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Abstract: Hybrid aerial and ground vehicles are seen as a promising option for deployment in a
post-disaster assessment due to the risk of infrastructure damage that may hinder the assessment
operation. The efficient operation of the hybrid aerial and ground vehicle, particularly routings,
remains a challenge. The present study proposed a collaborative hybrid aerial and ground vehicle
to support the operation of post-disaster assessment. The study developed two models, i.e., the
Two-Echelon Vehicle Routing Problem combined with Assignment (2EVRPA) and the Two-Echelon
Collaborative Vehicle Routing Problem (2ECoVRP) to evaluate optimal routings for both aerial and
ground vehicles. The difference lies in the second echelon in which the 2EVRPA uses a single point-
to-point assignment, whereas the 2ECoVRP considers the collaborative routings between the ground
vehicle and the aerial vehicle. To demonstrate its applicability, the developed models were applied
to solve the post-disaster assessment for the Mount Merapi eruption in Yogyakarta, Indonesia. Sets
of numerical experiments based on the empirical case were conducted. The findings indicate that
the 2ECoVRP performs better than 2EVRPA in terms of the total operation time. The tabu search
algorithm was found to be a promising method to solve the models due to its good quality solution
and computational efficiency. The deployment of eight drones appears to be optimum for the given
network configuration of the studied case. Flight altitude and battery capacity were found to be
influential to the operation time, hence requiring further exploration. Other potential avenues for
future research are also discussed.

Keywords: two-echelon vehicle routing; hybrid aerial and ground vehicle; collaborative; post-disaster
assessment; tabu search; case study

1. Introduction

In humanitarian operations, a faster response is critical to save more human lives
and reduce casualties [1]. Due to their quick, flexible, and cheap operation, unmanned
aerial vehicles (UAVs), commonly known as drones, are seen as a promising technology to
support humanitarian operations, particularly with respect to post-disaster assessment and
last-mile delivery for aid. The drone has been widely implemented in diverse applications
such as military, agriculture, forestry, geographical surveillance, sports, and entertain-
ment [2,3]. The application of the drone in humanitarian operations is, however, very rare.
Nevertheless, there is growing interest to deploy drones in humanitarian operations [4].

Humanitarian operations are characterized by high uncertainty, dynamicity, and the
goal of alleviating human suffering/saving human life, implying that time is a critical fac-
tor [1]. Typical disasters such as earthquakes, tsunamis, volcano eruptions, and pandemics
are unpredictable. They pose challenges on humanitarian operations in which affected
areas, infrastructure damage (e.g., roads, bridges), and the number and location of victims
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are unknown. That uncertainty is increased as the conditions change over time. Although
most disasters are barely predictable, several efforts have been conducted to minimize the
impacts. For instance, during the preparedness phase, prepositioning inventory, dedicated
shelters, and evacuation routes have been pre-arranged [5]. During emergency response
(post-disaster), humanitarian operations such as search and rescue missions and aid deliv-
ery focus on providing a fast response in an efficient way (due to limited resources). To
perform efficient and immediate emergency response, information on the number and loca-
tion of victims, incurred damage, and logistics capability should be on-hand. Post-disaster
assessment to provide accurate and timely required information is therefore necessary. The
assessment should be conducted as quickly as possible: the faster the rescue operations
can be performed, the more likely the victims are to be rescued. This is also the case for aid
delivery. The faster the demands for aids are known, the faster the required aids can be
delivered, and consequently, the more likely people will be saved [4]. Another challenge
encountered by the post-disaster assessment is the widespread areas needing to be evalu-
ated. Some areas may be inaccessible due to challenging terrain, debris blockage, damaged
infrastructure, or other hazards. Resources available for the post-disaster assessment are
limited, particularly in developing countries where vehicle resources are quite limited and
costly and there are few means of transport. In contrast, drones that are equipped with a
high-resolution camera and global positioning system (GPS) modules can provide spatial
imaging in a relatively short time and at a low cost. Due to its flexibility and its speed,
the drone is particularly useful for post-disaster assessment to collect critical data that are
unavailable to the response team. In many cases, disaster-affected areas are inaccessible
and unsafe for people. The drone, which is operated remotely, opens new possibilities
for inaccessible, hazardous, or cut-off regions. McRae, et al. [6] have demonstrated that
drone real-time imagery and GPS coordinates have provided rescuers with valuable in-
formation on victim status and location as well as terrain, which allows the rescuers to
judiciously plan routes and allocate appropriate resources and personnel. In pandemic
situations, drones are useful as transportation modes for delivering aid to reach inaccessible
areas [7,8] and reducing the risk of disease spread [9,10]. Furthermore, drones are more
efficient in terms of energy consumption/emissions per unit distance than conventional
diesel vans [11,12], thus supporting sustainability in humanitarian operations. In light of
Sopha, et al. [13], who have highlighted the importance of incorporating sustainability in
humanitarian operations to enable long-term solutions, drones contribute toward a more
sustainable operation in post-disaster assessment.

Despite the significant role of the drone in humanitarian operations, existing studies
addressing this issue are few. Current literature related to the application of drones for
humanitarian operations focuses on the technical aspects of drones, such as wireless sensor
networks [14], technical evaluation of the effectiveness of the drones [15] and developing
image datasets for human detection for search and rescue [4]. In addition to the drones’
technicalities, the operation of the drones such as location, allocation, and routing should
also be optimized to support efficient and effective post-disaster assessment. Location
addresses where the drones are launched, e.g., at a single depot or multiple depots. Owing
to the limited number of drones to perform the post-disaster assessment, the allocated
number of drones to each depot is important. The routing of the drones determining the
optimal sequence of the area visited by the drones should also be optimized. The present
paper, therefore, explores potential models for route planning of the hybrid unmanned
aerial and ground vehicles during the post-disaster assessment. Two routing models, i.e.,
Two-Echelon Vehicle Routing Problem combined with Assignment (2EVRPA) and Two-
Echelon Collaborative Vehicle Routing Problem (2ECoVRP) are proposed and contrasted.
Post-disaster assessment during the Mount Merapi eruption in Yogyakarta, Indonesia, was
used as a studied case to demonstrate the models’ applicability. Tabu search heuristics was
developed to solve the medium- and large-scale routing problems.

Because post-disaster assessment should be conducted in widespread areas as quickly
as possible, the hybrid aerial and ground vehicle approach should be deployed. Ground
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vehicles have more capacity and longer operation time than drones. However, ground
vehicles are constrained by road network and congestion, consequently having limited
accessibility to disaster-affected areas, and they also move more slowly. In contrast, drones
can move faster than ground vehicles because the road network is not a constraint. Drones
do not experience congestion, and they consume less energy because they are lightweight.
However, the drone has a limited operation time due to its battery life. The idea of the
hybrid system is basically to take advantage of both vehicles. The typical combination
of ground vehicles and drones has been used in commercial last-mile delivery [16–18].
Hence, instead of optimizing the drone’s routings, the present study simultaneously
optimizes the routings of both the ground vehicle and the drone to globally optimize the
assessment operation.

Motivated by the requirement toward practical application of the hybrid ground
vehicle and drone operation, the present study developed two models, 2EVRPA and
2ECoVRP, to evaluate optimal routings of both ground vehicle and drone. The first echelon
addresses the routing of the ground vehicle, whereas the second echelon addresses the
routing of the drone. The 2EVRPA model uses the routing problem in the first echelon
and the assignment problem in the second echelon. Unlike the 2EVRP, the 2ECoVRP
includes the collaborative operation between the ground vehicle and drone operations
(implementing routing problems for both echelons). The 2ECoVRP allows the drone to
visit multiple targets in one go in the second echelon.

Some studies using drones in humanitarian operations have existed, such as Mi-
shra, et al. [4], Chowdhury, et al. [19], Cannioto, et al. [20], Oruc and Kara [21], and
Luo, et al. [22]. For the hybrid of ground vehicle and drone for post-disaster assessment,
Luo, et al. [22] developed the model and tested it through experiments using hypothetical
datasets. Otto, et al. [23] indicated that the literature using the combined system of ground
vehicle and drone is dominated by experimental and hypothetical studies, in which only
10% were based on the empirical case. In contrast, Asih, et al. [24] demonstrated that the
metaheuristics performance applied to hypothetical data is slightly different from that
using empirical data. Complementing the previous studies, the present study focuses
on the quantitative evaluation of the 2EVRP and its variants. The two proposed models
are then implemented in a real/empirical case of post-disaster assessment of the Mount
Merapi eruption.

Hence, the present study contributes in two ways. First, the study develops and
compares the two models capturing the operational characteristics of post-disaster assess-
ment by introducing the hybrid ground vehicle and drone system. Second, it provides
an empirical contribution to evaluating efficient routing strategy for the hybrid ground
vehicle and drone in post-disaster assessment for the Mount Merapi eruption.

The paper is structured as follows. This section has highlighted the motivation and
the contribution of the paper. Section 2 provides brief reviews of the literature on drone
operations, particularly related to the routing problem. Section 3 describes the development
of the mathematical models and the solution method, which is followed by the description
of the empirical case, the numerical results and analysis, and the practical implications in
Section 4. Section 5 concludes and discusses future research.

2. Literature Review

Literature on drones has increased rapidly in recent years and that trend seems likely
to continue in the future. The first drone literature was published in 2001 for civil operations
dealing with routing problems [23] and was followed by the second publication in 2005 [3].
Since then, the numbers of drone studies were stagnant until 2013, when the body of drone
literature began growing dramatically. The development was triggered by Amazon, who
had started to develop delivery drones in 2013 [25]. Further, Otto, et al. [23] indicated that
more than 75% of the articles have been published in the last seven years. To date, four
literature reviews on drone operations exist. Otto, et al. [23] surveyed the optimization
approaches for drone operations in civil applications, Khoufi, et al. [26] and Viloria, et al. [3]
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narrowed the review focusing on the routing aspect including types of problems and
resolution methods, and Kellerman, et al. [27] focused on the potential barriers, proposed
solutions, and expected benefits of drones for parcel and passenger transportation.

Based on those reviews, drones have been used in diverse applications such as trans-
portation (delivery), communication, logistics processes, surveillance, and monitoring [3].
It is worth noting that drone applications in disaster operations are still very limited, as
most drone applications are for commercial delivery. The articles for commercial trans-
portation/delivery applications account for 54% and 41% of the total surveyed articles
based on Khoufi, et al. [26] and Viloria, et al. [3], respectively. In contrast, only 3% and
4% of the surveyed articles support disaster operations according to Otto, et al. [23] and
Khoufi, et al. [26], respectively. The most recent survey by Viloria, et al. [3] indicated a
slight increase of 6% of the articles addressing humanitarian operations, mostly addressing
the delivery in humanitarian logistics. Only a few have dealt with post-disaster assessment.

Drones can support various operations such as mapping, monitoring/surveillance,
communication, transporting/delivering, and data gathering. Otto, et al. [23] categorized
the types of drone operations, which include area coverage (covering location problem),
search operations, routing, data gathering and recharging in a wireless sensor network,
allocating communication links, and flying wireless ad-hoc networks. Among the sur-
veyed articles, 48% of the articles address routing operation, followed by allocating com-
munication links and area coverage. Only a few papers dealt with routings in disaster
operations [23]. A recent study on vehicle routing for post-disaster assessment has been
conducted by Bruni, et al. [28], who developed a selective routing problem to minimize the
sum of arrival times (total latency) at all nodes.

Concerning routing problems in humanitarian operations, two issues have to be
addressed simultaneously: reaching the target and minimizing the operation time. For
post-disaster assessment operations when the gathered information depends on the arrival
time at the node, the total latency should also be considered. Two classes of routing
problems, i.e., the traveling salesman problem (TSP) and the vehicle routing problem,
(VRP) have commonly been used in the literature. TSP computes the shortest possible
route that visits all targets and returns to the starting position, whereas VRP assigns a
set of vehicles that visits all targets in such a way that the routings with the minimum
completion time or total operation cost are achieved. According to Viloria, et al. [3], 69% of
the surveyed articles consider the routing problem for drones only, whereas 31% introduced
the combined system of drones and a ground vehicle. The combined system between the
drone and the ground vehicle is motivated by the drone limitations such as limited battery
capacity (which constraints operating time) and limited load capacity.

The deployment of the combined system of drone and ground vehicle has accordingly
given rise to new variants of TSP and VRP [29]. For a collaborative operation between drone
and vehicle, the flying sidekick traveling salesman problem (FSTSP) which determines
optimal assignment for a drone working in tandem with a ground vehicle, was developed
by Murray and Chu [30]. FS-TSP models the drone that executes an operation to serve
targets from the ground vehicle, which traverses at a node, and the drone is retrieved at a
rendezvous node. Other TSP variants such as traveling salesman problem with a drone
(TSP-D) [31], TSP with multiple drones (TSP-mD) [32], and multiple TSPD (mTSPD) [33]
have also been developed. Luo, et al. [34] have further expanded mTSPD to the multi-visit
traveling salesman problem with multi-drones (mTSP-mD).

Similarly, the VRP also has many extended variants such as VRP-D, which models
a set of ground vehicles equipped with drones to serve the targets [35]. The drone can
be launched and picked up at the depot or any of the target nodes. VRPTW-D (vehicle
routing problem with time window with a drone) was developed from VRPD by addressing
the time window and was even further developed to CVRPTW-D (capacitated vehicle
routing problem with time window with a drone) to include payload capacity of drones
so that each drone cannot deliver goods exceeding its capacity. Motivated by reducing
the number of drones, green vehicle routing problem with drone (GVRP-D) was also
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proposed by Coelho, et al. [36] and extended to multi-trip vehicle routing problem with
drone (MTVRP-D) to embrace the load capacity of drone [37].

The general routing problem (GRP) has also been implemented by Oruc and Kara [21]
to deal with routing for post-disaster assessment. Oruc and Kara [21] implemented a
bi-objective approach to maximize total value added to assess both road segments (arcs)
and population centers (nodes). The GRP differs from VRP in that VRP considers node
routing problems, whereas GRP includes both node routing problems (in which assessment
targets are located at nodes) and arc routing problems (in which assessment targets are
located at arcs on a directed network). As a result, the developed model by Oruc and
Kara [21] did not require all nodes or edges to be traversed. Some nodes that lie within
the drone’s angular point of view are not visited, and some nodes can be visited more
than once.

Another approach, i.e., the two-echelon vehicle routing problem (2EVRP) was de-
veloped from the supply chain/logistics field [38]. The 2EVRP is a special case of the
two-echelon location routing problem in which the location of all nodes is known. The
2EVRP can be deployed to solve the hybrid aerial and ground vehicle routing by segment-
ing the system into two echelons. The first echelon refers to the route from starting point
(depot) to the stopover point or between stopover points, whereas the second echelon
refers to the route from a stopover point to target points. The 2EVRP aims to find a set of
first and second echelon routes so that the targets are visited with minimum time/cost. The
approach simultaneously optimizes the routes of both a ground vehicle (first echelon) and
drones (second echelon). The 2EVRP has been widely used in city logistics/commercial
last-mile delivery such as Perboli, et al. [39]. Within the context of humanitarian oper-
ations, Luo, et al. [22] have developed the two-echelon ground vehicle and unmanned
aerial vehicle routing problem (2E-GU-RP). The difference between the 2E-GU-RP and
the developed model in the present study is that the 2E-GU-RP models the drone to be
launched at a depot or stopover point and picked up at rendezvous node, whereas 2EVRPA
and 2ECoVRP models the drone to be launched and picked up at a stopover point where
the drone is launched. Table 1 compares various modeling approaches for the hybrid aerial
and ground vehicle.
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Table 1. Modeling approaches for the hybrid aerial and ground vehicle routing.

Features

Modelling Approach
Flying Sidekick

Travelling
Salesman
Problem

(FS-TSP) [30]

Traveling
Salesman

Problem with
Drone

(TSP-D) [31]

Traveling
Salesman

Problem with
Multiple Drones

(TSP-mD) [32]

Multiple TSPD
(mTSPD) [33]

Multiple TSP
with Multiple

Drones
(mTSP-mD) [34]

Vehicle Routing
Problem with

Drone
(VRP-D) [35]

General Vehicle
Routing
Problem

(GVRP) [21]

Two-Echelon
Ground Vehicle
and Unmanned
Aerial Vehicle

Routing Problem
(2E-GUCRP) [22]

2EVRPA and
2ECoVRP

(This Paper)

Routing problem TSP TSP TSP TSP TSP VRP VRP VRP VRP

Number of ground vehicles:
× × × ×One vehicle

Multi vehicles × × × × ×

Number of drones:
× × ×One drone

Multi drones × × × × × ×

Non-collaborative operation

× × ×

×

× ×
Collaborative operation:

One drone works in tandem with one truck
A fleet of drones working in tandem with one truck ×

A fleet of drones working in tandem with many trucks × ×

Number of echelons:
× × × × × × ×Non-echelon

Two-echelon × ×

Considering service time at each target × × × × ×

Retrieving nodes target nodes target nodes target nodes target nodes target nodes target nodes target nodes stopover nodes stopover nodes

Application parcel
delivery

parcel
delivery

parcel
delivery

parcel
delivery

parcel
delivery

parcel
delivery

post-disaster
assessment

intelligence,
surveillance,

reconnaissance
(ISR)

post-disaster
assessment
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3. Mathematical Models of the Hybrid Aerial and Ground Vehicle Routing

The 2EVRP is considered a suitable approach to solve the routing problem for post-
disaster assessment because the approach allows for more efficient and flexible operations.
The approach considers a circumstance when a ground vehicle collaborates with a drone.
The 2EVRP can be presented as a two-echelon distribution network. The first echelon
considers the ground-space network traveled from a depot to stopover points. The ground
vehicle travels on a road network near the reconnaissance area and keeps launching and
recycling the drone (first echelon). The second echelon considers the aerial-space network
where the drone is launched from the stopover point to the target point(s). The target point
is an area where the drone conducts mapping operations and collects the target information
and then returns to the ground vehicle before the battery runs out (second echelon).

The first variant, the 2EVRPA, applies the routing problem in the first echelon and
assignment problem as a sub-problem of the routing problem. The second variant, the
2ECoVRP, includes the collaborative operation between the ground vehicle and drone
(implementing routing problems for both echelons). The models allow the drone to visit
multiple targets. The schematic diagrams of both the 2EVRPA and the 2ECoVRP are
presented in Figure 1.

Sustainability 2021, 13, × FOR PEER REVIEW  7  of  28 
 

3. Mathematical Models of the Hybrid Aerial and Ground Vehicle Routing 

The 2EVRP is considered a suitable approach to solve the routing problem for post‐

disaster assessment because  the approach allows  for more efficient and  flexible opera‐

tions. The approach considers a circumstance when a ground vehicle collaborates with a 

drone. The 2EVRP can be presented as a two‐echelon distribution network. The first eche‐

lon considers the ground‐space network traveled from a depot to stopover points. The 

ground vehicle travels on a road network near the reconnaissance area and keeps launch‐

ing and recycling the drone (first echelon). The second echelon considers the aerial‐space 

network where the drone is launched from the stopover point to the target point(s). The 

target point is an area where the drone conducts mapping operations and collects the tar‐

get information and then returns to the ground vehicle before the battery runs out (second 

echelon).   

The first variant, the 2EVRPA, applies the routing problem in the first echelon and 

assignment problem as a sub‐problem of  the routing problem. The second variant,  the 

2ECoVRP,  includes  the collaborative operation between  the ground vehicle and drone 

(implementing routing problems for both echelons). The models allow the drone to visit 

multiple targets. The schematic diagrams of both the 2EVRPA and the 2ECoVRP are pre‐

sented in Figure 1. 

 

Figure 1. Schematic diagram: (a) the 2EVRPA, (b) the 2ECoVRP. Note: red dots represent depots, 

green dots represent stopover points, blue dots represent target points, sold lines represent ground 

vehicle routing, dashed lines represent drone routing. 

3.1. Problem Description and Assumptions 

The 2EVRP considers a set of mapping points as targets, each of which must be vis‐

ited exactly once by a drone. All the mapping points are inaccessible by a ground vehicle. 

The  ground  vehicle mounted with  a drone departs  from  a depot  and  visits  stopover 

points. The drone is launched at the stopover point, visits its mapping point(s), and re‐

turns to the launching point to swap its battery for the next flight. The 2EVRPA approach 

models that once the drone finishes the mapping at the respective target/mapping points, 

it will return to the launching point although it has still enough battery capacity to per‐

form another mapping process. In contrast, the 2ECoVRP approach allows the drone to 

visit more than one target/mapping point and will return to the launching point once the 

battery capacity is insufficient for the next mapping operation. Both models aim to mini‐

mize the total operation time for post‐disaster assessment. 

The assumption used in the models are the following: 

1. The locations and service times for all mapping points are known; 

Figure 1. Schematic diagram: (a) the 2EVRPA, (b) the 2ECoVRP. Note: red dots represent depots,
green dots represent stopover points, blue dots represent target points, sold lines represent ground
vehicle routing, dashed lines represent drone routing.

3.1. Problem Description and Assumptions

The 2EVRP considers a set of mapping points as targets, each of which must be visited
exactly once by a drone. All the mapping points are inaccessible by a ground vehicle. The
ground vehicle mounted with a drone departs from a depot and visits stopover points.
The drone is launched at the stopover point, visits its mapping point(s), and returns to the
launching point to swap its battery for the next flight. The 2EVRPA approach models that
once the drone finishes the mapping at the respective target/mapping points, it will return
to the launching point although it has still enough battery capacity to perform another
mapping process. In contrast, the 2ECoVRP approach allows the drone to visit more than
one target/mapping point and will return to the launching point once the battery capacity
is insufficient for the next mapping operation. Both models aim to minimize the total
operation time for post-disaster assessment.

The assumption used in the models are the following:

1. The locations and service times for all mapping points are known;
2. All mapping points are visited only once by the drone;
3. The locations of the stopover points are known;
4. The ground vehicle can only traverse on the road network;
5. Each road arc traversed by the ground vehicle corresponds to a flight route of

the drone;
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6. The drone has limited operation time, which is known;
7. The time required for battery swap is negligible.

Based on the above description, the notations used in the mathematical models are
shown below.

Sets:
S Set of all nodes in the first echelon (includes depot)
S0 Set of all stopover points (without depot)
C Set of all mapping points
V Set of all vehicles in the first echelon
Parameters:
Csij Travel time of vehicle from gathering point or stopover point i to stopover point j (includes depot) in the first echelon
Ccij Travel time of drone from stopover point i to mapping point j in the second echelon
Di Required mapping time for capturing the area of a mapping point i
Qdv Maximum flight time of the drone
L Sufficiently large number
Decision variables
xijv A binary variable that equals one if vehicle v is traveled from node i to j where the edge (i, j) ∈ E1; otherwise zero
zi A binary variable that equals one if the stopover point i is visited where i ∈ S; otherwise zero
yij A binary variable that equals one if the drone is traveled from node i to j where the edge (i, j) ∈ E2; otherwise zero
Qj The total amount of time needed for drone taking pictures in a stopover point j where j ∈ S0
Tj The total amount of time needed for drone traveling in the second echelon where j ∈ S

aiv
The total accumulated amount of information gathering time has been used up to stopover point i using vehicle v
where i ∈ S and v ∈ V

biv
The total accumulated amount of transportation time has been used up to mapping point i using vehicle v where i ∈ C
and v ∈ V

3.2. Two-Echelon Vehicle Routing Problem Combined with Assignment (2EVRPA)

The mathematical model of the 2EVRPA was developed based on the basic model of
the two-echelon vehicle routing problem (2EVRP) developed by Perboli, et al. [39], which
was then modified to facilitate single point-to-point assignment in the second echelon for
the present study. A comparable model has been developed for the city logistics context [40].
The 2EVRPA is formulated as the following.

Objective
Minimize Z = ∑

i∈S
∑
j∈S

∑
v∈V

Csij xijv + ∑
i∈C

∑
j∈S0

Ccijyij + ∑
i∈S0

∑
j∈C

Diyij (1)

Subject to
∑

i∈S
∑

v∈V
xijv = zj ∀ j ∈ S0 (2)

∑
j∈S

∑
v∈V

xijv = zi ∀ i ∈ S0 (3)

∑
i∈S

xilv − ∑
j∈S

xl jv = 0 ∀ l ∈ S0
∀ v ∈ V (4)

∑
j∈S0

x1jv ≤ 1 ∀ v ∈ V (5)

∑
i∈S0

xi1v ≤ 1 ∀ v ∈ V (6)

∑
i∈C

Diyij ≤ Qj ∀ j ∈ S0 (7)

Qj ≤ L·zj ∀ j ∈ S0 (8)
∑

i∈C
Ccij · yij ≤ Tj ∀ j ∈ S0 (9)

Tj ≤ L·zj ∀ j ∈ S0 (10)
∑

i∈S0

yij = 1 ∀ i ∈ C (11)

aiv + Qj − L·
(
1− xijv

)
≤ ajv

∀ i ∈ S
∀ j ∈ S0
∀ v ∈ V

(12)

biv + Tj − L·
(
1− xijv

)
≤ bjv

∀ i ∈ S
∀ j ∈ S0
∀ v ∈ V

(13)

∑
i∈S

∑
j∈S0

xijv · Qj + ∑
i∈S

∑
j∈S0

xijv · Tj ≤ Qdv ∀ v ∈ V (14)

The objective function (1) is to minimize the total operation time, comprising the
traveling time of the ground vehicle to carry the drone, the flight time of the drone, and
the mapping time of the drone. Constraints (2) and (3) limit that the nodes can only be
visited once. Constraint (4) ensures that the vehicle moves consecutively. Constraints
(5) and (6) ensure that the ground vehicle returns to the depot once the operation is
completed. Constraints (7) and (8) evaluate the total mapping time at each stopover point.
Constraints (9) and (10) are used to calculate the traveling time of the drone in the second
echelon. Constraint (11) ensures that the mapping point is only visited once by the drone.
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Constraints (12) and (13) are used for validating the continuity of both ground vehicle’s
routes and the drone assignments. Constraint (14) ensures that the drone’s flight time does
not exceed the maximum flight time determined by the drone’s battery capacity.

3.3. Two Echelon Collaborative Vehicle Routing Problem (2ECoVRP)

The mathematical model of the 2ECoVRP was constructed by modifying the 2EVRPA
model to include the collaborative operation between the ground vehicle and drone oper-
ations. The model allows the drone to visit multiple targets in one go (routing problem).
The 2ECoVRP model is formulated as below.

Sets:
K Number of the drone routes in the second echelon
Decision variables

yijk
A binary variable that equals one if drone route k is traveled from node i to j where the
edge (i, j) ∈ E2; otherwise zero

QKjk
The total amount of time needed for drone mapping in a stopover point j and every routes
k where j ∈ S0 and k ∈ K

Tjk
The total amount of time needed for drone traveling in the second echelon where j ∈ S0
and k ∈ K

Uj The total amount of time needed for drone traveling in the second echelon where j ∈ S0

bjk
The total accumulated amount of transportation time has been used up to mapping point j
in route k where j ∈ S0 ∪ C and k ∈ K

cjk
The total accumulated amount of information gathering time has been used up at
stopover point j in route k where j ∈ S0 ∪ C and k ∈ K

Objective
Min Z = ∑

i∈S
∑
j∈S

∑
v∈V

Csij xijv + ∑
i∈S0∪C

∑
j∈S0∪C

∑
k∈K

Ccij yijk + ∑
j∈S0∪C

∑
i∈C

∑
k∈K

Di yijk (15)

Subject to
∑

i∈S
∑

v∈V
xijv = zj ∀ j ∈ S0 (16)

∑
j∈S

∑
v∈V

xijv = zi ∀ i ∈ S0 (17)

∑
i∈S

xilv − ∑
j∈S

xl jv = 0 ∀ l ∈ S0
∀ v ∈ V (18)

∑
j∈S0

x1jv ≤ 1 ∀ v ∈ V (19)

∑
i∈S0

xi1v ≤ 1 ∀ v ∈ V (20)

∑
j∈S0∪C

∑
k∈K

yijk = 1 ∀j ∈ C (21)

∑
j∈S0∪C

yijk ≤ 1 ∀i ∈ S0 ∪ C,
∀k ∈ K (22)

∑
j∈S0∪C

yjik = ∑
j∈S0∪C

yijk
∀i ∈ S0 ∪ C
∀k ∈ K (23)

∑
i∈S0∪C

yilk − ∑
j∈S0∪C

yl jk = 0 ∀ l ∈ C
∀ k ∈ K (24)

QKjk ≥ cik · yijk

∀ j ∈ S0
∀ i ∈ C
∀ k ∈ K

(25)

Qj ≥ ∑
k∈K

QKjk ∀ j ∈ S0 (26)

∑
j∈S0

Qj = ∑
i∈C

Di (27)

Qj ≤ L·zj ∀ j ∈ S0 (28)

bik = 0 ∀ i ∈ S0
∀ k ∈ K (29)

cjk = 0 ∀ j ∈ S0
∀ k ∈ K (30)

cjk ≥ 0 ∀ j ∈ C
∀ k ∈ K (31)

Tjk ≥ bik + Ccij

∀ j ∈ S0
∀ i ∈ C
∀ k ∈ K

(32)

Uj ≥ ∑
k∈K

Tjkzj ∀ j ∈ S0 (33)

aiv + Qj − L
(
1− xijv

)
≤ ajv

∀ i ∈ S
∀ j ∈ S0
∀ v ∈ V

(34)

bik + Ccij − L
(
1− yijk

)
≤ bjk

∀i ∈ S0 ∪ C
∀ j ∈ C
∀ k ∈ K

(35)

cik + Dj − L
(
1− yijk

)
≤ cjk

∀i ∈ S0 ∪ C
∀ j ∈ C
∀ k ∈ K

(36)

∑
i∈S

∑
j∈S0

xijv
(
Qj + Uj

)
≤ Qdv ∀ v ∈ V (37)
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The objective function (15) is to minimize the total operation time consisting of the
traveling time of the ground vehicle to carry the drone, the flight time of the drone,
and the mapping time of the drone. Constraints (16) and (17) ensure that the nodes
can only be visited once. Constraint (18) guarantees that the vehicle moves sequentially.
Constraints (19) and (20) ensure that the ground vehicle should return to the depot once
the operation is completed. Constraint (21) makes sure all mapping points are visited once,
and constraint (22) ensures that the drone visits the mapping points only once. Constraint
(23) validates the second echelon vehicle routes and constraint (24) ensures that the drone
moves consecutively. Constraint (25) denotes the duration spent at mapping points in
the visited route k. Constraint (26) denotes the total accumulated mapping time of each
route k. Constraint (27) denotes the accumulated total of mapping time at each stopover
point as the accumulated time required to record in that area. Constraint (28) calculates
the accumulated mapping time of each mapping point at the stopover point and indicates
the stopover point has unlimited capacity. Constraint (29) ensures the total travel time of
the drone starts from zero. Constraint (30) ensures the calculation of mapping time starts
from zero, and Constraint (31) denotes the mapping duration of the mapping points on
each route k, which can be more than zero due to the mapping operation. Constraints
(32) and (33) calculate the accumulated travel time of the drone and the total travel time
of all drones from the stopover point, respectively. Constraints (34) and (35) are used to
validate the continuity of both the ground vehicle’s and the drone’s routing. Constraint (36)
validates the mapping process, whereas Constraint (37) limits the flight time of the drone
according to its battery capacity, ensuring that it operates below the maximum flight time.

3.4. Tabu Search Algorithm

An optimization problem can be solved by either exact methods or heuristics methods.
Exact methods are suitable for solving small-scale problems. However, they may have
difficulties in solving a large-scale problem in a reasonable computational time. Heuristics
methods, specifically metaheuristics, in contrast, are tailored to find a good solution to
large-size and complex problems. Tabu search (TS) is one of the metaheuristics algorithms
that was discovered by Glover and formulated in 1989 [41]. Tabu search is an algorithm that
incorporates “memory” of the searching history or moves recently applied known as tabu
list, which makes it able to search the space economically and effectively. The TS algorithm
can avoid the previously visited solution using a tabu list. The tabu list is a short-term
set of the solutions, which are changed by the process of moving from one solution to
another determined by a set of rules. Despite its adaptive memory, the TS algorithm is
also able to accept a worse solution to evade the local optimal trap and can be applied
on both discrete and continuous problems. The TS algorithm has been widely used to
solve complex problems such as scheduling, quadratic assignment, and routing problems.
Several studies, such as Semet and Taillard [42], Chao [43], Scheuerer [44], Boccia, et al. [45],
and Venkatachalam, et al. [46], have implemented the tabu search algorithm to solve the
two-echelon location-routing problem and the two-echelon routing problem, i.e., truck and
trailer routing problem. Furthermore, Venkatachalam, et al. [46] applied the tabu search
algorithm to solve the multiple-drone routing problem. It was found that the tabu search
algorithm was not only providing a good-quality solution but was also computationally
efficient. Similar evidence was also demonstrated by Luo, et al. [34] who solved the multi-
visit traveling salesman problem with multi-drones using the tabu search algorithm. The
present study thus selects the tabu search algorithm. The tabu search algorithm deployed
for the present study is explained in pseudocode as shown in Algorithm 1.
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Algorithm 1. Pseudocode of the proposed tabu search algorithm.

Procedure: Tabu Search
Input: a set of n neighborhood structure, Nnon-improving, Ncandidate and θ
Output: Xbest

1. Construct an initial solution by using random initial solution
2. Initialize tabu list
3. Set Iteration = 1, NonImproveCount = 0;
4. Let Xcurrent←Xbest←Xinit
5. repeat
6. repeat
7. Generate r = random (0,1) to select the neighborhood n
8. Let Xnew be the candidate solution X obtained by applying the selected neighborhood n(i,j) to Xcurrent
9. Calculate the objective value of candidate solution X
10. until the number of candidate solution in the candidate list is equal to Ncandidate
11. Sort the candidate solutions based on its objective value ascendingly
12. index = 1;
13. repeat
14. Xnew = candidate solutionsp[index]
15. if Xnew < Xcurrent || tabu list [n][i][j] = 0 then
16. Xcurrent←Xnew
17. Update the tabu list
18. Go to 21;
19. index++
20. until no more solution in the candidate solutions
21. if F(Xcurrent) < F(Xbest) then
22. Xbest←Xcurrent
23. NonImproveCount = 0
24. else
25. NonImproveCount++
26. Iteration← Iteration+1
27. until the termination criteria is satisfied

The algorithm is initiated by constructing an initial solution (Xinit) using a random
initial solution and constructing an empty tabu list. Other variables such as current iteration
(Iteration = 1) and the number of iterations when the solution is not being improved from
the best solution (NonImproveCount = 0) were also initiated. The initial solution is set as
the current best solution (Xcurrent) and the best solution found so far (Xbest←Xcurrent←Xinit).
At each iteration, a list of candidate solutions (a list of Xnew) is generated by applying
a randomly chosen neighborhood n to the current solution (Xcurrent). This procedure
is repeated until the number of solutions in the candidate list is equal to Ncandidate. The
candidate list is then sorted based on its objective value in ascending order. Subsequently,
the algorithm to replace the current solution (Xcurrent) with the new solution from the
candidate list (Xnew) is implemented. The algorithm sets rules on the conditions allowing
the replacement, i.e., when the new solution is not generated from a tabu move or it
is not in the tabu list, and when the new solution passes the aspiration criteria. The
aspiration criteria are set based on the condition that the new tabu solution is better
than the current solution. Once the new obtained tabu solution is better than the current
solution, the new tabu solution will be adopted. Otherwise, it will be taken out from the
neighborhood set. The next step is to repeat the checking process of the neighborhood set.
The new and the current solution are exchanged and the tabu movement is updated on
the tabu list. The previous best-found solution (Xbest) is replaced by the current solution
(Xcurrent) once the current solution is better. The count of non-improvement is hence reset
(NonImproveCount = 0). However, if the current solution is not better than the best solution,
the NonImproveCount is updated. The process is repeated until the termination criteria
are met. Otherwise, another iteration for the neighborhood set will be conducted. The
proposed TS uses NonImproveCount to decide when the algorithm should be terminated.

4. Computational Results and Analysis
4.1. Case Description: Post-Disaster Assessment for Mount Merapi Eruption

Mount Merapi, the most active volcano in the world, has erupted every four to six
years. Within the last 100 years, the largest eruption occurred in 2010, which resulted
in 61,154 people being evacuated and 341 casualties [5]. Due to its high occurrence, the
regional disaster agency (BPBD–Badan Penanggulangan Bencana Daerah) has formulated
a disaster contingency plan, which includes a post-disaster assessment. Due to difficult
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terrain, the post-disaster assessment becomes challenging. Steep and narrow roads have
made some areas inaccessible. However, post-disaster assessment is a crucial operation to
support accurate and timely responses.

Therefore, it is necessary to explore an efficient and effective way to support post-
disaster assessment. The hybrid ground and aerial vehicle approach seems to be a favorable
approach for several reasons. First, the pyroclastic flow of Mount Merapi is barely pre-
dictable, making the affected area highly unknown. Second, the pyroclastic flow may
emit hazardous and poisonous gas to the surroundings so that it is hazardous for humans.
Third, the infrastructure in the affected areas, such as bridges and roads, may be severely
damaged, making the areas inaccessible. Using a drone that is mounted on a ground
vehicle opens the opportunity to access the disaster-affected areas. Accurate and fast post-
disaster assessment is urgently required as the aftermath conditions, such as the number
and location of victims and incurred damage of roads and bridges should be known to
plan the allocation of resources and personnel as well as to deliver aid efficiently.

Due to the narrow roads and difficult terrain, it appears that motorcycles rather than
trucks are the suitable ground vehicles to be deployed for post-disaster assessment for the
Mount Merapi eruption. The motorcycle has less carrying capacity than a truck, but the
motorcycle has more flexibility to access areas that might be unreachable by truck. The
motorcycle brings the drone to map post-disaster conditions. The drone is advantageous
for reaching and maneuvering in very narrow terrain such as collapsed buildings. Due
to the limited flight time of the drone, the motorcycle increases the mapping coverage.
Therefore, the present study uses a motorcycle that is combined with a drone to conduct
the post-disaster assessment. The motorcycle is assumed to operate at a constant speed of
45 km/h. The specification for the drones used for the present study is shown in Table 2.

Table 2. Drone specification.

Attribute Specification

Mapping Rate 8.125 × 10−5 min/m2

Speed 16 m/s
Ground Speed 45 km/h

Battery Capacity 120 min

Figure 2 visualizes the network configuration for assessment operation represented
by nodes including depots, stopover points, and target/mapping points for post-disaster
assessment, which was implemented using Google MyMaps. It includes 49 nodes compris-
ing nine existing depots, 31 target/mapping points, and 9 stopover points. The detailed
location in terms of latitude and altitude as well as areas required to be mapped in each
target/mapping point is provided in the Appendix A. QGIS was used to measure the time
required to travel from one node to another. The area of the target/mapping points was
converted into time units, i.e., minutes, by multiplying the area and the mapping rate of
0.00008125 min/m2, as shown in Table 2. The mapping rate was derived from the technical
data, indicating the time required by the drones operated at the altitude of 70 m to map the
area of 400 m × 400 m is 13 min.

The depots are the starting points of the post-disaster assessment operation. Both
motorcycles with mounted drones depart from the depots. The stopover points are the
locations where the motorcycles stop and launch the drones for mapping operations.
The target/mapping points represent the areas to be mapped by the drones. Each tar-
get/mapping point has different areas to be mapped, which then determines the mapping
time. The post-disaster assessment operation starts from the depot where the motorcycle
that is mounted by a drone is ridden to the stopover points where the drone is launched
for mapping. Once the drone nearly reaches the total flight time (running out of its energy),
the drone returns to the stopover points. When the mapping operation is accomplished,
both the motorcycle and the drone return to the depots. The required total time for those
operations is defined as the total operation time.
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4.2. Test Instances and Experimental Parameters

To evaluate the consistency of the computational results for various scales, instance
benchmarking was conducted. Three groups of instances, based on the procedure devel-
oped by Liperda, et al. [47], were conducted. Table 3 presents the three scale categories,
i.e., small-, medium-, and large-size instances with various ranges of nodes to have exper-
imented. A set of experiments were conducted for each scale as shown in Table 3. The
total conducted computational experiments was 48. Both the results based on individual
experiments and average experiments were then reported.

Table 3. Test instances.

Problem Scale Range of Nodes Number of Experiments

Small instance 10–13 12
Medium instance 19–28 27

Large instance 41–49 9

To compare the performance of the E2VRPA and the 2ECoVRP, the values of the
objective function (Obj) of both models were contrasted and quantitatively evaluated using
Equation (38) as shown below:

Diff =
(Obj2EVRPA −Obj2ECoVRP)

Obj2EVRPA
× 100% (38)

To compare the performance of the tabu search algorithm with the exact algorithm,
Equations (39) and (40) were used for 2EVRPA and 2ECoVRPA, respectively.

Diff-2EVRPA =

(
BestObj2EVRPA(col. 4) −Obj2EVRPA(col.2)

)
BestObj2EVRPA(col.2)

× 100% (39)
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Diff-2ECoVRP =

(
BestObj2ECoVRP(col.6) −Obj2ECoVRP(col.3)

)
Obj2ECoVRP(col.3)

× 100% (40)

The experiments were conducted using the operational parameters that represent the
current conditions (such as the number and location of the depots, the stopover points,
mapping/target points, motorcycle speed, and drone specifications). Eight drones with the
specification shown in Table 2 were used, each of which was mounted on the motorcycle.

The computational experiments were carried out on a computer with an Intel Core
i7-7700 3.6 GHz CPU and 16GB RAM. The model was solved using A Mathematical
Programming Language (AMPL) with Gurobi solver using branch and bound method
and branch and cut method. A time limit of 6 h (21,600 s) was imposed. The tabu search
algorithm was implemented using the C# programming language. The results of the
tabu search were reported in terms of the best solution and average solution from ten
computational runs for each instance.

The proposed tabu search algorithm used four input parameters: a set of n neighbor-
hood structures, Nnon-improving, Ncandidate, and θ. A set of n neighborhood structures was used
by the algorithm to explore the solution space. The neighborhood operator was selected
randomly among neighborhood n ∈ N and N = {Swap, Insert, Reverse}. The proposed tabu
search used all of the neighborhoods. The parameter Nnon-improving determined the number
of iterations where the best objective function value was not improved consecutively. It
was used to terminate the algorithm after it converged to some value in several iterations.
The parameter Ncandidate was the number of candidate solutions that were generated at
each iteration. The parameter θ (tabu tenure) was the number of iteration where a move
generated by a neighborhood operator was prohibited or considered as a tabu move.

The parameter setting was conducted to help the algorithm provide its best perfor-
mance in terms of solution quality and computational time. The parameters were set
following the procedure known as one factor at a time (OFAT). First, a set of candidate
parameters were selected based on previous literature. Second, a preliminary run on
the given parameter was conducted to reduce the number of candidates. Finally, the
remaining parameters were analyzed iteratively by setting one parameter while the rest
of the parameters were fixed. The list of candidate parameters for the final selection was
as follows:

Nnon-improving: 25 *|C|*|S|, 50 *|C|*|S|, 100 *|C|*|S|;
Ncandidate: 5, 25, 50;
θ (tabu tenure): |C|*|S|, 2 *|C|*|S|, 5*|C|*|S|.
The notation |C| and |S| represent the number of nodes in the first echelon (depot

and stopover points) and the number of nodes (mapping points) in the second echelon,
respectively. The experiment was conducted by selecting three instances, each of which rep-
resented small-, medium-, and large-size instances for both the 2EVRPA and the 2ECoVRP.
Each instance was solved ten times and the average performance was reported. Figure 3
shows the parameter calibration of the tabu search algorithm. It indicates that the higher
value of Nnon-improving led the algorithm to take a longer time for termination. However,
there is no significant improvement toward the objective value when changing the value of
Nnon-improving from 50 *|C|*|S| to 100 *|C|*|S|. Using a similar approach, the rest of the
parameters, i.e., Ncandidate and θ were analyzed and selected. The selected parameters for
the tabu search algorithm were as follows: Nnon-improving = 50 *|C|*|S|, Ncandidate = 25, and
θ = |C|*|S|.
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4.3. Performance Comparison of the 2EVRPA and the 2ECoVRP

The performance of the 2EVRPA and the 2ECoVRP in solving the routings of both
ground vehicle (i.e., motorcycle) and the drone in the post-disaster assessment of the Mount
Merapi eruption was measured using two performance indicators, i.e., the total operation
time (which is the value of the objective function) and the computational time to obtain the
objective value.

Tables 4–6 show the computational results for small-size, medium-size, and large-size
instances, respectively. The first column of the tables indicates the identity of the instance.
The values of the objective function based on the exact algorithm using AMPL for the
2EVRPA and the 2ECoVRP are reported in the second and the third columns, respectively.
Concerning the tabu search algorithm, the values of the best and average objective function
for the 2EVRPA are shown in the fourth and fifth columns, whereas those for the 2ECoVRP
are shown in the sixth and seventh columns. It is worth noting that for the small-size
instances, the comparison evaluation between the 2EVRPA and the 2ECoVRP is based
on column 2 (2EVRPA) and column 3 (2ECoVRP). However, for the medium-size and
large-size instances, the evaluation is based on column 4 (2EVRPA) and column 6 (2CoVRP)
because the exact algorithm cannot obtain optimality. The higher the difference, the better
performance of 2ECoVRP compared with that of 2EVRPA. In addition to the objective value,
the computational time was also evaluated to measure the efficiency of the two models.
The computational times for both the exact algorithm and the tabu search algorithm were
also recorded in columns 11–14.

The findings for small-size instances indicate that the 2ECoVRP performs 14.66%
better than the 2EVRPA in terms of the total operation time. However, the 2ECoVRP
requires a slightly longer computational time of about five seconds, which is considered
insignificant. It is also interesting to highlight that the tabu search algorithm produces
results as good as the exact algorithm. The average difference of the total operation time
resulting from the tabu search compared to the exact algorithm is 0.34% and 0.30% for the
2EVRPA and the 2ECoVRP, respectively. The average computational time using the tabu
search algorithm is about 2.7 s, which is insignificant. The findings imply that the 2ECoVRP
approach solved by the tabu search performs reasonably well in small-size instances.

The findings in Tables 5 and 6 indicate that the exact algorithm was not able to reach
the optimal results within 6 h of computation time. When the operation time obtained by
the tabu search algorithm is compared with the best feasible solution by the exact algorithm,
it is found that the tabu search algorithm performs better, as indicated by the 3.1% and 1.7%
lower operation time for the 2EVRPA and the 2ECoVRP, respectively. It becomes obvious
for large-size instances in which the operation time is lower by as much as 6.06% and 4.46%
for the 2EVRPA and the 2ECoVRP, respectively. When all target points are considered, it
would take about 10 h for the assessment.
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Table 4. Computational results for small-size instances.

AMPL TS
2EVRPA

vs.
2ECoVRP

AMPL vs. TS AMPL TS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

No. Obj
2EVRPA

Obj
2ECoVRP

Best Obj
2EVRPA

Avg Obj
2EVRPA

Best Obj
2ECoVRP

Avg Obj
2ECoVRP

Diff
(%)

Diff-
2EVRPA

(%)

Diff-
2ECoVRP

(%)

Time
2EVRPA

(s)

Time
2ECoVRP

(s)

Time
2EVRPA

(s)

Time
2ECoVRP

(s)

1 86.90 76.37 86.90 86.99 76.37 76.39 12.12 0.00 0.00 0.06 0.22 2.22 2.37
2 89.65 81.45 91.18 91.76 81.45 81.70 9.15 1.71 0.00 0.13 5.23 3.36 3.35
3 163.69 141.60 163.69 164.08 141.60 155.73 13.49 0.00 0.00 0.16 18.61 3.68 3.51
4 172.72 138.90 173.94 174.25 139.85 139.99 19.58 0.71 0.68 0.25 1.99 2.62 2.57
5 166.12 138.36 166.12 211.57 138.36 181.40 16.71 0.00 0.00 0.13 0.77 2.60 2.97
6 171.25 138.53 171.25 184.72 142.62 142.75 19.11 0.00 2.95 0.08 0.74 2.24 2.27
7 89.00 77.84 89.00 89.02 77.84 77.89 12.54 0.00 0.00 0.09 0.39 1.94 2.31
8 94.60 83.99 96.13 97.02 83.99 84.49 11.22 1.62 0.00 0.06 16.34 3.08 3.26
9 160.55 140.71 160.55 161.12 140.71 152.12 12.36 0.00 0.00 0.16 19.69 3.41 3.55
10 162.96 132.99 162.96 163.08 132.99 132.99 18.39 0.00 0.00 0.19 0.84 2.56 2.53
11 155.14 134.24 155.14 200.56 134.24 170.41 13.47 0.00 0.00 0.09 0.53 2.49 2.57
12 160.27 131.67 160.27 174.50 131.67 138.69 17.84 0.00 0.00 0.08 0.55 2.21 2.20

Avg 139.40 118.05 139.76 149.89 118.47 127.88 14.66 0.34 0.30 0.12 5.49 2.70 2.79
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Table 5. Computational results for medium-size instances.

AMPL TS
2EVRPA

vs.
2ECoVRP

AMPL vs. TS AMPL TS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

No. Obj
2EVRPA

Obj
2ECoVRP

Best Obj
2EVRPA

Avg Obj
2EVRPA

Best Obj
2ECoVRP

Avg Obj
2ECoVRP Diff (%)

Diff-
2EVRPA

(%)

Diff-
2ECoVRP

(%)

Time
2EVRPA

(s)

Time
2ECoVRP

(s)

Time
2EVRPA

(s)

Time
2ECoVRP

(s)

1 180.11 164.52 175.41 183.25 158.91 159.44 9.41 −2.61 −3.41 21,601.31 21,601.95 8.05 6.72
2 192.11 163.76 174.94 190.07 155.78 157.99 10.95 −8.94 −4.87 21,602.23 21,600.94 7.73 6.32
3 193.29 175.49 179.40 189.20 161.83 164.96 9.79 −7.19 −7.78 21,603.22 21,601.95 7.66 6.21
4 207.47 180.73 191.42 208.88 173.94 177.03 9.13 −7.74 −3.76 21,601.44 21,601.44 7.38 5.94
5 198.63 165.74 187.98 198.98 164.23 167.48 12.63 −5.36 −0.91 21,601.31 21,601.31 6.86 6.34
6 232.79 205.85 225.03 231.91 205.85 210.69 8.52 −3.33 0.00 21,601.44 21,601.44 7.34 7.06
7 185.61 158.38 167.77 180.09 153.51 158.84 8.50 −9.61 −3.07 21,601.31 21,601.31 7.61 6.31
8 178.69 155.59 173.63 182.41 151.38 154.36 12.81 −2.83 −2.71 21,602.62 21,602.23 7.79 6.07
9 175.79 151.25 168.09 182.79 150.60 152.85 10.41 −4.38 −0.43 21,603.22 21,603.22 7.69 6.23

10 391.32 367.87 379.31 388.81 350.73 372.09 7.53 −3.07 −4.66 21,601.31 21,602.01 20.31 15.23
11 380.40 347.79 386.08 386.75 347.79 361.78 9.92 1.49 0.00 21,601.31 21,602.23 20.81 17.60
12 383.32 354.80 378.20 393.33 347.81 355.83 8.04 −1.34 −1.97 21,269.94 21,602.65 23.32 15.69
13 451.51 380.86 409.38 446.93 377.22 379.86 7.86 −9.33 −0.96 21,602.01 21,603.38 21.59 15.94
14 411.13 374.16 404.27 430.90 368.33 372.34 8.89 −1.67 −1.56 21,604.54 21,602.62 18.58 16.35
15 476.11 408.08 471.97 487.89 408.08 422.95 13.54 −0.87 0.00 21,600.94 21,603.22 22.69 17.70
16 402.78 348.21 386.72 399.73 345.08 354.20 10.77 −3.99 −0.90 21,601.95 21,601.31 21.05 17.85
17 391.01 350.00 387.70 409.21 349.16 357.24 9.94 −0.85 −0.24 21,604.32 21,269.94 26.22 17.69
18 383.83 333.55 371.88 386.17 333.55 355.47 10.31 −3.11 0.00 21,604.13 21,602.01 20.58 17.58
19 631.50 456.04 629.44 630.57 456.56 462.58 27.47 −0.33 0.11 21,604.54 21,604.54 22.37 15.24
20 623.24 446.97 613.98 657.09 444.37 454.62 27.62 −1.49 −0.58 21,603.22 21,604.32 21.58 15.14
21 640.50 453.18 629.21 637.69 453.18 466.01 27.98 −1.76 0.00 21,603.86 21,604.13 24.30 15.27
22 677.78 479.61 671.08 709.99 479.42 488.94 28.56 −0.99 −0.04 21,604.13 21,604.54 19.11 14.88
23 685.06 490.96 662.80 714.08 490.96 498.56 25.93 −3.25 0.00 21,604.54 21,603.22 18.24 15.73
24 750.24 547.36 750.24 775.73 538.75 558.38 28.19 0.00 −1.57 21,603.22 21,603.86 20.02 16.04
25 618.28 451.32 618.02 628.00 451.32 453.83 26.97 −0.04 0.00 21,603.86 21,603.83 21.29 15.29
26 631.88 461.93 624.06 633.28 461.93 473.39 25.98 −1.24 0.00 21,603.54 21,603.54 18.69 14.46
27 602.32 467.87 602.32 605.79 438.85 461.51 27.14 0.00 −6.20 21,602.76 21,602.76 19.10 15.81

Avg 417.66 334.88 408.16 424.80 330.34 339.01 15.73 −3.10 −1.69 21,590.45 21,590.37 16.59 12.84
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Table 6. Computational results for large-size instances.

AMPL TS
2EVRPA

vs.
2ECoVRP

AMPL vs. TS AMPL TS

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)

No. Obj
2EVRPA

Obj
2ECoVRP

Best Obj
2EVRPA

Avg Obj
2EVRPA

Best Obj
2ECoVRP

Avg Obj
2ECoVRP

Diff
(%)

Diff-
2EVRPA

(%)

Diff-
2ECoVRP

(%)

Time
2EVRPA

(s)

Time
2ECoVRP

(s)

Time
2EVRPA

(s)

Time
2ECoVRP

(s)

1 683.68 634.86 678.35 702.25 590.33 596.37 12.98 −0.78 −7.01 21,602.23 21,603.22 30.82 60.35
2 653.22 635.50 625.83 672.99 582.26 590.90 6.96 −4.19 −8.38 21,602.65 21,601.31 30.41 60.04
3 652.74 597.97 622.32 675.80 564.57 597.07 9.28 −4.66 −5.59 21,603.38 21,269.94 30.49 59.48
4 741.25 637.65 676.10 795.59 601.53 632.87 11.03 −8.79 −5.66 21,602.62 21,602.01 30.58 60.48
5 696.21 662.33 682.82 765.80 624.68 632.74 8.51 −1.92 −5.68 21,601.09 21,604.54 30.91 62.28
6 781.77 699.89 757.63 820.17 689.84 699.30 8.95 −3.09 −1.44 21,601.06 21,604.32 30.40 61.99
7 670.33 601.13 666.95 802.21 585.85 595.20 12.16 −0.50 −2.54 21,600.95 21,603.38 29.95 60.02
8 725.41 609.23 648.33 689.92 609.07 623.49 6.06 −10.63 −0.03 21,601.05 21,602.62 29.57 60.68
9 772.83 601.16 618.51 688.58 578.43 585.56 6.48 −19.97 −3.78 21,602.62 21,601.09 29.31 59.60

Avg 708.60 631.08 664.09 734.81 602.95 617.05 9.16 −6.06 −4.46 21,601.96 21,565.83 30.27 60.55
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Furthermore, the findings demonstrate that the 2ECoVRP approach is better than
the 2EVRPA as shown by the lower average of the total operation time by 15.73% for
medium-size instances and 9.16% for large-size instances. Regarding the computational
time, the 2ECoVRP generally requires a longer computational time than the 2EVRPA. When
all nodes are being evaluated, the computational time for the 2ECoVRP is twice as long as
that for the 2EVRPA. Nevertheless, the average computational time of the 2ECoVRP for
large-size instances, which is about 60 s or one minute, is relatively short and acceptable to
be used in practice/field.

Figure 4 shows the comparative analysis for the two models, i.e., the 2EVRPA and
the 2ECoVRP, and the solution methods, i.e., exact algorithm and tabu search algorithm.
It is observed that the 2ECoVRP approach performs better than 2EVRPA for all scales of
instances. It is important to note that a trade-off, however, exists between the achieved the
best solution, i.e., the average total operation time, and the average computational time. To
achieve lower total operation time, it generally requires longer computational time. An
exception is, however, observed for medium-size instances in which the computational
time for the best total operation time can be achieved with a shorter computational time.
The result is of course desirable, but it is important to note that the medium-size instances
were generated using 19–28 nodes out of 49 nodes, so the results are highly influenced
by the selected node configurations. Detail analysis was further conducted to measure
the standard deviation of the best solution for the 2ECoVRP approach. It was found that
the standard deviation for medium-size instances was higher, at 126 min, than that of
small-size instances. at 26 min, and that of large-size instances, at 33 min, indicating a
wider variance of total operation time for medium-size instances.
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With respect to the solution method, it seems that the tabu search algorithm is accept-
able because it performs almost as well as the exact algorithm, as indicated by a slight
difference when compared to the exact algorithm in the small-size instances. Because the
tabu search algorithm has been able to solve the medium-size and large-size instances
with a good-quality solution in sensible computational time, the tabu search is therefore
suggested to be used as the solution method for the 2ECoVRP model.

4.4. Sensitivity Analysis

Sensitivity analysis is conducted to analyze the sensitivity of the total operation time
due to changes in the number of drones. Figure 5 demonstrates that a lower number
of drones corresponds to a higher total operation time of post-disaster assessment. In
contrast, the more drones, the faster the assessment operation of post-disaster assessment.
For instance, the addition of three drones, from five drones to eight drones, results in a
shorter operation time of 23 min. Nevertheless, it is important to note that more drones are
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not always coupled with the faster operation. It appears that additional drones after the
deployment of eight drones do not lead to a significant reduction of the total operation time.
It can be argued that the operation time of post-disaster assessment is also constrained
by the given network configuration, particularly the number and location of stopover
points as shown in Figure 2, the total areas to be mapped, and the assumption that each
motorcycle can only be mounted by one drone.
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4.5. The Effect of Drone Configuration on the Operation Time

In addition to network configuration as previously discussed, the operation of hybrid
aerial and ground vehicles is also influenced by drone configuration. This subsection,
therefore, evaluates the effect of various drone configurations on the total operation time.
Table 7 presents four drone configurations concerning flight altitude and battery capacity
because these two parameters are considered to be influential factors in drone operation.
The drone operated at a higher flight altitude has a higher capability to capture wider
areas; however, the flight time is lower than that when operated at a lower altitude due to
faster depletion of battery capacity. Similarly, the drone with a bigger battery capacity has
a longer flight time. The large-size instances were used for the analysis.

Table 7. Drone configurations.

Attribute

Configuration
1 2 3 4

Flight altitude (meters) 70 150 70 150
Battery capacity (minutes) 120 100 100 90

Figure 6 demonstrates that the 2ECoVRP performs better than 2EVRPA in all drone
configuration settings, as indicated by the lower operation time. It is not surprising because
the previous findings have demonstrated the superiority of the 2ECoVRP model. It can be
argued that multi-visits in the 2ECoVRP helps to reduce the operation time significantly.

The results indicate that the best drone configuration is when the drone with a battery
capacity of 120 min and is operated at a flight altitude of 70 m. It is worth noting that
when the battery capacity of the drone is reduced by 20 min, the total operation time is
longer by 8.65 min and 51.5 min for 2ECoVRP and 2EVRPA, respectively (see Configura-
tion 3). Similarly, when the flight altitude was set at about twice as high, the operation
took an additional time of 28.88 min for 2ECoVRP and a lower time by 21.73 min for
2EVRPA (see Configuration 2). When comparing the result of Configuration 2 with that of
Configuration 4, it was found that the reduction of battery capacity by 10 min results in a
longer operation time of 29.77 min for 2ECoVRP and a lower operation time by 38.2 min
for 2EVRPA. It appears that some inconclusive results were found for the effect of the flight
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altitude on the operation time and the effect of battery capacity on the operation time for
the EVRPA. 

 
Figure 6. Performance comparison of various drone configurations for the selected 
large-size instances. 

 

Figure 6. Performance comparison of various drone configurations for the selected large-size instances.

Further investigation was conducted to explore the effect of a single operation pa-
rameter, i.e., battery capacity, on the best operation time. The investigation was based
on Configuration 1 as the best configuration, which was modified by varying its battery
capacities. Given the flight altitude of 70 m, Figure 7 indicates that higher battery capacity
results in faster operation time. In contrast, using a lower battery capacity results in a
significantly longer operation time. The improvement of the total operation time, however,
does not seem to be linear. The increased battery capacity of more than 110 min does not
lead to a significant reduction of the operation time. This implies that it is important to
find the optimal battery capacity that fits a given post-disaster assessment operation so
that the assessment operation is efficient.
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The aforementioned findings indicate that both flight altitude and battery capacity
also contribute to the efficient assessment operation. It implies that further study exploring
the optimal setting of drone operation for flight altitude and battery capacity is required.

4.6. Practical Implications

Although sustainability is not a new concept, its implementation within humanitarian
operations has only recently been realized. A sustainable system generally rests on the
continuous awareness that the objectives of sustainability, i.e., economic (e.g., cost), social
(e.g., fairness), and ecological (e.g., emissions) goals are met. Therefore, the present study
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suggests that planning for post-disaster assessment such as the implementation of the
hybrid aerial and ground vehicle system should be conducted not only to facilitate more
quick and accurate assessment efficiently but also to reduce resources used.

Concerning the ecological goal, the deployment of the technology, i.e., the drone,
for post-disaster assessment helps to reduce fuel consumption, consequently less GHG
emissions and lower cost. Studies on life-cycle assessment for drones by Figliozzi [11]
and Koiwanit [12] have indicated that drone is one of the most environmentally friendly
transportation options. However, the deployment of the drone should also be accompanied
by the efficient operation of the drone. The results imply that the efficiency of the hybrid
aerial and ground vehicle operation depends on the network configuration, the routings of
both vehicles, and the operation parameters such as flight altitude and battery capacity
of the drone. To facilitate efficient routing of both the ground vehicle and the drone, the
results imply that the 2ECoVRP approach solved by the tabu search algorithm seems to be
promising as it only requires one minute to obtain the optimum routings of both vehicles.
The findings also imply that operation settings should be explored further for a more
efficient operation. For the studied case, it is suggested to deploy a maximum of eight
drones with a flight altitude of 70 m and battery capacity of 120 min. The findings can
be used by the search and rescue team of the Regional Disaster Agency to improve the
efficiency and effectiveness of the post-disaster assessment.

Concerning the social aspect, the hybrid aerial and ground vehicle system allows
accessing wider areas, as the drone can access areas that are inaccessible by the ground
vehicle, thus facilitating fairness for the remote areas. Hence, the deployment of the
hybrid aerial and ground vehicle at its optimal operation not only provides immediate
and accurate assessment, which is crucial for emergency response operation, but also
facilitates the sustainability aspect of the operations in terms of environmental, economic,
and social goals.

5. Conclusions and Future Research

Due to its critical role of post-disaster assessment toward timely and effective response,
an innovative and efficient approach to carry out the assessment is required. The present
study proposes and evaluates the Two-Echelon Vehicle Routing Problem combined with As-
signment (2EVRPA) and Two-Echelon Collaborative Vehicle Routing Problem (2ECoVRP)
to evaluate optimal routings of both aerial and ground vehicles, which gives the minimum
operation time for post-disaster assessment. The developed models were applied to solve
the post-disaster assessment for the Mount Merapi eruption in Yogyakarta, Indonesia, to
demonstrate its applicability to a real problem. A set of numerical experiments based on
the empirical case were conducted. Both the exact algorithm and the tabu search algorithm
were implemented to solve both models.

The findings indicate that the 2ECoVRP performs better than 2EVRPA in terms of
the total operation time. It can be argued that the 2ECoVRP facilitates the more efficient
operation of the drone by allowing multiple visits in one go. The average operation time to
assess all mapping points is about 10 h, which is relatively faster than the current practice.
Hence, the 2ECoVRP seems to be a promising approach to evaluate the routing of the
hybrid aerial-ground vehicle system for post-disaster assessment. It is worth noting that a
trade-off exists between the best solution and computational time. The computational time
of the 2ECoVRP is about twice as long as that of the 2EVRPA for large instances. However,
as the computational time for the 2ECoVRP is about one minute for large instances, it
is considered reasonable and practical. It is also important to note that the tabu search
algorithm can obtain optimal solutions that are comparable to those of exact algorithms, i.e.,
branch and bound as well as branch and cut methods, in a reasonable time. It is therefore
suggested to be deployed to solve the 2ECoVRP.

Despite its contribution, some limitations of the present study need to be highlighted.
First, the study has not compared the performance of the tabu search algorithm with other
heuristics methods. The exploration for a more effective and efficient method to solve for
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the 2ECoVRP is therefore suggested as a potential avenue for future research. Second, the
study has limited numerical analysis for different operational parameters such as flight
altitude, drone specifications (e.g., battery capacity, mapping rate, speed), and the network
configuration. However, the findings imply that the drone configuration settings (i.e., flight
altitude and the drone’s battery capacity) influence the total operation time. Future studies
could therefore extend the present study to explore the best solution by considering both
network configuration and drone configuration. Last but not least, the present study deals
with the deterministic problem. Due to high uncertainty corresponding to humanitarian
operations, it is, therefore, necessary to evaluate the effectiveness of the obtained best
solution in a dynamic environment setting. A hybrid optimization-simulation method such
as that developed by Sopha, et al. [48] is thus suggested for other potential future research
to test the effectiveness of the solution to support more effective and efficient post-disaster
assessment practices.
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Appendix A

Table A1. Depots, stopover points, and target/mapping points.

Symbol Name Latitude Longitude Area (m2) Symbol Name Latitude Longitude Area (m2)

1 Depot 1 −7.6575 110.443611 30 Mapping Point 21 −7.614167 110.453611 331,191
2 Depot 2 −7.649167 110.443611 31 Mapping Point 22 −7.622222 110.455277 243,969
3 Depot 3 −7.638889 110.445277 32 Mapping Point 23 −7.629444 110.455833 175,076
4 Depot 4 −7.639444 110.425555 33 Mapping Point 24 −7.65 110.459444 150,000
5 Depot 5 −7.691389 110.475833 34 Mapping Point 25 −7.651667 110.455555 131,500
6 Depot 6 −7.648889 110.391944 35 Mapping Point 26 −7.639444 110.448333 169,500
7 Depot 7 −7.659444 110.470277 36 Mapping Point 27 −7.636111 110.449166 120,000
8 Depot 8 −7.668056 110.472777 37 Mapping Point 28 −7.635511 110.457391 140,750
9 Depot 9 −7.648056 110.468333 38 Mapping Point 29 −7.590556 110.442222 227,563

10 Mapping Point 1 −7.639444 110.462777 244,696 39 Mapping Point 30 −7.574185 110.443737 77,500
11 Mapping Point 2 −7.628889 110.464722 174,139 40 Mapping Point 31 −7.596667 110.442777 185,925
12 Mapping Point 3 −7.631111 110.466111 196,657 41 Stopover Point 1 −7.6665221 110.4714306
13 Mapping Point 4 −7.626111 110.464166 141,113 42 Stopover Point 2 −7.6739458 110.464487
14 Mapping Point 5 −7.621667 110.462222 229,684 43 Stopover Point 3 −7.6587427 110.4558261
15 Mapping Point 6 −7.5975 110.459444 125,100 44 Stopover Point 4 −7.6384602 110.4593284
16 Mapping Point 7 −7.584722 110.457222 139,612 45 Stopover Point 5 −7.6316921 110.4569936
17 Mapping Point 8 −7.574167 110.454722 240,192 46 Stopover Point 6 −7.6205943 110.4545169
18 Mapping Point 9 −7.677222 110.461666 93,110 47 Stopover Point 7 −7.6028011 110.4496507
19 Mapping Point 10 −7.674722 110.463333 99,968 48 Stopover Point 8 −7.5893084 110.4629461
20 Mapping Point 11 −7.671944 110.463055 80,450 49 Stopover Point 9 −7.5877972 110.4485526
21 Mapping Point 12 −7.669722 110.4625 117,905 40
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Table A1. Cont.

Symbol Name Latitude Longitude Area (m2) Symbol Name Latitude Longitude Area (m2)

22 Mapping Point 13 −7.662778 110.457777 133,995 41
23 Mapping Point 14 −7.657778 110.4575 66,734 42
24 Mapping Point 15 −7.662778 110.466111 111,311 43
25 Mapping Point 16 −7.669167 110.471666 77,284 44
26 Mapping Point 17 −7.582778 110.451111 331,191 45
27 Mapping Point 18 −7.595556 110.451111 253,449 46
28 Mapping Point 19 −7.596667 110.448333 232,592 47
29 Mapping Point 20 −7.610556 110.450555 291,372 48
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