R. Soft Computing Approaches for Prediction of Software Maintenance Effort. Int. J. Comput.

Appl. 2010, 1, 69–75. [CrossRef]
10. Berns, G.M. Assessing Software Maintainability. Commun. ACM 1984, 27, 14–23. [CrossRef]
11. Oman, P.; Hagemeister, J. Construction and testing of polynomials predicting software maintainability. J. Syst. Softw. 1994,

24, 251–266. doi: 10.1016/0164-1212(94)90067-1. [CrossRef]
12. Coleman, D.; Ash, D.; Lowther, B.; Oman, P. Using metrics to evaluate software system maintainability. Computer 1994, 27, 44–49.

[CrossRef]
13. Welker, K. Software Maintainability Index Revisited. CrossTalk 2001 14,18–21.
14. Bakota, T.; Hegedüs, P.; Kortvelyesi, P.; Ferenc, R.; Gyimothy, T. A probabilistic software quality model. In Proceedings of the

2011 27th IEEE International Conference on Software Maintenance (ICSM), Williamsburg, VA, USA, 25–30 September 2011;
pp. 243–252. [CrossRef]

15. Correia, J.P.; Visser, J. Benchmarking Technical Quality of Software Products. In Proceedings of the 2008 15th Working Conference
on Reverse Engineering, Antwerp, Belgium, 15–18 October 2008; pp. 297–300. [CrossRef]

16. Baggen, R.; Correia, J.P.; Schill, K.; Visser, J. Standardized code quality benchmarking for improving software maintainability.
Softw. Qual. J. 2011, 20, 1–21. [CrossRef]

https://doi.org/10.5281/zenodo.5539789
https://doi.org/10.5281/zenodo.5539789
https://www.iso.org/obp/ui#iso:std:iso-iec:25010:ed-1:v1:en
http://doi.org/10.1016/j.infsof.2019.106218
http://dx.doi.org/10.1142/S0218194016500431
http://dx.doi.org/10.5455/aim.2012.21.63-66
http://www.ncbi.nlm.nih.gov/pubmed/23572866
http://dx.doi.org/10.1016/j.jss.2017.12.026
http://dx.doi.org/10.1145/3386164.3389078
http://dx.doi.org/10.5121/ijsea.2016.7305
http://dx.doi.org/10.5120/339-515
http://dx.doi.org/10.1145/69605.357965
doi: doi: 10.1016/0164-1212(94)90067-1
http://dx.doi.org/10.1016/0164-1212(94)90067-1
http://dx.doi.org/10.1109/2.303623
http://dx.doi.org/10.1109/ICSM.2011.6080791
http://dx.doi.org/10.1109/WCRE.2008.16
http://dx.doi.org/10.1007/s11219-011-9144-9


Sustainability 2021, 13, 12848 19 of 19

17. Oliveira, P.; Valente, M.; Lima, F. Extracting Relative Thresholds for Source Code Metrics. In Proceedings of the 2014 Software
Evolution Week-IEEE Conference on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE), Antwerp,
Belgium, 3–6 February 2014; pp. 1–10. [CrossRef]

18. Papamichail, M.D.; Diamantopoulos, T.; Symeonidis, A.L. Measuring the Reusability of Software Components using Static
Analysis Metrics and Reuse Rate Information. J. Syst. Softw. 2019, 158, 110423. doi: 10.1016/j.jss.2019.110423. [CrossRef]

19. Ferreira, K.; Bigonha, M.; Bigonha, R.; Mendes, L.; Almeida, H. Identifying thresholds for object-oriented software metrics. J.
Syst. Softw. 2012, 85, 244–257. [CrossRef]

20. Shatnawi, R.; Li, W.; Swain, J.; Newman, T. Finding software metrics threshold values using ROC curves. J. Softw. Maint. 2010,
22, 1–16. [CrossRef]

21. Foucault, M.; Palyart, M.; Falleri, J.R.; Blanc, X. Computing contextual metric thresholds. In Proceedings of the 29th Annual
ACM Symposium on Applied Computing, Gyeongju, Korea, 24–28 March 2014.

22. Zhou, Y.; Leung, H. Predicting object-oriented software maintainability using multivariate adaptive regression splines. J. Syst.
Softw. 2007, 80, 1349–1361. [CrossRef]

23. Schnappinger, M.; Fietzke, A.; Pretschner, A. Human-Level Ordinal Maintainability Prediction Based on Static Code Metrics; Association
for Computing Machinery: New York, NY, USA, 2021. [CrossRef]

24. Kapllani, G.; Khomyakov, I.; Mirgalimova, R.; Sillitti, A. An Empirical Analysis of the Maintainability Evolution of Open Source
Systems; Springer: Cham, Switzerland; Innopolis, Russia, 2020; pp. 78–86. [CrossRef]

25. Chatzimparmpas, A.; Bibi, S. Maintenance process modeling and dynamic estimations based on Bayesian Networks and
Association Rules. J. Softw. Evol. Process. 2019, 31, e2163. [CrossRef]

26. Duhan, M.; Bhatia, P. Hybrid Maintainability Prediction using Soft Computing Techniques. Int. J. Comput. 2021, 20, 350–356.
[CrossRef]

27. Malhotra, R.; Lata, K. Using Ensembles for Class Imbalance Problem to Predict Maintainability of Open Source Software. Int. J.
Reliab. Qual. Saf. Eng. 2020, 27. [CrossRef]

28. Samoladas, I.; Stamelos, I.; Angelis, L.; Oikonomou, A. Open source software development should strive for even greater code
maintainability. Commun. ACM 2004, 47, 83–87. [CrossRef]

29. Papamichail, M.; Diamantopoulos, T.; Symeonidis, A.L. User-Perceived Source Code Quality Estimation based on Static Analysis
Metrics. In Proceedings of the 2016 IEEE International Conference on Software Quality, Reliability and Security (QRS), Vienna,
Austria, 1–3 August 2016.

30. Bass, L.; Clements, P.; Kazman, R. Software Architecture in Practice; SEI Series in Software Engineering; Addison-Wesley: Boston,
MA, USA, 2003.

31. McCabe, T. A Complexity Measure. IEEE Trans. Softw. Eng. 1976, SE-2, 308–320. [CrossRef]

http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747177
doi: doi: 10.1016/j.jss.2019.110423
http://dx.doi.org/10.1016/j.jss.2019.110423
http://dx.doi.org/10.1016/j.jss.2011.05.044
http://dx.doi.org/10.1002/smr.404
http://dx.doi.org/10.1016/j.jss.2006.10.049
http://dx.doi.org/10.1145/3463274.3463315
http://dx.doi.org/10.1007/978-3-030-47240-5_8
http://dx.doi.org/10.1002/smr.2163
http://dx.doi.org/10.47839/ijc.20.3.2280
http://dx.doi.org/10.1142/S0218539320400112
http://dx.doi.org/10.1145/1022594.1022598
http://dx.doi.org/10.1109/TSE.1976.233837

	Introduction
	Related Work
	Quantifying Non-Maintainability Using Metrics Trends
	Materials and Methods
	Overview
	Dataset
	Preprocessing
	Models Construction

	Methodology Evaluation
	Maintainability Evaluation
	Early Non-Maintainability Identification

	Threats to Validity
	Conclusions and Future Work
	References

