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Abstract: In the field of map matching, algorithms using topological relationships of road networks
along with other data are normally suitable for high frequency trajectory data. However, for low
frequency trajectory data, the above methods may cause problems of low matching accuracy. In
addition, most past studies only use information from the road network and trajectory, without
considering the traveler’s path choice preferences. In order to address the above-mentioned issue,
we propose a new map matching method that combines the widely used Hidden Markov Model
(HMM) with the path choice preference of decision makers. When calculating transition probability
in the HMM, in addition to shortest paths and road network topology relationships, the choice
preferences of travelers are also taken into account. The proposed algorithm is tested using sparse
and noisy trajectory data with four different sampling intervals, while compared the results with
the two underlying algorithms. The results show that our algorithm can improve the matching
accuracy, especially for higher frequency locating trajectory. Importantly, the method takes into
account the route choice preferences while correcting deviating trajectory points to the corresponding
road segments, making the assumptions more reasonable. The case-study is in the city of Beijing,
China.

Keywords: map matching; Hidden Markov Model; route choice preference; low sampling frequency;
GPS (Global Positioning System) trajectory

1. Introduction

The application of GPS location data in traffic research has become a common phe-
nomenon in the digital society. In the meantime, location data can be easily integrated with
geographic information system (GIS) for its geographical characteristics, which leads to
a large number of applications based on geographic location, such as vehicle navigation,
location-based service, etc. In the above integration, the crucial step is to combine location
data with the spatial network data to identify the correct road segment and determine the
position on the road network, which is referred to as map matching (MM) [1]. Effective map
matching can be achieved when location data and road networks have high accuracies.

However, the devil is in the detail. In general, the quality of GPS measurements can
be influenced by atmospheric disturbances, the synchronization of clocks, the geographical
features of the observed region, inadequate transmitting formats, or unknown human or
instrumental errors, which leads to a certain deviation between the collected data and the
real location data. Militino et al. [2] assumed that when all the GPS observables are taken
in the same conditions, it is still possible to estimate the positional errors as the difference
between the real coordinates and those measured by the GPS. In the field of MM, it is
typical to set a positioning error threshold to filter out the road segments corresponding
to the trajectory points. In general, the error of the device collecting the GPS trajectory is
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known. In addition, the road network used by researchers was of limited quality, which
was either outdated or did not cover all existing roads. These issues can turn a simple
problem into a complex one, so it is critical to detect and resolve these data quality issues
when performing map matching.

According to the sampling density of trajectory data, approaches for map matching
algorithms can be categorized into high frequency sampling algorithms and low frequency
sampling algorithms [3]. When the GPS sampling frequency is high, generally, the sampling
interval is less than 10 s, and even if only the track points are matched to the nearest road
segment, a high accuracy ratio can be obtained. Road network matching techniques based
on high frequency sampling data have been widely adopted in commerce. However,
due to the expensive storage and transmission costs of high-frequency sampling data,
low-frequency trajectory is generally used in practice. For trajectories with long sampling
intervals, existing methods cannot fully guarantee that the matched paths match the actual
choices of decision makers because there are multiple candidate paths between neighboring
localization points. Moreover, it is also challenging to deal with such problems in complex
urban road networks, which is the focus of this paper.

For the low sampling frequency trajectory, a large number of map matching methods
are proposed [4,5]. While some advanced methods use techniques such as fuzzy logic and
Bayesian inference, most studies are based on the work of Newson [6], which is based on
Hidden Markov Models (HMM). In detail, such algorithms only use the geometric and
topological information of the road network to estimate the parameters of the HMM, which
ignore the decision of the driver.

To address this issue, we propose a new algorithm which integrate the route choice
behavior and HMM algorithm for low sampling trajectories. In the process of selecting
candidate matched positions for each trajectory point, except the shortest distance between
the trajectory point and the selected link, other factors such as the instantaneous velocity,
the speed limitation and route choice habits of drivers are also taken into account. For
example, people generally tend to select roads with higher speed limits in a trip. On the
other hand, when inferring the paths between adjacent trajectory points, we use the shortest
path algorithm and the geometric and topological relationships of the road network.

The rest of this paper is organized as follows. Section 2 reviews previous related work
in the area of map matching. Section 3 presents the map matching based on a path selection
model with an HMM algorithm. Section 4 present the results of numerical experiments
and compares them with the two underlying algorithms. In Section 5, conclusions are
presented and future research directions are discussed.

2. Literature Review

Map matching (MM) algorithms date back to the 1980s, when researchers initially used
geometric and topological information to perform matching. It only uses the geometric
information of the spatial-temporal road network for matching, such as distance, angle,
shape, etc., without considering the connectivity between road sections. A curve-to-curve
method was provided by White et al. [7] to prove that using the topological information of
road networks can improve matching quality. However, such approaches are sensitive to
noise and cannot be corrected in time in case of a false match.

Then, a probabilistic map matching algorithm became more popular for its robustness.
Jong-Sun et al. [8] presented a map matching method using the multiple hypothesis
technique. He succeeded in determining a road between neighboring trajectory points that
are far away by applying a probabilistic method, but the algorithm is not applicable to
sparse localization data. Bierlaire et al. [9] proposed a probabilistic map matching approach
by generating a set of potential true paths and associating a likelihood with each of them.
The disadvantage is that the method works well in high-frequency trajectory data, while
the mismatch at intersections is high. Later, more advanced methods were introduced in
the field of map matching, such as Kalman filter, fuzzy logic model and Hidden Markov
Model (HMM). These methods focus on the perspective of the overall situation for all
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locating data and their candidate road segments rather than calculating between individual
points and nearby candidate links [10]. It typically takes three steps. In the initial step, we
need to obtain all road segments with loosely constrained distance near the positioning
point, which are considered as candidate links. The value of this distance depends on
the relevant features of the traffic road network and the localization error of the trajectory
data. The second step is to allocate a matching probability to each candidate link. This
probability depends on the topological relationship between the trajectory point and the
candidate road segments, such as the similarity of azimuths, the distance between them,
the speed of the point and the speed limit of the road segments, etc. The final step is to
deduce the most probable path between adjacent trajectory points, which is obtained by
calculating the possible paths between their respective alternative points. At this stage,
previous studies generally treat the shortest path between candidate points as the actual
path, which is inconsistent with the reality.

Sparse trajectory is a common issue in map matching. To fill the paths between adja-
cent sparse trajectory points, Lou et al. [11] proposed to use the most probable path. Their
algorithm is based on two intuitive assumptions: the actual paths tend to be straightfor-
ward, and the trajectories are constrained by speed limits. Quddus and Washington [4]
propose a map matching algorithm by considering the connectivity of connections and
the turning limits of intersections, combined with weight-based shortest paths. Hsueh
and Chen [12] perform map matching under low sampling rate conditions by exploring
the real-time movement direction of vehicles. However, the above studies only consider
spatial characteristics such as distance information and topology of the road network, as
well as the speed constraint, ignoring the human choice factor.

To overcome the above limitations of the existing HMM-based map matching algo-
rithm, we combine the HMM with the path selection model, which takes into account
the driving habits of the travelers and ensures the feasibility of the matched paths. The
experimental results in Section 4 show that our algorithm has higher matching accuracy
than the two benchmark algorithms.

3. Methods and Techniques

This section introduces the road network matching method proposed in this paper,
which consists of four main parts. Firstly, defining the preliminary notations and terms
used for map matching. Secondly, the basic workflow of the paper is briefly explained.
Thirdly, introducing the data that will be used in this paper and the process of preparing
them. In the end, we state the key ideas of the approach adopted by the Hidden Markov
Model and path selection model.

3.1. Notations and Definitions

Definition 1 (Road intersection). A road intersection v is an intersection of multiple roads in a
road network, which is associated with a longitude (v.lon) and a latitude (v.lat).

Definition 2 (Road segment). A road segment e is a directed edge represented by one start node
(e.start), one end node (e.end) and a segment length (e.length). A two-way street is regarded as two
individual segments.

Definition 3 (Road network). A road network is a directed graph G(V, E); here, V is the vertex
set representing the road intersections and E is the edge set representing the road segments.

Definition 4 (Observation point). An observation point p contains the spatial-temporal informa-
tion of a person when using GPS devices to collect their travel information. Each point is associated
with longitude (p.lon) and latitude (p.lat) coordinates with a timestamp (p.time).

Definition 5 (Trajectory). In general, a trajectory T is a sequence of observation point ordered by
the timestamps (i.e., p0 → p1 → · · · → pn ).
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Definition 6 (State point). A state point s refers to the physical position corresponding to an
observation point. It can be regarded as the result of map matching, and one observation point can
only be matched to one state point.

Definition 7 (Inferred route). A inferred route L is a sequence of connected road segments which
a vehicle is believed to travel given the observation of a trajectory T. In the work presented in this
paper, an inferred route does not necessarily start and end at nodes. It could start or end at any
point that lies along the centerline of any road segment.

Given a sequence of N observations o1:N = {o1, o2, · · · , on} and a road network G, the
map matching problem is to find the inferred route L in G corresponding to o1:N .

3.2. Algorithm Overview

The proposed algorithm is designed to select the best matched road segment for each
GPS trajectory point. Figure 1 shows the architecture of our algorithm, which consists of
two parts: data preprocessing and the construction of HMM.
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• Part 1: data processing

This part contains two steps: trajectory clustering and road network processing. The
GPS trajectory data were collected from dozens of volunteers in step 1. In the process of
data integration and cleansing, converting the raw data into a format that allows for data
mining. After that, the DBSCAN clustering algorithm is used to exclude the redundant
trajectory points to improve the matching efficiency.

In the step of road network processing, the original road network, which presented
in XML, is easily used to send data but has poor availability. By extracting relative in-
formation from the original file, standard road network can be established. Except the
typical component of road network G, it also includes other elements, such as the road
class, one-way road or not, the road’s name, the length and orientation of a road segment,
that can be used in later procedure.

After the above data processing operations, the data suitable for the subsequent model
construction are prepared.

• Part 2: Hidden Markov Model

Firstly, the network topology information obtained previously is used to calculate the
observation probability. Secondly, the shortest path algorithm is applied to measure the
shortest path and distance between candidate segments of time i and i + 1, and then the
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transition probability is computed. Lastly, HMM is used to calculate the probabilities of
various inferred paths corresponding to track T, and the route with the highest probability
is chosen as the optimal route.

• In summary, the overall flow of the proposed algorithm is as follows.

(1) Input: Road network G(V, E), each road segment (lon, lat) ∈ E is associated
with a list of properties, such as road ID, name, the start and end node, grade,
speed limit, azimuth and a sequence of N observations o1:N = {o1, · · · , on};

(2) For a threshold value R, set the road segments within the proximity of obser-
vation t(t = 1, 2, . . . N) as the candidate links, as shown in Figure 2. Then, the
observation probability for each candidate link is calculated;

(3) When t = 1, V1,k = p(o1
∣∣s1,k) is treated as the initial state;

(4) When t = 2, . . . N, the Viterbi algorithm Vt,k = p(ot
∣∣st,k)·maxj(Vt−1, jp(st,k

∣∣st−1,j))
is used to compute the state at time step t;

(5) At the last time step t = N, the path with the highest probability is taken as
the optimal path.
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The following subsections present details of these steps.

3.3. Data Processing and Description
3.3.1. GPS Trajectory Data

In 2019, we employed about 60 volunteers to record GPS trajectory data of their daily
activities while using a vehicle. Each observation point contains five fields: volunteer ID,
time, longitude, latitude and speed, as shown in Table 1. The sampling frequency is 5 s, and
the total size is more than 80,000 pieces of records collected from 196 trips. Since this paper
addresses the sparse data map matching problem, certain GPS points are removed from
the original dataset, and datasets with sampling intervals of 30, 45 and 60 s are generated.
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Table 1. Sample from original trajectory data.

Volunteer ID Time Longitude Latitude Speed

1 25 February 2019 17:12:42 116.348533844 39.9656527041 10.73298
1 25 February 2019 17:12:49 116.348587135 39.9658000376 12.62736
1 25 February 2019 17:12:53 116.34855805 39.9659548095 15.11853
1 25 February 2019 17:12:58 116.348499544 39.9658969324 16.44845
1 25 February 2019 17:13:03 116.348489402 39.9658808811 14.98515
1 25 February 2019 17:13:08 116.348543298 39.9659085414 13.42683

Different types of data problems such as data loss or data duplication often occur due
to human negligence, equipment anomalies and other factors [13]. Direct analysis of these
problematic data will produce erroneous or meaningless results and must be corrected
through a process of data integration and cleansing prior to building data mining models.

After integrating and cleaning the original data, the next operation is to filter the dense
track points using clustering. For two consecutive trajectory points, when the speed is very
low, the distance will be too small to affect the subsequent map matching process. In this
procedure, DBSCAN is applied to exclude dense points.

After data sampling, integration and cleansing and clustering, one volunteer trajec-
tory will only contain several tens of geographic coordinates after preprocessing, just as
Figure 3 illustrates.
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3.3.2. Road Network Data

We download the urban data of Beijing from OpenStreetMap, a website that aims to
create and provide free geographic data, such as street maps, to anyone [14]. The original
data file represents physical features on the ground (e.g., roads or buildings) using tags
attached to their basic data structures, including nodes, ways and relations. The main
attributes include the longitude and latitude of a node, the sequence of connecting nodes
in a way, the ID and other tags of way, such as the name, if it is a highway and one-way or
not.

Firstly, in order to construct the road network of Beijing, we need to extract informa-
tion from label ways that equal highways. In detail, a highway has labels including “mo-
torway”, “trunk”, “primary”, “secondary”, “tertiary”, “unclassified”, “motorway_link”,
“trunk_link”, “primary_link”, “secondary_link”, “tertiary_link” that are selected in our
work, for only the above types of roads are suitable for vehicles. Secondly, a way compos-
ited by ordered nodes is knitted, the name and one-way or not is also recorded in this step.
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Then, according to the Road Speed Limit Regulations of Beijing, the maximum speed is set
for various roads. Finally, the length and bearing of the selected road is computed based
on its longitude and latitude.

The selected road network contains 10,545 road segments and 9188 points. Apart from
the linking sections, the average length of road segment is 91.54 m. Figure 4 presents the
actual scene of the experiment and the display of the original trajectory data on the map of
this paper. Figure 5 shows the basic structure of the road network that we extracted.
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It should be noted that the OSM road network data were accessed in 2021, while the
GPS trajectory data were collected in 2019. There is no big change in the road network from
2019 to 2021 in Beijing, particularly within the central part, where the data we collected.
Minor changes in road networks would significantly affect the matching results, so better
results could be anticipated if high-quality road network data are available.
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3.4. HMM in Map Matching

A Hidden Markov Model is a type of Markov Chain, which is defined as “A stochastic
model describing a sequence of possible events in which the probability of each event
depends only on the state attained in the previous event” [15]. It is useful in events in
which one is interested but may not be directly observable in the world. In the field of map
matching, an HMM models a system assumed to be a Markov process with unobservable
states and observable observations [16].

In general, an HMM has the following two assumptions [17]:

• Markov Assumption: The probability of a particular state is dependent only on the
immediate previous state:

p(st|s1, o1, · · · , st−1, ot−1) = p(st|st−1) t = 1, 2, · · · , T

• Independent Assumption: The probability of an observation ot is dependent only on
the state that produced the observation Si and not on any other state or any other
observations:

p(ot|s1, o1, · · · , st−1, ot−1, st+1, ot+1, · · · , sT , oT) = p(ot|st)

Figure 6 illustrates the model used. For a hidden state point St at time step t, we can
obtain the corresponding observation point ot with observation probability bt. This state
point could transfer to the next hidden state point St+1 with a transition probability at+1.
At first, it should have an initial state π, which denotes the probabilities of being in various
states of the start time. Transition probability A, observation probability B and initial state
probability vector π are called the three elements in HMM [18].
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Figure 6. Illustration of the HMM strategy.

In an HMM, there could be multiple sequences of states that are consistent with a
given sequence of observations. The most likely state sequence can be efficiently calculated
using the Viterbi algorithm [19]. The following introduces the workflow of this part.

3.4.1. Transition Probability

The transition probability between a state St–1,j at time step t–1 and another state St,k
at time step t depends on the features of the optimal path between them. For example,
two candidates who lie on the same or consecutive road segment are more likely than on a
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parallel one, for it is unlikely that the object jumps from one road to the other across two
sequential observations. Meanwhile, the road level of the candidate segments will not
differ greatly.

In this paper, the path with the minimum free-flow travel time [20] and the difference
in road class between the candidate road segments are considered as the main influence
factors. This is calculated by assuming that the Euclidean distance between two candidates
should be similar to the road-network distance between them. Haversine formula [21] is
used to calculate the distance of two points, and Dijkstra’s algorithm [22] is applied when
searching for the shortest path distance in road network between two candidates.

Firstly, we consider a temporal implausibility in order to allocate low transition
probabilities to paths that are not possible within the time ∆T unless driving exceeds the
speed limit. It defined as follows:

ptime =
max(Tf ree − ∆T, 0)

∆T
(1)

where:
Tf ree = the free-flow travel time in seconds;
∆T = the time interval between time steps t + 1 and t in seconds.
Generally, the shortest path distance between two candidate points at time step t + 1

and t is usually consider the most important factor [23], which is defined as the following
distance variance probability:

pD =
1

βD
e−

disdi f
βD ·∆T (2)

disdi f =
∣∣∣Dr − De

∣∣∣ (3)

D = 2R ∗ arcsin(
√

hav(φB − φA)− cos(φA) cos(φB)hav(LB − LA)

= 2R ∗ arcsin(
√

sin2( φB−φA
2 ) + cos(φA) cos(φB) sin2( LB−LA

2 )
(4)

here:
Dr, De are the shortest path distance and Euclidean distance of two candidate points,

respectively;
βD = the parameter of the exponential distribution;
R= the radius of the Earth;
φA, φB are the latitude of point 1 and point 2 (in radians), respectively;
LA, LB are the longitude of point 1 and point 2 (in radians), respectively.
In addition to the topological information of the path, it is also important to consider

the path selection habits of the driver [20]. In this part, we use a logit model to estimate the
driver’s preference and consider all drivers to be identical as follows:

pchoice =
eβχi

∑pj∈C eβχj
(5)

Vi = βiχi = βarcχarc + βnceχnce (6)

where:
χarc, βarc are the average road class and its parameter for the candidate route, respec-

tively;
χnce, βnce are the number of class changes and their parameters for the candidate route,

respectively.
Therefore, the transition probability can be defined as follows:

p(st|st−1) = ptime·pD·pchoice (7)
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3.4.2. Observation Probability

The observation probability is the likelihood of each candidate point for a GPS point
belonging to that point. For example, a candidate road segment closer to the raw ob-
servation point would have a higher measurement probability than one that is further
away.

Similar to previous studies, the observation probability model refers only to the current
candidate point and the observation point [24]. In this paper, observation probability is
determined by distance, bearing deviation and speed constraint rules between observation
and candidate road segments. In addition, we regard the point closest to the observation
on the road segment as the candidate point.

As in previous studies, we treat the shortest distance between a trajectory point
and a candidate road segment as the most important factor and define it as the distance
constraint probability. In the case of the true state, the distance between itself and the
observed location is the location measurement error, which is generally assumed to follow
a Gaussian distribution with zero mean. The distance constraint probability is computed
as follows:

pdis =
1

σ
√

2π
e−

dis2

2σ2 (8)

dis = 2R ∗ arcsin(
√

hav(φB − φA)− cos(φA) cos(φB)hav(LB − LA)

= 2R ∗ arcsin(
√

sin2( φB−φA
2 ) + cos(φA) cos(φB) sin2( LB−LA

2 )
(9)

where:
dis = the great circle distance of two candidate points.
It is worth noting that, in practice, the location measurement error may not strictly

conform to the above model, especially in dense urban networks. Irrespective of the
positioning technology used, the error is known to exhibit non-Gaussian characteristics
and geographical variations. However, the model based on Gaussian distribution, though
simple, has been shown to be effective in several previous works on map matching [25].

In addition to the distance constraint, the azimuth difference is another important
factor to be considered, which is defined as the azimuth constraint probability. The bearing
θ of node A is the angle between the North and the direction to the next node B on the
route. The value can be calculated with the following haversine formula:

pazi = |cos(θobs − θcandi)| (10)

θ = arctan2(sin(LB − LA) cos(φB) cos(φA) sin(φB) − cos(LB − LA) sin(φA) cos(φB)) (11)

where:
θobs = the instantaneous bearing of the observation point;
θcandi = the azimuth of the candidate road segment.
Finally, considering traffic rules, such as the speed of a vehicle cannot exceed the

speed limit, traffic speed constraint probability is defined as follows:

pspe =

{
1, αspe ≤ αspe
0, αspe > αspe

(12)

where:
αspe = the instantaneous velocity of the observation point;
α0 = the maximum speed limit of candidate road.
Therefore, the observation probability can be introduced as follows:

p(ot |s t) = pdis·pzai·pspe (13)
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3.4.3. Viterbi Algorithm

The Viterbi algorithm takes the series of hidden states (candidate points) along with
their associated measurement or transition probabilities as inputs. The first matched point
is found simply as the candidate with the highest observation probability, as there are no
transition probabilities for this base case. After this, the sets of candidates (for each GPS
point) are iterated through and the candidate with the highest combination of measurement
and transition probability is selected, considering only the observation transitions to the
previous candidate points as per the Markov assumption.

It calculates the most probable sequence in the HMM using the following recurrence
formulas: {

V1,k = p(o1
∣∣s1,k)

Vt,k = p(ot
∣∣st,k)·maxj( Vt−1·p(ot,k

∣∣st−1,j))
(14)

where:
p(ot

∣∣st,k) = the observation probability at time step t;
p(st,k

∣∣st−1,j) = the transition probability from time step t–1 to t;
Vt,k = the maximum probability among all paths at time step t when selecting candidate

link k.

4. Experiments and Results
4.1. Parameter Setting
4.1.1. Maximum Distance

In the process of MM, road segments with a distance less than the maximum dis-
tance from the GPS trajectory point will be selected as a candidate link, and those with a
greater distance will be excluded. In previous research results, the maximum distance is
determined by the measurement error and standard deviation of an observation.

The measurement error εm, which influences the efficiency and accuracy of map
matching, includes trajectory point positioning errors and road data errors. ε is represented
by Equation (15):

εm = εp + εr (15)

where:
εp = positioning error; here, we take its value as 20 m;
εr = road data error.
εr is mainly caused by the difference between the actual road width and the road line

data, and its calculation is as shown in Equation (16) [26]:

εr = 0.5· w
sin α

2
(16)

where:
w = the width of road, and the value of 40 m is taken here, which is approximately the

width of eight lanes in both directions;
α = the angle between two intersecting roads. In order to simplify the calculation, the

angle is generally considered to be 90 degrees.
In a normal distribution, 95% of the data fall within three standard deviations that are

taken as 7.6 m [27], as follows:
3·σd = 7.6m

According to the above influencing factors, the maximum distance is finally deter-
mined to be 50 m.

4.1.2. Parameters of the DBSCAN

DBSCAN is a density-based clustering algorithm: Given a set of points in some space,
it combines those points that are closely aligned together and marks those points that lie
individually in low-density regions as outliers. It requires two parameters: ε indicates the
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maximum distance of a neighborhood, and MinPts describes the minimum number of
points required to form a dense neighborhood [28].

In the prepared road network, excluding the connecting roads, the average length
of the road segments is about 90 m. To construct a sparse trajectory, MinPts is set to 3
and ε takes twice the average length of the section as 180 m to ensure that the contiguous
observation points do not correspond to adjacent sections.

4.2. Assessment Criteria

In order to perform a comprehensive evaluation of the proposed algorithm, two
evaluation metrics are used for comparison, including one accuracy criteria and one
criterion related to the computation time.

The first is the accuracy ratio of matched points (AR), defined as follows [29,30]:

AR =

T
∑
1

CNk

T
∑
1

Nk

(17)

where:
CNk = the number of points matched to the correct road segment in trajectory k;
Nk = the total number of points in trajectory k;
T = the number of trajectories.
The second measurement criterion is the average time consumption for per trajectory

point (AT), which is defined as follows:

ATC =

T
∑
1

TCk

T
∑
1

Nk

(18)

where:
TCk = the time consumption of trajectory k.

4.3. Results

As mentioned above, we compared the performance of the three algorithms at three
sampling intervals of 20, 30, 45 and 60 s. The overall and partial results before and after map
matching with a sampling interval of 120 s are shown in Figure 7, and the measurement
results with variable sampling intervals are presented in Table 2.

Table 2. Performance of the shortest path-based HMM algorithm with different sampling intervals.

Variables
Sampling Interval (s)

20 30 45 60

Sample size 8332 6748 5612 4825
AR (%) 93.52 92.78 92.12 91.79
AT (s) 8.16 8.65 8.78 8.82
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In addition to self-comparisons at different sampling intervals, we also compare the
quality of the proposed shortest path-based HMM algorithm with two benchmark MM
algorithms: a shortest path-based map matching algorithm (SPM) [4] and the HMM map
matching algorithm (HMM) described in [31], using the dataset described in 3.3. The
results of the experiment are shown in Figure 8.
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According to Table 2 and Figure 8, we can draw the following conclusions:

• As shown in Table 2, the accuracy ratio of matching decreases rapidly, and the average
time consumption increases slowly when the sampling interval is increased. For the
measurement of AT, when a larger sampling interval is selected, the amount of map
data used to calculate the shortest path between adjacent trajectory points does not
change much, resulting in constant average time consumption. Furthermore, when
examining the mismatched points, we found that most of the mismatches occurred
because the traveler did not choose the shortest path, which was inconsistent with our
hypothesis and resulted in lower matching accuracy at larger sampling intervals.

• Figure 8a shows the matching accuracy of the three algorithms for four different
sampling intervals, the horizontal axis represents the sampling frequency and the
vertical axis represents the percentage of accuracy. The AR values of all three methods
are higher than 0.9, while the proposed algorithm has higher matching accuracy than
the other two. We also note that all three algorithms can achieve good matching
precision at high frequency sampling, and the shortest path-based HMM performs
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better than the HMM and shortest path algorithms when the sampling frequency is
low.

• In Figure 8b, the HMM algorithm has the smallest ATC for all four sampling intervals
and the longest average time consumed by the SPM algorithm. On the other hand,
when the sampling interval is greater than 30 s, the proposed algorithm and the
HMM algorithm generate relatively stable ATC, while the ATC of the SPM algorithm
gradually increases.

In summary, the proposed algorithm has higher matching precision than the two
compared benchmark algorithms, especially when the trajectory points have a lower
sampling frequency. However, its average time consumption is between the two algorithms,
which is not satisfactory.

5. Conclusions and Discussions

In the paper, we propose a new map matching algorithm by integrating the HMM
methods with the path choice preference. As the traditional shortest path-based MM
algorithm for sparse trajectories, we first assume that the decision maker will choose
the shortest path to travel between two candidate points. Furthermore, as with typical
HMM-based algorithms, geometric topology information was applied, which includes
both velocity constraints and time constraints. However, in addition to these strategies
adopted above, the path selection preferences of drivers were also taken into account in this
paper. This approach, which are better fit with the actual scene, can significantly increase
matching efficiency without introducing excessive time consumption.

Based on real GPS trajectory data in Beijing, extensive experiments were conducted
to verify the matching performance of the proposed algorithm. The experimental results
show that when the sample interval is larger than 30 s, the proposed method improves
the matching accuracy by 1% compared to the two benchmark algorithms. Although the
algorithm can significantly improve the precision of map matching, its matching efficiency
is slightly reduced, especially in the condition of sparse trajectory data. Without considering
the time cost, the approach can help transportation researchers and practitioners process
GPS track datasets more efficiently to match their own GIS data.

The matching efficiency of the proposed algorithm is not entirely satisfactory, and we
guess that it consumes too much time using the shortest path strategy. Furthermore, there
are situations where decision makers face more options when making path choices than
just considering the shortest path and simple path selection preferences. Future research
can explore more matching strategies to address these shortcomings and to improve the
efficiency of matching and the plausibility of assumptions.
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