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Abstract: Target prices are often provided as a support for stock recommendations by sell-side
analysts which represent an explicit estimate of the expected future value of a company’s stock. This
research focuses on mean target prices for stocks contained in the Standard and Poor’s Global Clean
Energy Index during the time period from 2009 to 2020. The accuracy of mean target prices for these
global clean energy stocks at any point during a 12-month period (Year-Highest) is 68.1% and only
46.6% after exactly 12 months (Year-End). A random forest and an SVM classification model were
trained for both a Year-End and a Year-Highest target and compared to a random model. The random
forest demonstrates the best results with an average accuracy of 73.24% for the Year-End target and
81.15% for the Year-Highest target. The analysis of the variables shows that for all models the mean
target price is the most relevant variable, whereas the number of target prices appears to be highly
relevant as well. Moreover, the results indicate that following the rare positive predictions of the
random forest for the highest target return groups (“30% to 70%"” and “Above 70%") may potentially
represent attractive investment opportunities.
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1. Introduction

Investors aiming to invest in the stock market to buy a company’s stock face the
challenge to select companies that will be successful in the future and whose stock will
appreciate over time. Brokerage firms spend a considerable amount of resources, including
money, on stock analysis, recommendations, and target prices, which suggests that these
institutions and their clients see value in such research [1,2]. For that reason, investors and
academics alike have been interested in the value of sell-side analysts’ reports [3]. In this
context, sell-side analyst refers to analysts employed by financial institutions such as banks,
brokers, and asset management firms, which also sell securities such as stocks to their
clients. These analysts provide research reports on stocks to the clients of their institution [4],
which contain information about the future of these companies [5]. Their reports frequently
include three elements: (1) an earnings forecast, (2) a stock recommendation, and (3) a
target price for the stock [5-7], which are the result of their own evaluation of a company [6].
Stock recommendations usually come in five distinct levels (“Strong Buy”, “Buy”, “Hold”,
“Sell”, “Strong Sell”) [1,4,5,8], whereas the target price is provided as a support for the stock
recommendation and is explicitly mentioning the expected stock value [3,6,9], usually,
for the next 12 months [2,7]. Target prices often accompany stock recommendations, but
previous research suggests that not all analyst reports contain target prices [5]. In particular,
their inclusion in reports is more likely in case of positive recommendations (e.g., 70%
for upgrades vs. 35% for downgrades [3] or 84% for “Strong Buy”/79% “Buy” vs. 27%
for “Hold” [6]). However, when target prices are included in a report, it is intuitive
that higher target prices for stocks are generally associated with more favorable stock
recommendations [6].
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Previous research has covered different aspects of stock recommendations and target
prices. This includes investigating the individual analyst’s ability to make recommenda-
tions and set target prices [7,10,11] as well as the performance of recommendations of
different institutions [8], and the value or abnormal returns associated with stock recom-
mendations [1,12] even when analysts face conflicts of interest [13].

It was shown that, even though analysts appear to be reluctant to make “Sell” (and
“Strong Sell”) and “Hold” recommendations and tend to focus on “Buy” recommendations
(and “Strong Buy”) [3,5,14] (e.g., “Buy” and “Strong Buy” account for 70.8% [5] or 68% [3]
of all recommendations), their recommendations appear to have value. In particular, there
are stock price reactions to recommendations (and recommendation revisions) [14] and
investors can benefit from such recommendations [1,4] e.g., by buying highly rated stocks
and by selling lowly rated ones [1].

In terms of target prices, the link between target prices and stock recommendations [6],
factors affecting the accuracy of target prices [2], the impact of price targets and recom-
mendation revisions [3-5], the impact of different valuation models on the target price [9],
and the dispersion of target prices as a risk measure [15] are examples of research works
found in the literature. Moreover, research has indicated that target prices and target price
revisions contain new and valuable information [3,5]. However, the fact that target prices
may contain relevant information for the stock market and investors does not necessarily
mean that target prices are accurate [11]. Moreover, as pointed out by Bonini et al. [2], the
ability to forecast future stock prices using analyst target prices is a neglected topic in the
literature. The accuracy of target prices, meaning whether stock price meet target prices
after or during the forecast period (e.g., a 12-month period), as well as their (absolute)
forecast error, meaning how far the stock prices are away from the predicted target prices,
depends on different factors. First, in terms of the institutions issuing target prices, highly
reputable institutions tend to issue more accurate target prices (those target prices with pos-
itive implied return only) [11]. The evidence towards individual analysts’ ability to suggest
accurate target prices is limited. Bradshaw, Brown, and Huang [7] find some statistical evi-
dence supporting a persistent differential ability of analysts in terms of accurate target price
predictions, but these were shown to be trivial economically. Besides, as may be expected,
analyst-specific optimism has a negative impact on the accuracy of target prices [11]. This
may be linked to the fact that analysts’ target prices may be used strategically [11] e.g., to
create a “hype” around a stock [5] and may not always reflect the actual belief of analysts
(e.g., similar for recommendations where a “Buy” recommendation is issued instead of
a more suitable “Hold” /”Sell” one [13]). In terms of analyst research, the level of detail
of research reports is positively affecting the target price accuracy [11] and the number
of analysts providing research appears to improve the information quality [16], which
may potentially also affect the target price accuracy positively. In terms of the company
covered, recommendations for stocks associated with a larger price-to-book value (P/B),
which can be called “glamour” stocks (e.g., technology companies) show lower forecast
accuracy [11], which may be problematic given that research suggests that sell-side analysts
tend to recommend such stocks more often [12]. Apart from that, setting accurate target
prices appears to be especially challenging for companies that are loss-making (not earning
profits) [2]. Volatility appears to impact target price accuracy as well, with lower volatility
of the stock price leading to a higher accuracy [7,11]. The positive development of the
stock market as a whole also affects the accuracy of target prices positively [7], which is in
line with the finding that the forecast error of analysts increases during negative market
environments [17]. Lastly, in terms of the target price, the accuracy and magnitude of
the forecast error seem to be higher the larger the difference between the target price and
current stock price (implied growth in stock price) [2,5,11].

This research work focuses on the accuracy and predictive power of target prices,
specifically consensus information, meaning mean target prices. As mentioned previously,
research on target price accuracy is very limited. Apart from that, the vast majority of
previous research on target price accuracy has centered on individual analysts and/or
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individual target prices. There is some research on using consensus recommendations
(e.g., the mean of recommendations) [1,12] but no research appears to have been done on
using the consensus of target prices and determining the accuracy of such an aggregate
estimate for the future stock price. In recent years private investors have also had easy
and free access to many financial websites (e.g., Yahoo Finance, finanzen.net) that provide
such mean target prices and related information [6] and make such an investigation also
relevant for private investors, as well as academics and practitioners. Apart from that, no
work appears to have been done using classification algorithms with target prices, which
are very intuitive from an investors’ perspective since they can be used for the binary
decision (yes/no) whether to invest in a stock or to refrain from doing so. This study aims
to address this research gap by using mean target prices and measuring the accuracy of
these consensus estimates as well as using classification methods (with embedded feature
selection) to build a model to predict when mean target prices will be met and when
they might be missed. Moreover, the variables that are relevant for the prediction will be
determined to gain further insights into potential factors that may affect the probability
that a mean target price is met.

The emphasis of this work is on clean energy stocks which have attracted increased
attention due to the Paris Agreement [18] and the rise of clean energy technologies as
a response to the threat imposed by climate change. The road to the Paris Agreement
extended multiple years, starting from around 2009 with the Copenhagen Accord [19].
The agreement was adopted by 196 Parties (almost every nation) in December 2015 to
address climate change and its harmful impacts, and about 190 of those countries formally
approved it [20]. The agreement sets up an ambitious target to limit the increase in mean
global temperature to well below 2 °C above pre-industrial levels by reducing global
greenhouse gas emissions. Among other measures, this includes ramping up efforts to
accelerate the implementation of clean and sustainable energy technologies.

2. S&P Global Clean Energy Index

The Standard and Poor’s Global Clean Energy Index (USD) is an equity index launched
in 2007 that aims to measure the performance of companies in developed and emerging
markets that have businesses linked to global clean energy [21,22]. In particular, companies
contained in the index are “involved in the production of clean energy or provision of clean
energy technology and equipment” [22]. Figure 1 displays the geographical location of the
headquarters of the companies (as of July 2021) contained in the S&P Global Clean Energy
Index. Gray color highlights the countries with headquarters in them and the marker size
reflects the relative size of the company in terms of the market capitalization, as obtained
from Yahoo Finance [23].

Out of the 81 companies included in this study, the headquarters of 28 companies
are located in Europe (in Austria, Denmark, France, Germany, Italy, Norway, Portugal,
Spain, Sweden, Switzerland, and United Kingdom). The headquarters of another 28 com-
panies can be found in North America (in Canada and the United States). Finally, there
are 15 headquarters in Northeast Asia (in China, South Korea, and Japan), 4 in South
America (in Brazil and Chile), 3 in Southeast Asia (in New Zealand and Singapore), 3 in
MENA (in Israel), and 1 in SAARC (in India). The largest number of companies (20) are
headquartered in the United States (24.7%). In contrast to that, none of the 81 companies
in the index is headquartered in Africa or the Eurasian regions. However, the authors of
this study acknowledge that these companies may operate/have subsidiaries in African or
Eurasian countries.

In terms of the business activity, about 52% of the companies are involved (directly or
through their subsidiaries) in the power generation process, which includes the develop-
ment, construction, and operation of power plants as well as the subsequent transmission
and distribution of electrical energy. The second-largest group of companies (about 21% of
the companies) are linked to the manufacturing of solar PV systems and their components
(for instance, production of monocrystalline and polycrystalline silicon for solar PV cells,
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solar PV modules, inverters, storage systems, software, etc.). Apart from that, the third-
largest group (10% of the companies) are developers of wind power generation systems.
This group consists of companies, which, for example, design and manufacture blades and
wind towers, construct wind turbines and wind farms, as well as provide various services
to wind power generation companies.
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Manufacturer of conventional power generation equipment (e.g. gas power plants)

Manufacturer of PV modules and/or components for PV systems, service providers for PV systems

Manufacturer of wind turbines and/or components for wind systems

Manufacturer of fuel cells and/or components for fuel cell systems

Producer of RE fuels (hydrogen, biodiesel, bioethanol, biomethane, etc.) and/or manufacturer of components for RE fuel production
Power generation and/or transmission and distribution of electricity

Other (e.g. RE asset management)

Figure 1. Location of the headquarters of the companies in the S&P global clean energy index.

Figure 2 displays the market capitalization of the companies and their corresponding
Environmental, Social, and Governance (ESG) scores obtained from Thompson Reuters
Datastream (see Appendix A Table A1).

The ESG score takes values from 0 to 100 and is based on self-reported (but verifiable)
information of companies on their performance in terms of environmental, social, and
governance indicators. In particular, the environmental score contains components such as
“resource use” and “emissions”, the social score elements such as “workforce” and “human
rights”, and the governance component for instance the “corporate social responsibility
(CSR) strategy” [24]. The point labels are the Datastream symbols for the companies (shorter
than the complete company names) and the levels of ESG scores (from “Low” to “Very
high”) were artificially created for this study for better representation of the ESG scores.
The y-axis is on a logarithmic scale. In general, companies with larger market capitalization
tend to be associated with higher Environmental, Social, and Governance (ESG) scores. One
possible explanation for this could be that the operations of larger companies might be more
in the public’s attention and more exposed, which may create pressure from stakeholders
such as society, civil organizations, as well as from (potential) investors. Additionally,
larger companies might be able to allocate larger financial resources to reporting tools
for ESG rating agencies (for instance, to provide higher quality and more comprehensive
data to better fit the ESG measurement systems). Apart from that, it could be that the
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management enumeration of larger companies may be more tied to the accomplishment
of ESG-based objectives, thus incentivizing a stronger focus on ESG-conform activities
and behavior.
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Figure 2. Market capitalization of companies in relation to the Environmental, Social, and Governance
(ESG) score.

3. Data

The data for this study are from the 81 constituents of the S&P Global Clean Energy
Index from 1 January 2009 until 30 June 2021. The start of the time period was selected as
the year 2009 since this year marks the beginning of the steps leading up to the Paris Agree-
ment [19]. The time-series data were obtained from the Thompson Reuters “Datastream”
service with daily frequency. The variables downloaded for the companies consist of target
price information (from the “Institutional Brokers Estimate System” (IBES)), company-
related information such as the stock price, and the price-earnings (PE) ratio, as well
as the MSCI world index, which is a broad global equity index. A complete list of the
“raw” variables (incl. symbols) downloaded from Datastream can be found in Appendix A
Table Al.

Target prices are most commonly set for the estimated stock price in 12 months [2,7].
Thus, taking an investor’s perspective, only the information related to target prices from 1
January 2009 until 30 June 2020 were considered (a year shorter than the entire period) and
compared with the actual stock prices after one year (1 January 2010 to 30 June 2021). This
way, up to 2999 observations were available per company (less for those that did not have
any target price information at certain points in time).

The focus of this work is on mean target prices (consensus price target) since they
represent analysts’ average estimated price of a stock in the future. In order to avoid
including the same target prices for a company on consecutive days, the number of ob-
servations was reduced to the initial observation of a company and each observation for
which the mean target price had changed compared to the previous observation—so at
least a single revision/adjustment of a stock price has taken place. This decreased the
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number of observations to 0 to 139 per company with 5 out of 81 companies having 0 ob-
servations due to a lack of any target prices before the end of June 2020. For the (1:1)
American depository receipt (ADR) of “Companhia Paranaense Denga” (Brazil), usually
only a single target price was available, which was for unknown reasons consistently below
the actual price (on average 80%) and, thus, was not further considered. (This issue could
not be resolved by adjusting the target prices using the USD—BRL exchange rate.) For the
remaining 75 companies the mean number of observations is about 77 and, overall, the
data set contained 5810 observations. All target price variables (target mean price, target
low price, target high price) were converted to target returns by calculating the “implied
return” each of them represents compared to the corresponding current stock price. This
was done in line with previous research (e.g., [7]), so that the targets of companies with
target prices of different magnitude can be compared more easily. It was ensured that both
the stock prices and target prices were in the same currency (usually the domestic currency)
before the target returns were calculated. The list of all variables used for modeling, the
corresponding pre-processing, and values are presented in Table 1.

Table 1. Variables and pre-processing.

No Variable Name Pre-Processing Values
1 No Targets None Integer, [1, 39]
2 Mean Target Return Converted from Target Price Continuous, [—92.3%, 1384%]
to Target Return
3 Low Target Return Converted from Target Price Continuous, [—99.4%, 363.6%]

to Target Return

Converted from Target Price

4 High Target Return to Target Return

Continuous, [—90.5%, 2403%]

Converted to Ratio by

5 Std Target Ratio dividing by Mean Target Continuous, [0, 1.07]
Price
Target Up 1 Month None Integer, [0, 22]
7 Target Down 1 Month None Integer, [0, 29]

Low Target Above Converted to binary (if Low > . i o/ A o
8 Price Current Price, then 1, else 0) Binary, “0” (70.6%), 1" (29-4%)
High Target Below Converted to binary (if High . v o)\ w1 1 s
9 Price < Current Price, then 1, else 0) Binary, “0” (92.4%), 17 (7.6%)
10 PE Ratio None (Nearest known Continuous, [0.3, 1766]

imputation)

Converted from Index price
to Index Return (previous
12 months)

11 MSCI World Return Continuous, [—45.6%, 53.7%]

If Price (year-end) >= Target

12 Class (Year-End) Price, then 1, else 0

Binary, “0” (51.3%), “1” (48.7%)

If Price (during year) >=

13 Class (Year-Highest) Target Price, then 1, else 0

Binary, “0” (30.8%), “1” (69.2%)

Two additional variables were created: “Low Target Above Price” and “High Target
Below Price”. The first reflects that even the lowest target price of analysts exceeds the
current stock price, highlighting a consensus that the stock may be undervalued and
suggesting a possibly positive outlook for a company. The second reflects that even the
highest target price provided by analysts is below the current stock price, indicating a
potentially overvalued stock.

There are two separate targets for the classification that are based on the mean target
price. The first target (“Year-End”) is binary and reflects whether a stock’s price after
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12 months is as high or higher than the (initial) mean target price suggested (“1”) or
whether it did not reach the target price (“0”). The second target (“Year-Highest”) is also
binary, but represents whether the highest stock price accomplished during the entire
12-month interval is as high or higher than the initial mean target price (“1”) or whether
it was at no point during that year as high as the mean target price (“0”). In other words,
the first target focuses exclusively on the year-end stock price whereas the second target
emphasizes the largest stock price during the entire 12-month period. Using these two
perspectives for the accuracy of target price was also taken in [2,7], whereas a focus on
any point during the year—which is termed in this study “Year-Highest”—was pursued
in [5,11].

4. Target Price Analysis
4.1. Analysis of Target Returns and Coverage

The average mean target return for the clean energy companies is 22.23% compared
to the stock price at that time. It is unsurprising that the average low return is —8.12%,
considerably lower, and the average high return is 58.20%, considerably higher than that.
However, as Figure 3 illustrates, the magnitude of low, mean, and high target returns can
differ considerably.

- [ Low Target Return
I [""IMean Target Return
L High Target Return
= 79%(+), Median: 16.9%
21%(-), Median: -6.4%
30.1%(+), Median: 11.8% gt | | [
69.9%(-), Median: -17.6 % M
- I -
96.7%(+), Median: 35.5%
HIF N 3.3%(-), Median: -7.1%
| Itk
-100% -50% 0% 50% 100% 150% 200% 250% 300% 350% 400%

Target Return

Figure 3. Distribution of low, mean, and high target returns.

It is apparent that the low target return distribution has the lowest mean and earliest
peak of all distributions, followed by the mean target return and, lastly, the high target
return. The first interesting observation is that low, mean, and high target returns can all
be below and above the current stock price (=0% target return). For the low target prices,
about 70% are below zero—implying an expected decline of the stock price over the next
year. However, roughly 30% of the low target returns show the expectation of a positive
return over the next year. Since the low target price reflects the lowest expectation of all
analysts covering the stock, the low target price exceeding the current stock price may
reflect the consensus belief of all analysts that the stock is undervalued. (It may be noted
that at any point some target prices may have been provided days or weeks before the date
of the observation and, thus, can potentially reflect outdated beliefs of the analysts that
may be corrected in the future. Additionally, mean target prices, especially when based on
numerous separate analyst target prices, may react slowly to changing market conditions
or stock information since this may require many analysts to revise their target prices in a
timely manner in order to affect the mean target price considerably and rapidly.) For the
mean and high target prices, most implied returns are positive. About 79% of the mean
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target returns exceed zero and for the high price, this percentage even amounts to 96.7%. It
is interesting to note that high prices tend to be highly positive but there appears to be also
a small tail for target returns below zero. A high target return below zero, which is only the
case for roughly 3.3% of the observations, reflects that all current analyst targets indicate
that the stock is likely overvalued and will decline within the next year. It is noteworthy
that all, the largest high target return (2403.5%), the largest mean target return (1835.0%),
and the largest low target (363.6%) are linked to the stock of “Fuelcell Energy”. In this
extreme example, the target prices were lagging behind the stock price, which had declined
considerably to new lows in mid-June of 2019. In general, for those 3.3% observations
with a high price below the current price, the stock prices had increased or recovered from
a decline and the target prices were lagging behind this surge. Similarly, the reason for
some low target prices (about 4%) being 50% or higher over the current stock price was a
decline in the stock price and the mean target prices’ delayed correction for this decline.
Moreover, both these cases—stock prices exceeding the high price considerably and low
prices exceeding the stock price considerably tend both to be associated with a low number
of analysts covering them (usually 1-2 analysts).

Figure 4 shows the median low, mean, and high target return as well as the median
number of analysts covering a stock for each year.

T

60% [ Low Target Return | |
[ Mean Target Return

[ High Target Return

11
13
1214 |
9 I A
9 .
! 0 lﬂ) !!!

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

50% [

T

40%

/g

30%

T

20%

Target Return

T

10%

T

0%

-10%

-20%

Figure 4. Median of the low, mean, and high target returns by year.

It is apparent that the target returns vary between years, with the high returns ap-
pearing most optimistic between 2009 and 2012 with medians around 50%. The low target
return is with median values between —5.4% and —14.6%, consistently negative, whereas
the median values for the mean and high target returns are consistently positive. The
median for the mean target return ranges from 4.6% to 17.9% and for the high target return
even from 24.0% to 58.7%. The median number of analysts covering a stock is between
(about) 9 to 14. Overall, the median number of analyst target prices at any time is 10, the
minimum 1 and the maximum number of analyst targets is 39.

4.2. Analysis of Target Price Accuracy

This research will consider two forms of accuracy (or hit rate), meaning whether the
target price was met (=hit) or not (=miss)—which is a binary class label with only two
outcomes. The first version, referred to as “Year-End”, focuses on whether the stock price
has reached the target price 12 months after a change in the mean target price (Yes/No).
The second version, referred to as “Year-Highest”, determines whether the stock price
met the target price (Yes/No) at any point during the 12 months after a change in the
mean target price. In the previous literature, the measure for achieving the target price at
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year-end was termed “TPMetEnd” and for accomplishing it at any point during the year
“TPMetAny” [7].

For the given 75 clean energy companies and target prices over the time period from
2009 to 2020, the mean accuracy for the Year-End target is 46.6% whereas the mean accuracy
for the Year-Highest setup is 68.1%. It is unsurprising that the accuracy for the Year-Highest
target is higher than that of the Year-End given that it measures whether the target price
is met at any time during the 12-month window (including at year-end) whereas the
Year-End target only measures the accuracy at a single point in time, at the end of the
12-month period. A comparison of the implied return of target prices and the accuracies
found in previous studies is displayed in Table 2 (ordered by the period). The previous
studies covered different time periods and it is apparent that the average implied return is
considerably higher in time periods extending from 1997 compared to all that exclude years
before 2000. Only a few studies reported the accuracy of target prices and the results for the
clean energy stocks covered in this study seem to be in line with these results, especially
the most recent ones from Bradshaw, Brown, and Huang [7] and Kerl [11]. Since 2020
appears to have been an extraordinary year with also a very high accuracy (see Figure 5)
the accuracy values excluding this year are also presented, which are even closer to the
results found in the literature.

Table 2. Target price and accuracy comparison.

Authors Companies Target TPMetEnd TPMetAny Period
Bradshaw [6] Us 36.0% - - 1996 to 1999
Asquith, Mikhail, and Au [5] Global 32.9% - 54.3% 1997 to 1999
Brav & Lehavy [3] UsS 32.9% (28.0% 1) - - 1997 to 1999
Gleason, Johnson, and Li [9] Us 32.0% - - 1997 to 2003
Bonini, Bianchini, and Salvi [2] Italy 14.9% 20.0% 33.1% 2000 to 2006
Bradshaw, Brown, and Huang [7] Us 24.0% 38.0% 64.0% 2000 to 2009
Kerl [11] Germany 18.1% - 56.5% 2002 to 2004
This Study GI?Ebal (Clean 22.2% 46.6% (41.5%2)  68.1% (62.5% 3) 2009 to 2020

nergy)

! Brav and Lehavy [3] report a one-year-ahead target price that is 28% larger than the current stock price and 32.9% higher than the
preannouncement stock price (2-days prior recommendation/target price announcement). 2 Excluding the year 2020, which is exceptional
due to the COVID-19 pandemic. 3 Excluding the year 2020, which is exceptional due to the COVID-19 pandemic.

It is noteworthy that Bradshaw, Brown, and Huang [7] also provide the additional
inside that TPMetEnd and TPMetAny differ considerably in down and up markets with up
markets resulting in accuracies of 50% and 71% whereas down markets lead to accuracies
of only 17% and 49%.

In the following, the accuracy of the target prices (and, thus, of the target returns)
is analyzed overall and by the magnitude of the mean target return, to determine if the
predicted return appears to be linked to the accuracy of the prediction. The groups for
the mean target return are (1) “Under 0%”, reflecting an average estimate of no stock
price increase, (2) from “0% up to 9.9%”—with the upper limit being the rounded median
of the target return (11.5%), (3) from “10% to 29.9%"—representing approximately the
range from the median to the third quartile (29.8%), (4) “30% to 70%”—with the upper
limit being roughly the third quartile +1.5 times the interquartile range (72.2%), which is a
common limit for outliers, and (5) target returns “Above 70%”, which could statistically be
considered outliers.

Figure 5 displays, for the Year-End target, the accuracy for each of the target return
groups and for each year, and Figure 6 illustrates the average (actual) return achieved by
the stocks in these target return groups. The first figure illustrates that the average accuracy
of target prices can differ considerably between years (from 20.8% in 2011 to 86.3% in
2020) and generally differs considerably among target return groups. For most years, the
accuracy for the “Under 0%” target return group has the highest accuracy, followed by
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the “0% to 9.9%” target return, which roughly represents all positive returns up to the
median target return. In contrast to that, the two highest return groups, “30% to 70%”
and the “Above 70%”, usually are characterized by the lowest accuracy and often show
2-3 times lower accuracies than the two highest target return groups. Combining this
information with the average Year-End returns for stocks in Figure 6 shows that the return
group “Above 70%" has the most extreme average returns (independent of the target being
hit or missed), showing in six years the highest average return and in three the lowest
average return.
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Figure 5. Accuracy of target prices by target return group and by year for Year-End class.
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Figure 6. Average return by target return group and by year for Year-End class.

It is noteworthy that average Year-End returns are moderately positively correlated
(0.77, 0.44 excl. 2020) with the average MSCI world performance during the same time
period. (The MSCI world performance is not the MSCI world return during that calendar
year but the average of the 1-year return of the MSCI for the 12-month time period starting
at the time of each of the target prices. Thus, the performance is the average return of the
MSCI world from different starting points in that year up to 12 months in the future. For
instance, if the mean target price changes in March, the MSCI world return from that point
in time until March of the subsequent year is recorded. This is done so that the actual return
of stocks in a given timeframe can be compared with the MSCI world return in exactly the
same timeframe.) In particular, in nine out of eleven years with a positive average MSCI
world performance, the average return for clean energy stocks is positive as well, whereas
for the one year with a negative average MSCI world performance the clean energy stocks’
performance is also negative. However, as Figure 6 shows, the magnitude of positive and
negative returns for clean energy stocks appears to be larger than that of the MSCI world
index. The average accuracy and return for the Year-End target by target return group is
displayed in Table 3.

The decrease in the average accuracy for stocks belonging to higher target return
groups is in line with previous findings indicating that demonstrated that the predicted
growth in the stock price is negatively impacting the forecast accuracy [2,5,11]. It is
interesting to see that the average accuracy for the target prices gradually decreases with
the magnitude of the implied target returns, but the same does not hold true for the average
returns. The reason for that is two-fold: first, the average hit return, meaning the average
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return when the target price is met (=hit), tends to increase with the target return group
and (2) the average miss return, meaning the average return achieved when the target price
is not met, increases considerably with the target return group and, thus, is less negative.
Both of these developments appear plausible. For the average hit return, the result appears
plausible given that meeting higher return targets by definition means that returns below
the target return group are excluded from the hit average. For instance, the average return
of stocks that met their target price “Above 70%” by definition need to have achieved at
least a return of 70%. In contrast, it is plausible that the average miss returns are on average
negative and it appears intuitive that they increase with the target return group given that
with higher return groups they may include higher returns that were still not meeting the
target return. For instance, by definition, not accomplishing a return in the target return
group “30% to 70%"” means that returns of up to 29.9% can be contained in the miss returns.
Moreover, it appears plausible that stocks with very high mean target prices tend to have
higher average returns if they miss their high targets than stocks that miss considerably
lower targets.

Table 3. Average accuracy and return by target return group (Year-End class).

Target Return Under0% 0% t09.9% 10% t029.9% 30% to 70% Above 70%
Group
Average Accuracy 73.1% 57.8% 37.9% 25.9% 17.1%
Average Return 26.6% 16.9% 16.8% 32.5% 55.7%
Average Hit Return 47.9% 40.2% 67.0% 156.9% 353.0%
Average Miss Return —31.3% —15.1% —13.8% —11.0% —5.4%

Overall, it is interesting to see that the higher average hit and average miss returns
tend to outweigh the decrease in the average accuracies so that even when target prices are
rarely met (e.g., in the “30% to 70%” and “Above 70%"” target return group), the average
hit return is so high, and the average miss return is still not so low as to lead to a lower
average return overall. In other words, clean energy stocks in the groups with higher mean
target returns, which represent a more favorable analyst expectation than groups with
lower mean target returns, also tend to be associated with higher average returns until
the end of the corresponding 12-month period. This trend still holds true if target prices
from the exceptional year 2020 are excluded. However, this information only provides an
incomplete picture of the returns in the target return groups. It is noteworthy that while
the average return tends to be higher for higher target return groups, the distribution tends
to be wider, with the median showing a decreasing trend and the share of Year-End returns
below zero is increasing for higher target return groups (see Figure Al in Appendix A).
The fact that the mean tends to be further from the median for higher target return groups
in the most extreme case for the “Above 70%” target return the mean even exceeds the
third quartile shows that there is a long tail at the higher end of the returns. Thus, higher
average returns are based on a comparably small number of very high Year-End returns.
This illustrates that the risk associated with stocks in higher target return groups increases
but so does the potential reward, as highlighted by the average returns.

The next step is the analysis of the Year-Highest class that represents whether the target
price is met at any time during the 12-month period after the mean target price changes.
Figure 7 displays for the Year-Highest target the accuracy for each of the target return
groups and for each year, and Figure 8 illustrates the average of the highest achievable
(actual) return by the stocks in these target return groups during the 12-month period.
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Figure 7. Accuracy of target prices by target return group and by year for Year-Highest class.

2009

Avg. 25.5%

2010

Avg. 232.2%
(MSCI 37.6%)
A\@ 86%
(MSCI 13.1%)
Avg. 45.5%
(M?CI 9.8%) (':nvélclaé ;://:)
Avg. 70.3%
(M;%I 18.1%)

I Avg. 31.4% AVG.27.3% Avg. 28.9% Avg. 39.6%
(Q‘g‘:l‘; % (MSCI 2.3%) MSEEETR) St 15.9%) (MSC12.8%)
- Ol [ remlll [

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

Under 0% (BN 0% t0 9.9% ([N 10% t0 29.9% [N 30% to 70% [ Above 70% |

Figure 8. Average return by target return group and by year for Year-Highest class.

The average accuracies (target hit rates) are considerably less variable for the Year-
Highest class than for the Year-End class and are also consistently higher in each year (see
also Figure 5). The average accuracy ranges from 42.8% (2011) to 95% (in 2020) with an
overall average return of 68.1%. The average accuracy for the “Under 0%” target return
group is essentially 100% every year given that the stock price is already exceeding the
target price at the start. The only exceptions are three observations for which the target
return is only 0.2% to 5.1% below the stock price, which drops below it during the first
day and never recovers from it. The tendency that lower target return groups are more
likely to be met is even stronger for the Year-Highest target. It is noteworthy that the
average accuracy for the “Above 70%” target return group is still often 2-3 times smaller
than for the “Under 0%” and “0% to 9.9%” target return group. The average (highest)
returns achievable displayed in Figure 8 follow a similar pattern to those for the average
returns by Year-End in terms of the higher magnitude of average returns for the “Above
70%” target return group. The average returns for each target return group and year are
positive, highlighting that, on average, stocks during the 12-month period at some point
increased over their initial stock price. The correlation between the average Year-Highest
returns with the MSCI world performance is still strongly to moderately positive (0.80, 0.41
excl. 2020).

The average accuracy and return for the Year-Highest target by target return group
is displayed in Table 4. Similar to the Year-End average accuracies, the Year-Highest
average accuracies also decline for higher target return groups. Moreover, the trend of
higher average returns for higher target return groups can also be observed. Similar to the
Year-End average accuracies, the Year-Highest average accuracies also decline for higher
target return groups. Moreover, the trend of higher average returns for higher target return
groups can also be observed.



Sustainability 2021, 13, 12746

13 of 27

Table 4. Average accuracy and return by target return group (Year-Highest class).

Target Return Under0% 0% t09.9% 10%t029.9% 30% to70% Above 70%
Group
Average Accuracy 99.8% 85.1% 59.6% 39.9% 21.8%
Average Return 57.8% 36.4% 44.1% 78.1% 118.9%
Average Hit Return 57.9% 42.3% 68.4% 168.6% 420.3%
Average Miss Return —4.1% 2.6% 8.4% 18.0% 35.1%

Similar to the Year-End average accuracies, the Year-Highest average accuracies also
decline for higher target return groups. Moreover, the trend of higher average returns for
higher target return groups can also be observed. The average returns for the Year-Highest
class are for each target return group higher than those of the Year-End class (see Table 4),
which is intuitive given that these correspond to the highest stock price during an entire
year and not just those at the end of the year. The same holds true for the average hit
returns and the average miss returns, which are all positive (with the single exception of the
average miss return for the “Under 0%” target return group which, by definition, cannot
be positive). As for the Year-End target, for the Year-Highest target the average hit and
miss rates increase as the target return group increases. This highlights that clean energy
stocks in the groups with higher mean target returns, which represent a more favorable
analyst expectation than groups with lower mean target returns, also tend to achieve higher
stock price increases over their 12-month periods. It is noteworthy that both the average as
well as the median return increases with higher target return groups, highlighting that the
distribution has a longer tail for the high positive returns (see Figure Al in Appendix A).
However, in contrast to the Year-End returns, the share of negative returns remains at a
low, close to constant level for all target return groups.

From an investor’s perspective, it is interesting to note that the Year-End returns
represent the returns achieved by investing in a stock at the time where the mean target
price is updated and simply holding it for the 12-month period (passive management). In
contrast, the Year-Highest returns embody the highest return accomplishable during the
12-month period starting from the change of the mean target price and, thus, may require
extensive monitoring and optimal market timing to be accomplished (active management).
This was also pointed out by Bonini et al. [2], who stated that it is effectively not possi-
ble for investors to determine when the maximum price (or minimum price) of a stock
is accomplished.

5. Feature Selection

Feature selection refers to the process of selecting features (=variables) that are relevant
for a task and, thus, discarding irrelevant or redundant features from a data set [25-29]. This
differentiates feature selection from another dimensionality reduction approach termed
feature extraction. Feature extraction transforms the existing features into “new” ones and,
subsequently, keeps only some of these new features, whereas feature selection chooses
a subset of the original features to retain [30-32]. Using feature selection is generally
associated with several advantages and motivations such as (1) improving (or at least not
considerably decreasing) the error of the final model [33-37], (2) increasing the speed of
model training, and obtaining more simple models from the data [33-36], (3) reducing
computational cost and data storage requirements [33-35], and (4) obtaining more easily
visualizable and interpretable data [33-35,38,39].

When feature selection is applied in the context of supervised learning, such as classi-
fication or regression, it is referred to as supervised feature selection [30,39]. Supervised
feature selection can be divided into three types: filter, wrapper, and embedded meth-
ods [31,39-41]. Filter methods are part of the pre-processing of the data and only use
the characteristics of features to determine their relevance, thus, they do nit involve any
learning algorithm (e.g., classifier) [31,39,41,42]. Wrapper methods deploy the learning
algorithm as a “blackbox” to evaluate different feature subsets (e.g., using classification
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accuracy) and to select the best performing one [39,43—-46]. Embedded methods are as
wrapper methods classifier-dependent, but unlike wrapper methods, they are part of
the model training of the learning algorithm itself [25,33,47,48]. Thus, the feature subset
generated by embedded methods can be seen as a byproduct of model training [47].

This research will use commonly known embedded feature selection methods, in
particular random forests and support vector machines with recursive feature elimination
(RFE), to train the classification models for this study. The software used for coding is
Matlab version 2020a.

6. Classification Models
6.1. Random Forest

Random forests were suggested by Breiman [49] and are an ensemble of so-called
decision trees [50]. A common algorithm to create decision trees is CART [51], but others
exist as well [52,53]. A decision tree is a machine learning method that starts at the so-called
“root” node and uses at each step the best binary split of a variable to create two child
nodes [50]. This split can be considered a rule that aims to make resulting partitions of the
data more “pure” in terms of the distribution of classes in each of them. This procedure is
repeated until a stopping criterion is met [50], for instance, that each partition is “pure”,
meaning that only a single class is present. Following the resulting path of rules that are
applied to each new observation leads them to a so-called “leaf” or “terminal node” which
is associated with one class (either pure or majority in that partition) [52,54,55]. Thus,
following the path branched out from the root node determines the class membership of an
observation. This procedure of iteratively using binary splits to create “purer” partitions of
the data is called “recursive partitioning” meaning that it creates regions of the instance
space that belong to each of the classes in a classification problem [50,52,55].

A decision tree has multiple advantages, such as its easy interpretability due to the
rules it provides for its class assignments [52,54], its ability to handle numerical and discrete
variables, and that it does not require assumptions about the underlying distributions [52].
However, decision trees are sensitive to small perturbations of the data (high variance) [56]
and, thus, tend to overfit.

The aim of a random forest is to overcome this weakness of decision trees by combining
multiple decision trees and aggregating their class predictions [50,56]. The idea of random
forests is an extension of bagging [50]. Bagging stands for “bootstrap aggregation”, where
“bootstrap” refers to randomly sampling observations with replacement from the training
data to obtain multiple data sets of the same size as the original training data, whereas
“aggregation” highlights that the results from training models on these bootstraps are
averaged (=aggregated) [56]. The difference in random forests to classical bagging is that
not only observations are randomly drawn from the original data but also the variables
are randomly sampled (except for the target variable) [50,56]. This procedure aims to
reduce the correlation between trees to obtain de-correlated trees [56]. The algorithm for
a random forest [50,56] (in the context of classification) is illustrated in Algorithm 1. The
algorithm illustrates that a set of decision trees are used that each cast their vote and the
most common class vote is used as the class prediction for the random forest (majority
voting) [56].

For this study, the number of decision trees in the random forest is set to 50. The
minimum number of observations at each leaf node (minimum leaf size) is an optimized
hyperparameter over the values {1, 10, 20, 50, 250, 1000, 2905}, where 2905 is the number
of samples divided by two (rounded down). The Gini diversity index (GDI) is selected as
the splitting criterion, the technique for variable selection (step 1.2.1. in Algorithm 1) is the
interaction test [57], and the number of variables selected randomly (1) from the bootstrap
sample is ,/p where p is the number of all variables in the data set [50,56].
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Algorithm 1 Random forest for classification

1. For t =1 to T (number of decision trees in the random forest)
1.1. Take a bootstrap sample of the training data
1.2. Use the bootstrap sample to fit a decision tree by repeating the following steps
(recursive partitioning) until a stopping criterion for the tree is met
1.2.1. Select a subset of the variables (denoted m) of all variables (denoted p) in the
bootstrap sample
1.2.2. Determine the best binary split for any of the m variables (best splitting criterion
value e.g., purity)
1.2.3. Split the node into two child nodes using the variable and variable value for the
best binary split
End
2. Assign observations to classes by taking each tree’s class prediction and using a majority vote
(most common class prediction) over all decision trees (=votes) to determine the class label

6.2. Support Vector Machine—Recursive Feature Elimination

The support vector machine (SVM) originated in the work of Boser, Guyon, and
Vapnik [58] and Cortes and Vapnik [59]. The general idea of an SVM is to create a decision
boundary (hyperplane) that maximizes the margin between itself and the closest observa-
tions (=data points) of each of the classes [54]. The points that are closest to the boundary
and, thus, are on the margin are called “support vectors” [60]. It is noteworthy that the
input variables, denoted x, are often mapped into a higher-dimensional feature space using
a (nonlinear) mapping that can be denoted as ¢(). Following the notation in [59,61], the
decision function f for a data set x can be defined as

f(x) = we(x) +b @

where w are the weights for the optimal hyperplane (decision surface) that separates the
classes with the largest margin, ¢() is a function that transforms the input, and b is the bias
value. The bias is the average over the marginal support vectors and can be calculated
using the weights w [60]. The weights w for the optimal hyperplane are calculated as

w =) yiaip(x;) 2

where x; is a support vector, #; is the weight for the support vector x;, and y; is the class label
e{—1,1} corresponding to the support vector [59,60]. The weights of the support vectors a
are the parameters of an SVM, which are optimized using convex optimization [60]. For
details on the optimization problem behind an SVM, please see [56,61].

The weight vector w for the hyperplane will be used in recursive feature elimination
to determine the ranking of features. Recursive feature elimination using a support vector
machine (SVM-RFE) was introduced by Guyon et al. [60]. It deploys a greedy backward
elimination procedure where in each step an SVM is trained and the variable with the
lowest squared weight w? is removed from the set of the remaining variables [48,60,62,63].
Thus, w? can be regarded as a ranking criterion for the variables [60]. It is noteworthy that
in each step one or more variables can be removed [48,60]. Thus, SVM-RFE is inherently
different from random forests: the former starts with a complete variable set and iteratively
removes one (or multiple) variable(s) whereas the latter functions by iteratively selecting
variables. The algorithm for SVM-RFE is depicted in Algorithm 2 (similar to [48,60]).

The logic behind this procedure is that w? estimates the effect of each variable on
the objective function (sensitivity) with larger values indicating more important variables
so that the resulting variable subset leads to the best class separation with the SVM
classifier [48,60]. The number of variables to retain can either be user-specified (and
the number of variables to remove would, thus, be all variables minus the number of
variables to retain) [62,63] or the algorithm can be run until a single variable is left and the
optimal subset can be selected using cross-validation as the subset leading to the highest
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validation accuracy. For this study, the variables are standardized using the weighted mean
and weighted standard deviation, and the optimal variable subset is determined using
cross-validation.

Algorithm 2 Support vector machine—recursive feature elimination (SVM-RFE)

For m =1 to M (number of features to remove)
1. Train an SVM on the training data with the remaining features (s) (initially all features p)
2. Determine the ranking criterion w? from the trained SVM
2.1. Obtain the weights « of the support vectors from the trained SVM

2.2. Calculate the weight vector w of the optimal hyperplane (w =Y tx,-yicp(xi))
i

3. Remove the variable associated with the smallest w? from the set of the remaining
features s
End

7. Experimental Results and Analysis
7.1. Model Performance and Feature Importance

The performance of the random forest (RF) and SVM are compared to a simple
random approach using the two-class probabilities. In particular, for each observation, a
random uniform number is generated and if its value is below or equal to the first class’s
probability, it is assigned to that class, and otherwise, it is assigned to the second class. This
approach is taken to compare the random forest and SVM with a random approach but still
account for the class sizes (especially for the Year-Highest class, which has a higher share of
observations with the positive target class). The average classification accuracy, precision,
and recall for the three models are displayed for each of the two targets (“Year-End” and
“Year-Highest”) in Table 5. The results are based on 20 runs of a nested cross-validation
(10-fold cross-validation split for the external and also the nested cross-validation).

Table 5. Model results for the Year-End and the Year-Highest targets.

Model Target Accuracy + Std ! Avg Precision Avg Recall
RF Year-End 73.24 £ 1.63 *** 72.19 69.3
SVM Year-End 65.90 £ 1.75 *** 62.21 68.45
Random Year-End 50.02 + 2.09 46.34 50.02
RF Year-Highest 81.15 £ 1.57 *** 84.51 88.55
SVM Year-Highest 75.77 £ 1.28 *** 76.15 93.8
Random Year-Highest 56.49 + 1.93 68.02 56.49

The notation “*** refer to 0.1% significance level corresponding to a one-sided Welch’s test of the accuracy of RF
and SVM versus the accuracy of the Random model for a specific target, respectively.

The results for the Year-End target show that the random forest is, with an average
accuracy of 73.24%, the most accurate model. The linear SVM model performs noticeably
worse than the random forest. However, using the one-sided Welch’s test, it can be
demonstrated that both the random forest and the SVM are highly significantly (***) more
accurate than the random model (p-value < 0.999). The average precision and recall are also
the highest for the random forest model with both values being around 70%. This indicates
that the model correctly predicts around 70% of the actual target price hits (recall) and that
also about 70% of the positive predictions are actual hits (precision). For the Year-Highest
target, the ranking of the methods is the same, with the random forest performing the best
in terms of accuracy and, both the random forest and SVM show average accuracies that
are highly significantly more accurate than that of the random model (p-value < 0.999). It
is noteworthy that all metrics—average accuracy, average precision, and average recall
are higher for all methods for the Year-Highest target than for the Year-End target. This
is likely based on the fact that it is an easier classification task to determine if a certain



Sustainability 2021, 13, 12746

17 of 27

target price is exceeded at some point during a time period than for only one point in time
(year-end).

The next question investigated is that of the feature importance, meaning, which
variables are relevant and used by each of the two machine learning algorithms for their
models. The relevance of features (=variables) for these two models for both targets is
displayed in Figure 9.

Predictor Importance (Random Forest) - Year-End Feature Weights (SVM) - Year-End
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Figure 9. Feature importance by model and target.

The feature importance scores illustrate that for both the Year-End and the Year-
Highest random forest and SVM models the most relevant variable is the mean target price
of the stock. This may not be surprising given that (1) the mean target was the target price
used to set up both of the targets and (2) it represents a consensus of analysts about the
expected (average) stock price in the future. For the random forest model, the number of
target prices was the second most relevant variable whereas for the SVM models it was
only the third most relevant one. In order to analyze the obtained model performances in
more detail and understand for which type of observations the model works particularly
well, the overall accuracy accomplished is broken down by the mean target price and the
number of target prices. This breakdown for the random forest and SVM model with the
Year-End target is presented in Figure 10. The categories for the number of targets were
created with the help of the 33rd and 67th percentile of the number of analysts covering
a stock as cut-off points. Thus, the number of targets is considered “Small” when an
observation is covered by 1-6 analysts, “Medium” for 7-14 analysts, and “Large” when 15
or more analysts’ target prices are available.
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Figure 10. Model accuracy by mean target and number of targets for the Year-End target.

The results show that for both the random forest and SVM model, the average accura-
cies tend to be the highest for the very high mean target prices (“Above 70%"” and “30%
to 70%), followed by the lowest mean target prices (“Under 0%), which imply a decrease
from the current stock price. Both models rarely predict the positive class (target price
met) for observations with very high and high mean target prices (“Above 70%”, “30% to
70%)—but the SVM is in that case more extreme by almost never predicting a “hit” for these
return groups (see in Figure A3 in Appendix A). Moreover, the precision of the random
forest for these return groups tends to be rather high, indicating that when it predicts a hit
(which it does not do often), then it is often correct with that prediction (see in Figure A2
in Appendix A). This holds true especially for stocks with high target returns (“30% to
70%”, “Above 70%”) and that are highly covered meaning that there are 15 or more (recent)
analyst prices at that time available for it. These two subgroups show a precision of 84.95%
and 93.06%, indicating that positive predictions are in the vast majority of cases correct.
It should be pointed out that the random forest model can also be considered prudent
since the recall is not high for instance 37.53% and 25.97% for these subgroups highlighting
that often observations for stocks that hit their target prices are not predicted as positive.
These results are very different for the SVM model for the Year-End target, which almost
never predicts a positive outcome for the high return groups and even when it does, the
precision is generally low. Thus, the high accuracies achieved with the SVM for the high
return groups are almost exclusively based on predicting a negative outcome (which is the
majority class label for these return groups). This likely makes this model less attractive for
potential investors since correctly predicting hits of a target price provides usually more
information than the miss. In particular, a hit states a minimum return achieved (the target
return) to be an actual hit, whereas a miss does not provide other information than that the
return is lower than the target return, which can still be positive or be negative (exception
(“Under 0%”)).

The two models are also very accurate on observations with a mean target that is below
the current stock price (“Under 0%”). For these observations the model tends to predict
the positive class (target price met) in 90% to 100% of the cases and, thus, unsurprisingly
correctly predicts most observations that are actually positive. The observations “Under
0%” have a high share of stocks that after one year are at or above the target price, which
may indicate that the mean target price is accurate or even too pessimistic. However,
investors should keep in mind that the target price is below the current price, so this
does not necessarily reflect an investment opportunity. However, the average actual
return associated with these observations is over 26% (within 12 months) with 63.9%
of observations in that group showing a positive return instead of a decline over the
12-month period.
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Mean Target

This breakdown for the random forest and SVM model with the Year-Highest target is
presented in Figure 11.
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Figure 11. Model accuracy by mean target and number of targets for the Year-Highest target.

The average accuracy of both models is not just higher for the Year-Highest target than
for the Year-End target (see Table 5) but there also seems to be clearly less variation among
the average accuracy values for different subgroups. It is interesting to note what for both
models there are more positive predictions for the high return groups, but the recall for
them tends to be lower (see Figures A4 and A5 in Appendix A). However, the opposite is
true for the moderate return groups such as “10% to 29.9%" or “0% to 9.9%” which tend to
have the same or a larger share of positive predictions for the Year-Highest than for the
Year-End target but have a higher recall. This means that for these moderate return groups
the share of positive predictions that turn out to the correct is higher. The simple reason
for the higher accuracy and precision on these moderate return groups is likely the fact
that the magnitude of the estimated increase is not that high, and the stock price has an
entire year to reach it at least at a single point in time. Since stock prices tend to fluctuate
over a year, it appears plausible that especially low to moderate increases can happen at
least temporarily during that entire time period. This also highlights the main problem
of models using the Year-Highest target: investors do not know at which time and for
how long targets may be met, thus requiring strict and continuous monitoring of the stock
prices and optimal market timing to accomplish the results suggested by the Year-Highest
model. However, if this is possible for an investor, then the predictions especially for the
moderate target groups may be of interest due to the high precision.

7.2. Performance Comparison

From an investor’s perspective, the accuracy of a classifier is only of secondary im-
portance compared to its usefulness as a support tool for investment decisions. Figure 12
shows the Year-End and Year-Highest return distributions for positive and negative pre-
dictions conducted by the random forest and SVM model. Since the target return group
“Under 0%” is assumed not to be of interest for investors since correctly predicting that a
stock may reach its target price, which is lower than the current price, is likely of limited
investment value, these observations are not included in the return distributions presented
in Figure 12.
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Figure 12. Actual return distribution by prediction (excl. “Under 0%” target return group).

For the Year-End, especially the random forest, which was the most accurate model
for this target, showed the most interesting distributions. In particular, positive predictions
of the random forest did not just have a clearly higher median and mean than all returns
(in grey), the first quartile also exceeds zero (3.2%). This means that less than 25% of the
stocks for which the model predicted that the target price would be reached, experienced
a negative return over the subsequent year. In contrast, the negative predictions lead
to a median year-end return close to zero. Thus, close to 50% of the observations were
characterized with a negative return whereas overall this is only the case for about 39.4% of
observations. For the SVM the average year-end return is lower than that of all observations
and the third quartile for negative predictions is larger than for positive ones, indicating
that the top 25% of returns for negative predictions are actually higher than for positive
predictions. It is noteworthy that for both the random forest and the SVM the distribution
of negative predictions is wider, reflecting that for negative predictions there is a wide
variety of returns that can be obtained.

For the Year-Highest returns, the distributions look clearly different than for the Year-
End returns. Both the random forest and the SVM show higher median and average returns
than overall. Moreover, the positive predictions are characterized by a larger variation
of the returns. Again, the random forest shows better performance in terms of the actual
returns. However, it should be kept in mind that these are the Year-Highest returns, which
means that the corresponding high stock prices are accomplished at some point during
the year, likely not at year-end and not necessarily for a prolonged period of time. Thus,
achieving such returns might be extremely challenging. In this regard, the Year-End returns
might be of larger interest for investors since they only require the implementation of a
buy-and-hold strategy and do not necessarily require additional monitoring.

The subsequent analysis will, thus, focus on the Year-End returns achieved using the
most accurate model, the random forest. Figure 13 depicts the Year-End return by target
return group accomplished with negative and positive predictions of the random forest.
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Figure 13. Year-End return distribution by random forest prediction and target return group.

It is apparent that the median and average return by year-end is considerably higher
for positive predictions of the random forest for stocks with target prices between “30% to
70%” and those “Above 70%". The shares of these predictions compared to all predictions
made are overall very low, 1.5% and 0.4%, respectively. However, they appear of interest
as it suggests a potentially higher return for stocks with high target prices for which
the random forest predicts that they will meet the target price. Positive predictions are
with a share of only 4.1% even within the “Above 70%” target return low (0.4% overall).
Thus, positive predictions for “Above 70%” target returns are very rare but appear to be
associated with very high average and median returns.

This finding was manually verified for companies in this group (positive prediction
and “Above 70%” target return), which were characterized by the highest returns (200%
or higher). Of the 12 companies that were contained in this subset, these extremely high
positive returns were observed during recoveries of the stock prices which were prior
over 90% below their all-time highs (e.g., Vestas Wind Systems A /S in 2012, SunPower
Corp. in 2012 and 2019, Enphase Energy in 2017, First Solar in 2012). Apart from that,
some companies simply experienced a stock price surge to new all-time highs after 2020,
which has been an exceptional year due to the COVID-19 pandemic (e.g., Enphase Energy,
Sunrun Inc, Bloom Energy Corp., Sunnova Energy International). Thus, the results appear
plausible, but this does not necessarily mean that they are repeatable.

Figure 14 allows a more detailed look at the positive return predictions of the random
forest in terms of hits and misses.

It is unsurprising that when the model correctly predicts a target price being met (i.e.,
a hit), the returns achieved are higher than when a misclassification occurs (i.e., a miss).
Moreover, it is intuitive that correctly predicting higher return groups leads on average to
higher returns. Having said that, it is noteworthy that the magnitude of the actual returns
in the “30% to 70% and the “Above 70%” target return group are very high—on average
195.2% and 296.5% respectively. However, the magnitude of the returns associated with
misses appears even more interesting. The average returns are in general negative, but
their magnitude decreases for higher target return groups. In other words, the higher
the target return group, the smaller the consequences of misclassifications. This appears
plausible given that higher average target returns reflect a higher confidence of analysts in
a company’s stock. Moreover, a higher target return also means that the range of positive
returns a stock can accomplish while not meeting the target price is larger. The extreme case
is the “Above 70%” target return group for which the average return of misclassifications
is still positive with an average return of 18.6% and a median return of even 28%. The low
or even positive average returns for misclassifications is one of the contributing factors



Sustainability 2021, 13, 12746

22 of 27

c

Average Year-End Retur

350%

300%

250%

200%

150%

100%

for the overall high average returns of positive predictions for high return groups. Lastly,
it is noteworthy that the share of hits for the positive predictions (=precision) is often
around 70% and appears rather consistent throughout the return groups. This indicates
that independently of the magnitude of the return group the positive predictions of the
random forest model are largely correct.

50% |

0%

-50% |

296.5% (Avg)
263.4% (Med)
70.1% (Share)

195.2% (Avg)
160.6% (Med)
70.7% (Share)

62.7% (Avg)

51.8% (Avg) 47.2% (Avg) 33.9% (Med)
23.8% (Med) 19.2% (Med) 35.4% (Avg) 63.5% (Share)
T L o
9% 3
29.9% (Share)
[E— -7.9% (Avg) -2.5% (Avg)
-16.7% (Avg) -13.4% (Avg) Py ‘2%°(Meg) -0.1% (Med)
-12.6% (Med) -28.8% (Avg) -7.1% (Med) 36.5% (Share) 29.3% (Share)
27.8% (Share) -24.9% (Med) 30.1% (Share) o
22.3% (Share)
N ) D D " D D D D N D
g}\b fé\b J\Qb\e (Qo\u %(?f’,\n (b?g\a o ) q{g\e /\Qg\ﬁ /\Qc\o ’\Qo\o «S\e
& & ¥ ¥ © © & & NS @ @
K, Q N S % o RS RS slo se 9
o~ <& o> o 5" @e\ s*® $* P o \af ¥
N » = @Ié) B W <«

Figure 14. Average Year-End return for hits and misses of positive predictions of the random forest.

From an investors’ point of view, it should be kept in mind that clean energy stocks
represent a relatively new asset class that tends to be very volatile [64]. Moreover, the
performance of clean energy companies is linked to the (crude) oil price where the oil price
has a unidirectional short-term causality on the price of alternative energy companies [65]
and the volatility of the oil price affects the profitability of these stocks [66]. Apart from that,
previous research found that the volatility of the oil market (e.g., measured by OVX) impacts
the volatility of clean energy companies [67] and vice versa [68] and that this spillover
effect of volatility is stronger than the spillover effect of returns [69]. Moreover, during
the COVID-19 pandemic, the volatility spillovers appear to have intensified [66]. Apart
from the (crude) oil market, technology stocks, and investor sentiment towards renewable
energy have been shown to affect the stocks of cleantech companies as well [69,70]. Finally,
it is noteworthy that hedging against adverse movements of clean energy stocks can be
possible using the volatility index VIX or crude oil [64] and that clean energy companies can
be part of profitable hedging strategies themselves [68] as well as contributing to portfolio
diversification, e.g., in times of extreme market events (e.g., a pandemic) [66].

8. Conclusions

In this paper, the accuracy and predictive power of mean target prices for the stocks
of companies contained in the Standard and Poor’s Global Clean Energy (USD) index were
investigated. This study shows that the mean target prices for these stocks during the
timeframe from 2009 to 2020 are on average 22.2% above the current stock price. This is in
line with recent research works that cover time periods after 2000, whereas studies covering
partially or entirely the 1990s show higher implied returns for target prices. The Year-End
accuracy of 46.6% (41.5% excl. 2020) shows that only less than half of the mean target
prices were met by year-end, whereas the Year-Highest accuracy of 68.1% (62.5% excl. 2020)
highlights that close to two thirds of mean target prices are met at some point during the
12 months. These results are similar to those found in recent research, illustrating that the
accuracy for global clean energy stocks is not considerably different than those of different
cross-sections of stocks in different stock markets. In line with previous research, the
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average accuracy of target prices decreases as the implied target return increases, meaning
that relatively higher target prices are less likely to be met.

Subsequently, a random forest and an SVM classification model were trained using
both the Year-End and the Year-Highest target for the mean target prices and were com-
pared to a random model. The random forest leads in both cases to the highest classification
accuracy but both the SVM and random forest are highly significantly more accurate than
the random model. Unsurprisingly, the best average accuracy of 73.24% for the Year-End
target is lower than the best average accuracy of 81.15% for the Year-Highest target. This
appears to reflect that meeting a target price at any point during the 12-month period is eas-
ier to predict than meeting the target price only at a single point, at the end of the 12-month
period. The analysis of the variables shows that for all models the mean target price is the
most relevant variable, whereas the number of target prices appears to be relevant as well.
This is in line with previous research that suggested that the implied return of target prices
and the number of analysts covering a stock are linked to the accuracy of target prices.
A detailed analysis of the results in terms of these two variables for the Year-End target
indicates for the random forest that this model is particularly accurate for the high target
returns (“30% to 70%” and “Above 70%"”), especially when the number of target prices is
high (coverage of at least 15 analysts). For these subsets, only a few positive predictions
are made but those are in the vast majority of cases correct. Thus, it is unsurprising that
the actual mean and median returns for high target return groups are considerably higher
than for all observations. These high actual returns are based on extremely high mean and
median returns for actual hits and close to positive or even positive returns when positive
predictions for high target returns are incorrect. Consequently, following the rare positive
predictions of the random forest for the highest target return groups (“30% to 70%” and
“Above 70%") may represent potentially attractive investment opportunities.

Some limitations apply to the results of this study. First, the results are obtained
for a selection of clean energy stocks, which may not be generalizable for stocks in other
sectors or even all clean energy stocks. Moreover, the results are in line with recent research
but show clear differences to older research, highlighting that the implied returns and
accuracies may differ in various time periods and may also be different in the future. For
future research, a set of global stocks from a wider range of sectors can be investigated to
confirm the findings. Moreover, additional variables linked to the company and the past
stock performance can be included for the classification model, and investment strategies
following the corresponding model predictions can be presented.
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Appendix A

Table A1. Selected variables from Thompson Reuters Datastream.

Name Variables Type Description
IBES Number of Price Targets PTNE Target Price Indicates IBES Number of Price Targets.
IBES Price Target High Value PTHI Target Price Indicates IBES Price Target high value.
IBES Price Target Low Value PTLO Target Price Indicates IBES Price Target low value.
IBES Price Target Mean PTMN Target Price Indicates IBES Price Target mean value.
IBES Price Target Standard Deviation PTSED Target Price Indicates IBES Pr_1 ce Target Standard
deviation.
Price Target Up since last monthly values PTUPIM Target Price -
Price Target down since last monthly PIDNIM Target Price .
values
Price/Earnings Ratio (Adjusted) PE Other Financial 11 Is the price divided by the earnings
rate per share at the required date.
MSCI World Price Index MSWRLDS, PI Other Financial Price Index of the MSCT world stock
market index.
Refinitiv’s ESG Score is an overall
company score based on the
ESG Score TRESGS ESG self-reported information in the
environmental, social, and corporate
governance pillars.
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Figure A1. Year-End and Year-Highest return distribution by target return group.
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Figure A2. Accuracy, positive prediction ratio, precision, and recall for the random forest model with Year-End target.
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Figure A3. Accuracy, positive prediction ratio, precision, and recall for the SVM model with Year-End target.
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Figure A4. Accuracy, positive prediction ratio, precision, and recall for the random forest model with Year-Highest target.
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