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Abstract: The present study introduces an economical–functional design for a polymer electrolyte
membrane fuel cell system. To do so, after introducing the optimization problem and solving the
problem based on the presented equations in the fuel cell, a cost model is presented. The final design
is employed for minimizing the construction cost of a 50 kW fuel cell stack, along with the costs
of accessories regarding the current density, stoichiometric coefficient of the hydrogen and air, and
pressure of the system as well as the temperature of the system as optimization parameters. The
functional–economic model is developed for the studied system in which all components of the
system are modeled economically as well as electrochemically–mechanically. The objective function
is solved by a newly improved metaheuristic technique, called converged collective animal behavior
(CCAB) optimizer. The final results of the method are compared with the standard CAB optimizer
and genetic algorithm as a popular technique. The results show that the best optimal cost with
0.1061 $/kWh is achieved by the CCAB. Finally, a sensitivity analysis is provided for analyzing the
consistency of the method.

Keywords: fuel cell; electrochemical–mechanical model; collective animal behavior algorithm;
improved; sensitivity analysis

1. Introduction

To directly convert chemical energy into electricity without combustion, an electro-
chemical device called a fuel cell is used. Thanks to this characteristic, it has higher
electrical performance toward thermal motors, which are restricted by the performance
of the Carnot cycle. The by-product of reacting in a fuel cell can be heat, water, carbon
dioxide, and hydrocarbons, according to the type of consumed fuel. Gas diffusion layers,
gaskets, flow-field plates, collector plates, catalyst layers, and Larminie and Dicks are the
main components of this device [1]. The system supplies the requested energy, while the
fuel and the oxidizer are existing. To provide the desired current and voltage, they can
make series or parallel connections.

The benefits of fuel cells include cleanliness, connection to micro-turbines, silent
operation, no moving elements, and lower greenhouse effects [2–4]. Among different types
of fuel cells, the polymer electrolyte membrane fuel cell (PEMFC), because of its several
advantages, is considered the popular one. Some of these advantages are lower weight,
lower temperatures of operation, higher density of operation, and capability for decreasing
price. The PEMFC is a widely used fuel cell among different power levels that was initially
modeled to be used in a spacecraft at NASA. The main fuel of this device is hydrogen.
The operating temperature of a PEMFC is imitated to the range between 70 ◦C and 80 ◦C.
To provide faster electrochemical reactions, expensive catalysts, such as platinum, were
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utilized in this type of fuel cell [5,6]. Some prominent advantages of PEMFCs is their higher
startup speed, higher density of power, and lower temperature of operation. Electrodes, end
plates, washers, dipoles, and ion exchange membranes are the most important components
of the polymer membrane fuel cell. In the last years, optimization of this system was noticed
by researchers, and various economic and functional designs have been presented [7,8].

The modeling of the fuel cell stacks is performed to obtain two significant purposes.
The first one is to estimate the efficiency of the fuel cell by polarization curve analysis, and
the next purpose is to investigate the fuel cell stack while the cell operates; this helps to
propose an optimum design for it. The primary mathematical PEMFC design was presented
in the year 1992, and the achievements indicated good structure with the experimental
data [9].

Solsona et al. [8] introduced a control-oriented model to analyze the low-temperature
PEMFC. The results were then verified based on the empirical data from Na f ion(r) PEMFC,
including a humidifier. The comparison of the proposed model with the empirical data
confirmed the method efficiency for the analysis of the fuel cell.

Hirano et al. [10] analyzed a PEMFC performance based on numerical analysis. To do
the analysis, a model was proposed to indicate the correlations of fuel cell performance,
features of the material, and gas diffusion layers. The results were analyzed by performing
it on the PEMFC numerical model.

Taleb et al. [11] presented a fractional order–based design of a PEMFC stack. The
primary objective was to model the PEMFC system based on a fractional calculation to
obtain accurate and compact results. The final results confirmed that the obtained values
by the proposed method have proper similarity to the laboratory test bench.

Kumar et al. [12] presented a different design for PEMFCs. The method was then
analyzed based on ARX and ARMAX validation to verify the method modality. To obtain
the proper load current, the study utilized PID and PI controllers. The MATLAB platform
was used for the design simulations.

As it is clear, various classic methods exist for this system identification. However,
although the introduced methods’ application for the identification of the PEMFC is so
profitable, they have a big shortcoming. Due to the consideration of all physical con-
cepts of PEMFC by the classic methods, such as power, thermodynamics, momentum’s
conservation, the complexity of the model is increased.

Furthermore, to develop the precision of the model and to obtain a favorable accuracy,
compared with the empirical data, it needs to consider the best amounts for the model pa-
rameters. Recently, different types of approaches were presented for this purpose. The use
of meta-heuristic algorithms, due to their ability for faster and simpler solving of nonlinear
models, are exponentially increasing [13–16]. Some examples of these methods are the
dragonfly algorithm [17], deer hunting optimizer [18_ENREF_20], multi-verse optimizer
[19_ENREF_18], improved invasive weed optimization algorithm [20_ENREF_19], and
chaotic grasshopper optimizer [21].

Duan et al. [13] proposed an optimal design for the PEM fuel cell stack by the satin
bowerbird optimization algorithm (SBOA). The SBOA algorithm is employed to optimize
the procedure efficiency analysis. A comparison of the results with several various ap-
proaches was performed to indicate the method’s performance. The achievements were
also verified by the experimental data to show the algorithm’s performance.

Carton et al. [22] presented a 3D electrochemical design for an OPCF. The presented
model was then compared with a double channel simulation and empirical data that showed
a promising match with the empirical data. Simulation results showed that the flow plates
in OPCF develop the fluid distribution in this device by 54% performance at 0.7 V.

Cao et al. [15] utilized an improved optimization technique for modeling, designing,
and simulating the PEMFC systems with an optimal solution. The optimization method
was defined by the seagull optimizer, and the purpose was to use that tool for the best
identification of parameters of the PEMFC stack. The model was then assessed by two
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empirical PEMFC models and was put in comparison with several meta-heuristics to
indicate the efficiency of the algorithm.

Yu et al. [23] introduced another method for the PEMFC parameter estimation to
develop the model performance. The study proposed the optimization of ENN for this
purpose. The optimization was based on the blending of two new optimizers: the World
Cup optimizer (WCO) and fluid search optimizer (FSO). The achievements showed better
accuracy of the proposed model than the PEM fuel cell design parameters.

Fathy et al. [24] suggested a combined differential evolution and vortex search op-
timizer for optimal PEMFC parameter estimation. After the design and simulation, the
analysis was applied to four experimental benchmarks to show the efficiency of the method.
The achievements verified the excellence of the presented approach, compared with the
other methods.

Generally, optimizers have proper results for the PEM fuel cell model, which is
thanks to the proper capability of them to avoid the local minima, compared to the classic
approaches [25–27]. A new optimal design for a PEM fuel cell-based system is presented
in this paper. The model parameters are then optimized by a newly developed collective
animal behavior optimizer (CAB). The results are then validated by empirical data to show
the method’s precision.

2. The Model of the Studied System

The overall structure of the analyzed model is depicted in Figure 1. The model consid-
ered in this study has a 50 kW fuel cell stack. These types of fuel cells are widely used in
vehicles, power plants, military and space equipment, and heat and power cogeneration
systems. The air entering the fuel cell passes through the compressor and then enters the
compressor after the pressure rises. In this system, humidifiers, pumps, and electrical
control devices are considered system peripheral parts. The main purpose of the optimal
modeling in the fuel cell stack is to obtain optimal values for the system pressure parame-
ters, its input hydrogen and air, its operational temperature, and its density of current flow
to provide the minimum feasible cost.

After modeling the system, the next step is to solve the problem, formulate the
objective function, and model it concerning the parameters defined. In the following, the
objective of the system is given in detail.

Modeling of the Fuel Cell
The system objective function under study is the minimization of the overall cost,

including the cost of investment (C0) and the operating cost (Ct) by considering the discount
rate (Rd) as follows:

C = C0 +
n

∑
t=1

Ct

(1 + Rd)
t (1)

The investment cost of the fuel cell stack includes the storage tank (Cst), stack (Cstack),
auxiliary costs (Caux), and fuel costs (C f uel), i.e.,

C0 = Cst + Cstack + C f uel + Caux (2)

The fuel cell stack of a PEMFC includes different components, such as electrodes, ion
exchange membranes, screws, bipolar surfaces, gaskets, and end plates, and other joints.
The utilized catalyst in the stack is platinum that has its share in the cost of making the
system. The overall cost ($/m2) is calculated from the following equation [28]:

Cstack =

(
Cmontage +

cmem + ce + cbp + cpt + cex

10×Vt × i

)
(3)

where cmem describes the cost of the membrane ($/m2), ce is the cost of the electrode ($/m2),
cbp determines the cost of the bipolar plates ($/m2), cex describes the cost of auxiliaries,
such as washers and end plates ($/m2), Cmontage determines the cost of the stack montage



Sustainability 2021, 13, 12771 4 of 17

($/m2), Vt determines the fuel cell voltage (v), i represents the cell density, and cpt is the
cost of the platinum ($/m2) that is achieved based on the following equation:

cpt = Cptg ×Mpt (4)

where Cptg describes the cost of each kilogram of platinum ($/kg) and Mpt stands for the
amount of catalyst used (kg/m2).

Figure 1. The overall configuration of the analyzed system.

In the above relation, the cost of electrodes, the cost of the bipolar plates, and the
lateral costs of transport are independent of the current density, while the current density
depends on the rate of the catalysis and membrane performance. To calculate the fuel
cost, all the input costs to the system are consumed, so the fuel cost is calculated from the
underlying relationship.

C f uel = cH2 × Pstack × η−1
stack × H2TV−1 (5)

where cH2 describes the cost of each kilogram of H2, Pstack represents the fuel cell power,
η determines the stack performance, and H2TV is the thermal value of hydrogen (kJ/kg).
Figure 2 shows the general structure of a PEMFC [29].
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Figure 2. The general structure of a PEMFC.

The cost of an ancillary system, which is known as the equilibrium cost, is a fraction
of the fuel storage and the stack costs, and includes the costs of the compressor, humidifier,
electrical control equipment, and other auxiliary equipment in the system. It is formulated
as follows [29]:

Caux = 0.51× (Cst + Cstack)× ηFC (6)

The following equation indicates the unit operating cost, and since these costs are
continuously generated by the operation of the power generation system over 90 months,
they must be adjusted accordingly. In this study, the manufacturing time of the stack is not
considered; only its costs are taken into account, and the time taken into account is also the
time of the cell’s operation [29].

Ct = (1 + Ri)
t−1C0 + 3600×

(
1− R f i

)t−1
CH2 ×

t0 × c f × λH2

6480×Vt × i
(7)

where Ri describes the inflation ratio, R f i represents the fuel inflation ratio, λH2 is the
hydrogen stoichiometric coefficient, and t0 is the functional lifetime of the fuel cell.

All of the simulation is returned for 90 months, which is the fuel cell’s operating
lifetime. Both the investment cost and the operational cost are a function of the stack
efficiency. The system efficiency is achieved by dividing the net output power by the net
input power [30].

ηFC = −Vt × µs × (Pstack − Paux)

1.25× Pstack
(8)

where Pstack describes the fuel cell’s stack power (w), Paux represents the power of the
peripheral devices (w), and µs determines the inverse stoichiometric coefficient.

Since in the studied system, the compressor and other peripherals use the power
of this system, to obtain the system’s net outputted power, the power of the peripherals
should be decreased by the achieved power from the fuel cell [31]. The constant 1.25
in the denominator is also an experimental coefficient that is intended for the fuel cell
stack systems to operate the system with considering the peripherals, so the stack effi-
ciency is a function of the cell voltage, stack power, stoichiometric fuel rate, and power of
other accessories.

There are three main voltage losses in the fuel cell: activation voltage loss, Ohmic
voltage loss, and over-potential saturation voltage loss. So, based on [32,33], the output
fuel cell voltage is achieved by the following equation:

Vt = Nnc ×
(
EN − EO − Eops − Eop

)
(9)

where EN describes the Nernst relation and defines the cell voltage reversibility, Nnc
determines the connected cells’ number, EO stands for the Ohmic voltage loss, Eops refers
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to the overpotential saturation, and Eop describes the activation overpotential per cell. The
Nernst equation for the PEM fuel cell is obtained as follows [34]:

EN = 1.23− 8.5× 10−4(TPEM − 298.15) + 4.31× 10−5 × TPEM ×
[
ln
(

PH2

)
+ 0.5× ln

(
PO2

)]
(10)

where,

PO2 = Rhc × PH2O

 1

Rhc×PH2O
Pc

× e
1.635IFC/A
T1.334 IFC

− 1

 (11)

PH2 =
Rha × PH2O

2

 1

Rha×PH2O
Pa

× e
1.635IFC/A
T1.334 IFC

− 1

 (12)

where A determines the active area of the membrane, IFC represents the operational current
of the fuel cell, Pa and Pc describe the partial pressures as an inlet for positive and negative
electrodes, respectively, and Rha and Rhc stand for the electrodes’ relative humidity. PH2O
is the saturation vapor pressure in the PEMFC and can be calculated as the following given
equation [35]:

log10
(

PH2O
)
= 0.0295× (TFC − 273.15)− 2.18− 9.18× 10−5T2

c + 1.4× 10−7T3
c (13)

In the operating changes, the reference temperature is considered 25 ◦C.
The formulation of the Ohmic voltage loss can be defined as follows:

EO = IFC × (Rm + Rc) (14)

where,
Rm = ρm × l × S−1 (15)

ρm =

181.6
[

1 + 0.062
(

TFC
303

)2
×
(

IFC
S

)2.5
+ 0.03

(
IFC
S

)]
[
λ− 0.063− 3

(
IFC
S

)]
× e

TFC−303
TFC

(16)

The overpotential activation voltage drop is calculated as given below:

Eop = −
[
γ1 + γ2 × TFC + γ3 × TFC × ln

(
CO2

)
+ γ4 × TFC × ln(IFC)

]
(17)

where,
γ2 = 4.3× 10−5 ln

(
CH2

)
+ 2.1× 10−4 ln(A) + 2.9× 10−3 (18)

where CO2 and CH2 illustrate the saturation of O2 and H2 in the cathode’s catalytic
interface (mol/cm3), which are achieved as follows:

CO2 =
PO2

5.1× 106 × e
498
TFC (19)

CH2 =
PH2

1.1× 106 × e
−77
TFC (20)

The over-potential saturation (Eops) is formulated by the following equation [15]:

Eops = −β× ln
(

Jmax −
J

Jmax

)
(21)

where I is the membrane thickness; S refers to the membrane surface (cm2); IFC is the
PEMFC operating current; TFC defines the operating temperature of the cell (◦C); βi de-
scribes the experimental coefficients; λ determines the controlling parameter; β defines a
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parametric coefficient; ρm is the membrane resistivity; J determines the standard current
density and Jmax is the highest current density; PH , PO2 , and PH2O are the partial pressure of
the H2, O2 and H2O, respectively; Pa describes the inlet pressure for the anode and Pc for
the cathode; Rhc represents the vapor relative humidity at the cathode and Rha the anode;
CH2 is the hydrogen saturation and CO2 is the oxygen saturation (mol/cm3); and Rm and
Rc are the membrane and connection resistances, respectively.

Table 1 illustrates the optimal value of some undefined parameters based on [15].

Table 1. The optimal results of parameters based on [15].

Parameter Value Parameter Value

β1 −1.03 β 0.01

β2 × 10−3 3.48 Rc × 10−4 1.63

β3 × 10−5 7.79 λ 15.04

β4 × 10−5 −9.48

On the other hand, to calculate the stack efficiency, in addition to being specific to the
stack’s power, the auxiliary (accessory) power must also be calculated. It should be noted
that the extra power supply for the 50 kW power production is estimated to be 5.2 kW
based on [36].

Pcom = CP ×
Te

ηmηmt

((
Psys

Pin

)0.26
− 1

)
× .

m (22)

where Te is the input air temperature (◦C), Pin and Psys are the input and the system
pressures (atm), and the following holds:

.
m = 35.7× 10−7 × λair × i× A× N (23)

Another investment term is the fuel storage cost that is calculated by the following
equation:

Cst =
Cs1

A× F×Vt
(24)

where F determines the Faraday constant, A is the cell area (m2), t describes the fuel cell
performance time (9 month/year), and Cs describes the hydrogen’s storage cost per kg
that is determined based on the hydrogen amount stored as defined below:

Cs =


5.244 $/kg f or 27, 000 kg

1.752 $/kg f or 276, 000 kg
1.044 $/kg f or 27, 600, 000 kg

(25)

As aforementioned, the independent variables of the model are the stack operating
temperature, system pressure, air stoichiometric coefficient, and hydrogen as the system
inputs as well as the current density. The operating temperature of the system shall be such
that it protects both the high temperature of the water and water vapor and does not cause
the membrane to break. Therefore, its high level is considered to be 90 ◦C and its low level
is considered to be 60 ◦C. The stoichiometric coefficient of air and hydrogen is considered
the ratio of each of the inlet gases to its theoretical value, so the minimum value of these
values is set to 1. Since these values are not high, the upper limit is assumed to be 3. The
system pressure cannot be lower than the atmospheric pressure, as the compressor is not
capable of compressive pressure; therefore, the low pressure is 0.12 MPa and its upper limit
is considered to be 0.48 bar [36]. The high and low current density limits are also equal to 1
and 0, respectively.
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By the aforementioned equations, the objective function can be defined as given below:

minC = C0 +
n

∑
t=1

Ct

(1 + Rd)
t (26)

Such that the following holds:

1 ≤ λair ≤ 3
1 ≤ λH2 ≤ 3

0.13 ≤ Psys ≤ 0.50
0 ≤ i ≤ 1

60 ≤ T ≤ 90

(27)

Converged Collective Animal Behavior Algorithm.

2.1. Collective Animal Behavior Algorithm

Meta-heuristic algorithms are based on stochastic searching the solution, and although
only a few numbers were shown for converging to the best solution, the simple structure
of them, high maneuverability, and above all their higher quickness made them popular
optimization tools in the last years [23]. Recently, different models of meta-heuristics were
introduced, which all have their strengths and weaknesses. Considering these charac-
teristics and improving them based on different theories can make them stronger from
their typical version with more profits. Meta-heuristic algorithms are inspired by different
phenomena, from nature [26,37,38] to human social behaviors [25,39–43].

Cuevas et al. [44] proposed a new approach in 2019, which was an inspiration for
collective animal behavior (CAB). The CAB algorithm was modeled based on a collection
of different operations that simulate the association of social animal behaviors. Here, the
problem solution is defined by the animal position that is placed in the solution space. The
value of cost is also determined by animal dominance through the group. An advantage
of this optimizer is that it considers a two-part memory for storing the optimal solutions
based on previous experiences. One part is the memory that keeps the optimal location
of the animal per iteration (Mg), and the next one stores the optimal historical locations
over the optimization (Mh). A detailed description of the CAB algorithm is explained in
the following.

The optimizer begins with some locations of the animal. The location of each animal,
p contains a D–D vector with parameter values to be optimized. The CAB optimizer
contains several identical random distributed amounts between the predetermined upper
and minimum bounds such that the following holds:

pi,j = pL
j + σ×

[
pH

j − pL
j

]
j = 1, 2 · · ·D; i = 1, 2 · · ·Na (28)

where pi,j determines the jth parameter of the ith animal, σ represents a random integer
by a mean value equal to 0 and value of variance of 1, j refers to the individual, and i the
parameter indices.

After generating the new population, they are sorted and stored in the memories
Mg and Mh following their cost function. During the operation of the swarm, the first B
constituents (i.e., [p1, p2 · · · pB]) of the new position for animals are obtained based on the
historical memory Mh plus a slight randomly perturbation surrounding them, i.e.,

pl = v + ml
hl ∈ [1, 2 · · · B] (29)

where ml
h represents the lth number of the Mh and v describes a randomly small length vector.

The algorithm uses a randomly local absorption by the individuals to improve the
exploitation. This is performed by applying for an identical random number between 0
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and 1. In this mechanism, if rm has an amount higher than a determined threshold (T), it
can be attracted to the nearest Mg in the solution space in the present iteration, and if the
rm has a value less than the threshold, a definite position for the animal can be attracted by
the best nearest historical location (Mh):

pi =

{
xi ± rm ×

(
mclosest

h − xi
)

with probability T
xi ± rm ×

(
mclosest

g − xi

)
with probability (1− T)

(30)

where rm describes a random value, and mclosest
h and mclosest

g determine the closest elements
of Mg and Mh to xi.

Afterward, for improving the random moving of the animals with probability Pi, the
following model is considered:

pi =

{
r with probability Pr

xi with probability (1− Pr)
i = [B + 1, B + 2 · · ·Na] (31)

where r determines a random value for animal position initializing again randomly.
The animals with more communication have better value with the minimum distance,

which depends on how the animals’ swarm behaves. So, during connecting the animals,
the most dominant of them stay and the others are eliminated. The updating steps for
historical memory are performed as follows:

Consider MU the total memory, i.e., MU = Mg + Mh Compare the ith component

of the memory MU (Mi
U) with the rest elements of memory (

[
m1

U , m2
U · · ·m

2B−1
U

]
); if the

distance <δ, the animal with the better cost value remains and the other is eliminated.
The elements of MU from phase 2 achieve the B optimum amount to build the

new Mh.
The distance amount δ is formulated as shown below:

δ = 0.1× D−1 ×
D

∏
j=1

(
phigh

j − plow
j

)
(32)

where phigh
j and plow

j describe the pre-defined higher and minimum bound of the jth the
variable in a D-dimensional space, respectively.

Converged CAB Algorithm
Among the different advantages of the CAB algorithm, it shows that sometimes, its

solution gives premature convergence. Here, two important modifications are performed
to resolve that shortcoming. The first modification is performed based on a self-adjustable
weighting to handle the tendency speed to the optimal solution. To update the animals’
position in this way, a controlled random value is implemented on the swarm exploration
and the “repulsive effect” terms. To make a proper balance between exploration and
exploitation, initial iterations search with a high searching limit, and the final ones are
explored by a local search. This mechanism was applied to the random movement term as
shown below:

pi, new =

{
pi + γ× S(pi)⊗ Fi, rand > 0.5
pi − γ× S(pi)⊗ Fi, rand ≤ 0.5

(33)

where,

γ =

{ (
f (pbest)

f (pworst)

)2
, i f f (pworst) 6= 0

1 , i f f (pworst) = 0
(34)

where f (pworst), and f (pbest) refer to the worst and the best solutions’ cost values, respec-
tively, for the random moving.

Based on the mentioned structure, the weight value for the random moving is in-
creased incrementally to reduce the best and the worst solutions’ differences.
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The next mechanism that is employed here is the chaos approach, which is applied
to resolve the local optimization problem. Based on the chaos mechanism, the optimal
solution is sometimes likely to be stuck in the local optima, which makes a misleading
solution for the other animals in the swarm, and, in following the local optimal solution,
consequently, results in premature convergence.

To find a solution for this issue, the random values in the algorithm are turned
into pseudo-random values by the chaos mechanism. This theory has sequences and
ergodic random features that are very useful to develop the premature convergence of the
algorithm [45,46]. In the proposed algorithm, the logistic map, as a widely used mechanism
in chaos theory, is used. By algorithm development, the equations below are updated
as follows:

σnew
i+1 = σnew

i + ρi × σnew
i (35)

vnew
i+1 = vnew

i + ρi × vnew
i (36)

rnew
i+1 = rnew

i + ρi × rnew
i (37)

where,
ρi+1 = 4ρi(1− ρi) (38)

where ρi describes the amount for the ith chaotic iteration, and the primary amount
ρ1 ∈ [0, 1] is a random amount. Figure 3 shows the workflow of the suggested CCAB
algorithm.

Figure 3. The workflow of the suggested CCAB algorithm.

2.2. Algorithm Confirmation

To validate the proposed CCAB algorithm efficiency, some unimodal and multimodal
test functions were utilized. The achievements of applying the suggested CCAB optimizer
were put in comparison with several various meta-heuristic optimizers, the World Cup
optimizer (WCO) [25], emperor penguin optimization (EPO) [47], gravitational search
algorithm (GSA) [48], and typical CAB algorithm [44], to declare its high efficiency. The
general information about the test functions for verification is given in Table 2.
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Table 2. The typical information of the test functions used for the confirmation.

Model Function Formulation Optimum

Unimodal

Rotated High Conditioned Elliptic F1(x) = f1(M(x− o1)) + F∗1 100

Rotated Bent Cigar F2(x) = f2(M(x− o2)) + F∗2 200

Rotated Discuss F3(x) = f3(M(x− o3)) + F∗3 300

Multimodal
Shifted and rotated Rosenbrock F4(x) = f4

(
M
(

2.048(x−o4)
100

)
+ 1
)
+ F∗4 400

Shifted and rotated Ackley F5(x) = f5(M(x− o5)) + F∗8 500

The population size for all the optimizers is set to be 120, and the stopping criteria are
defined by the highest value of the evaluated functions. The dimension of the functions is
equal to 30. The optimum effectiveness is obtained by runs of more than 45 as stated in
Table 3 for each function. As observed, “Med” describes the result fitness values’ median,
“std” determines the standard deviation, and “min” and “max” are the lowest and highest
cost values for the optimizers, respectively.

Table 3. Comparative achievements of the optimizers.

GSA [48] EPO [47] WCO [25] CAB [44] CCAB

F1

Max
Min
Med
std

5.26 × 107

4.72 × 106

7.95 × 106

2.25 × 107

7.99 × 107

6.15 × 106

1.98 × 107

2.54 × 107

3.23 × 106

3.26 × 105

1.27 × 106

6.12 × 105

1.06 × 106

1.17 × 105

5.33 × 105

3.48 × 105

7.42 × 105

5.31 × 104

3.41 × 105

1.62 × 105

F2

Max
Min
Med
std

2.70 × 104

2.64 × 103

8.38 × 103

3.14 × 103

7.87 × 106

1.39 × 106

4.07 × 106

1.74 × 106

3.68 × 104

5.79 × 103

1.77 × 104

9.19 × 103

2.86 × 103

2.65 × 102

4.72 × 102

2.42 × 102

1.58 × 103

2.64 × 102

2.38 × 102

2.47 × 102

F3

Max
Min
Med
std

7.61 × 104

1.97 × 104

5.22 × 104

9.13 × 103

4.97 × 104

6.38 × 102

8.25 × 103

1.70 × 104

1.66 × 104

3.61 × 103

7.81 × 103

3.47 × 103

1.94 × 103

4.73 × 102

2.11 × 102

3.53 × 102

1.35 × 103

2.83 × 102

3.57 × 102

1.48 × 102

F4

Max
Min
Med
std

7.90 × 102

6.18 × 102

7.43 × 102

4.82 × 101

5.88 × 102

3.81 × 102

6.20 × 102

4.02 × 102

5.15 × 102

3.53 × 102

4.98 × 102

3.13 × 101

3.49 × 102

3.24 × 102

4.68 × 102

3.76 × 101

1.85 × 102

2.23 × 102

2.14 × 102

3.19 × 101

F5

Max
Min
Med
std

5.19 × 102

5.19 × 102

5.18 × 102

4.77 × 10−3

5.21 × 102

5.21 × 102

5.21 × 102

3.86 × 10−4

5.19 × 102

5.19 × 102

5.19 × 102

4.18 × 10−3

5.20 × 102

5.19 × 102

5.19 × 102

3.86 × 10−4

5.18 × 102

5.19 × 102

5.19 × 102

7.72 × 10−5

The results show that the presented optimizer gives the optimum achievements
compared with other optimizers for the evaluated test functions.

3. Results and Discussion
3.1. Calculation of Optimum Parameters

The model is developed with the objective function for minimizing the cost of fuel cell
fabrication based on the proposed converged collective animal behavior (CCAB) algorithm
and solving the optimal values for each of the main parameters. As can be observed, the
optimal operating temperature is 75.2 ◦C, the optimal system pressure is approximately
0.47 MPa, the optimal density of the current is almost 0.61 mA/cm2, and the optimal
stoichiometry coefficients are 1.42 for air and 1.25 for hydrogen. Table 4 indicates the
optimal values for optimization parameters.
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Table 4. Optimal values for optimization parameters.

Algorithm
Parameter

λair λH2 Psys T i

CCAB 1.42 1.25 0.47 75.2 0.61

CAB 1.37 1.18 0.40 73.6 0.58

GA 1.10 1.20 0.32 72.4 0.55

The optimal costs for the proposed CCAB, standard CAB, and GA are estimated
at 0.1061 $/kWh, 0.1124 $/kWh, and 0.1603 $/kWh. Figure 4 depicts the performance
diagram of the optimizers in the optimization process. The results show how as time passes
and the number of new iterations becomes more and more objective, the objective function
shifts to the lowest feasible amount.

Figure 4. The diagram of changes in objective function value by the number of iterations.

In the following, for the sensitivity analysis of the system performance, variables are
repeatedly changed each time, but the values of the other parameters are replaced with the
optimal values obtained by the CCAB algorithm.

3.2. The Pressure Changes Affect the Construction Cost of the Cell

As can be concluded from the results of Figure 5, by increasing the inlet pressure of
the system up to 5 bar, the total cost of it is decreased by 20%. However, this increase
in pressure due to the mechanical and physical mechanisms of the membrane and the
electrodes, and also the bipolar plates is not feasible. By the increase in pressure, also the
linkages between the gas diffusion plates and the catalyst are eliminated, while the gas
diffusion surfaces generally consist of carbon coatings or paper carbon, which are corrosive
to the mechanism. Therefore, consideration of the structure of its constituents is adapted.
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Figure 5. Final cost changes according to the system pressure.

3.3. The Temperature Changes Affect the Construction Cost of the Cell

Assuming that the operating temperature of the fuel cell is variable and that the
other modeling parameters are stable (their optimal value), the total cost of the system
decreases with increasing temperature (Figure 6). However, two points need to be noted:
firstly, Nafion’s heat resistance as a membrane of the fuel cell is a limiting element for the
exceedingly high operation temperature, and the second is that the best way for the protons
to pass by the membrane is when the water is moved in the two steps of the heater and
operation fluid. The only water step in the fuel cell is the steam step if the peak operation
temperature is increased, which has an impact on the hydrogen exchange. Therefore, the
efficiency of the system is greatly reduced if all the parameters are affected. Therefore, by
considering all of the effective parameters in the fuel cell performance as variables, the
optimal mode for its operation is 75.2 ◦C. At this temperature, the membrane passing water
is completely biphasic.

Figure 6. Final cost changes according to the system pressure.

3.4. The Current Density Effect on the Construction Cost of the Cell

The total cost changes, as concerns the current density changes, are depicted in
Figure 7. Notably, due to the relationships presented in the modeling section, it is not pos-
sible to directly modify the current density. However, investigations to find out how much
the system is optimized for parameter changes indicate that the cost of the overall system is
increased with an increase in the current density. This is because one of the most important
methods to increase the porosity of the porous membrane–catalyst–porous current is to
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use rather cost-effective approaches when fabricating the membrane electrode group, so
the optimal amount of this parameter based on the objective function is 0.61 mA/cm2.

Figure 7. Final cost changes according to the system’s current density.

3.5. The Stoichiometric Coefficients of Hydrogen and Air Effect on the Construction Cost of the Cell

The following figure (Figure 8) depicts the changes in the total cost of the system of
fuel cells relative to the changes in the stoichiometric coefficients of the reactants. As can be
seen, in both forms, the cost of the process increases if the proportion of the stoichiometry
is increased. The difference between them is that changes in the stoichiometric air ratio
have a low pronounced effect on the hydrogen cost. This is also due to the high cost of
construction, storage, and transport of hydrogen. Therefore, it is increased to obtain the
optimal parameter values, but it is worth noting that when this ratio increases, which is
directly proportional to the increase in the inlet air, the compressor power can be a factor
limiting the cost reduction.

Figure 8. Final cost changes according to the system hydrogen and air stoichiometric coefficients.

Finally, by considering all the cases, the impact of the entire efficiency of the system on
the cost of the system is given in Figure 9. As can be seen, by improving the performance
of the fuel cell, its total cost is decreased.
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Figure 9. The impact of the entire efficiency of the system on the cost of the system.

4. Conclusions

To directly convert chemical energy into electricity without combustion, an electro-
chemical device, which is called a fuel cell, is used. Because of the various benefits of this
device, including cleanliness, connection to micro-turbines, silent operation, no moving
elements, and lack of GHG emission, it has become a favored energy source recently.
One of the biggest disadvantages of these energy conversion systems is their cost of con-
struction and operation. This study attempted to find the best operating conditions in
a 50 kW fuel cell stack to minimize its cost and its accessories, such as compressors and
humidifiers. In this regard, a functional–economic model was developed for the system
under study in which all components of the system are modeled economically as well
as electrochemically–mechanically. The objective function here was solved by a newly
improved metaheuristic by the authors called the converged collective animal behavior
(CCAB) optimizer. The optimal cost was compared with standard CAB and GA, and the
best optimal value was achieved by the CCAB with 0.1061 $/kWh. Afterward, a sensitivity
analysis was applied to the above-mentioned performance parameters. The results declare
that as the temperature and the system pressure increases, the system cost decreases, but
since the structure of the membrane and the fuel electrode must be considered in terms of
thermal resistance and mechanical strength, limiting factors for their control and achieving
optimal performance (higher efficiency) are to be taken into account. On the one hand,
increasing the stoichiometric ratio of air and hydrogen increments the entire system cost,
which is logical, given the conditions of production and storage of this transducer. At the
same time, increasing the density of current initially decreases the costs and then increases
it, which is due to the porosity of the triple layer of the membrane–electrocatalyst–gas
diffusion plates, which can be calculated based on the performance parameters and the
relations governing the economic–functional modeling and the change rate of the system
relative to it.
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