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Abstract: Nano zerovalent iron (nZVI), produced from green tea extracts, was incorporated in a
cation exchange resin (R-nFe) to investigate its performance regarding the removal of four non-
steroidal anti-inflammatory drugs (NSAIDs): ibuprofen (IBU), naproxen (NPX), ketoprofen (KTP)
and diclofenac (DCF). The effect of contact time, NaCl pretreatment, pH, R-nFe dose, the role of the
supporting material, the initial concentration of pollutants, and the combined effect of nZVI with
oxidative reagents was assessed through a series of batch experiments. According to the results,
the best removal efficiencies obtained for DCF and KTP were 86% and 73%, respectively, at 48 h of
contact time with NaCl pretreated R-nFe at a dose of 15 g L−1 and a pH of 4. The maximum removal
efficiency for NPX was 90% for a contact time of 60 min with PS 1 mM and a pH of 3, which was quite
similar to the experiment with a greater contact time of 48 h without PS addition. The maximum IBU
removal was 70%; this was reached at pH 3, with a contact time of 30 min and R-nFe 15 g L−1. To the
authors’ best knowledge, this is the first study investigating the utilization of nZVI, produced from
leaf extracts and incorporated into a cationic exchange resin, to remove NSAIDs from water.

Keywords: non-steroidal anti-inflammatory drugs (NSAIDs); contaminants of emerging concern;
nano zerovalent iron; green synthesis method; green tea extracts; Fenton process

1. Introduction

The occurrence of recalcitrant and persistent micropollutants in the environment is
nowadays of major concern for the preservation of the quality of natural resources and the
protection of biodiversity and human health. These micropollutants are usually referred
to in the literature as “emerging contaminants” (ECs), “emerging pollutants” (EPs) or
“contaminants of emerging concern” (CECs); they include a wide range of chemicals that
are contained in everyday products, such as pharmaceuticals and personal care products
(PPCPs), pesticides, plasticizers, illicit drugs, and others [1,2]. The main reasons for the
rising concern around these substances are their increasing detection globally in receiving
waters [3,4], the uncertainty about the mechanisms they can interact with, and their fate in
the environment [5], along with the fact that many of these substances have been proven
to have adverse effects on aquatic life and human health, even when present at trace
concentration levels (ng L−1–µg L−1) [6]. It has been reported that they may affect the
reproductive system of aquatic organisms and cause kidney alterations and carcinogen-
esis; they are also suspected of causing genetic modifications in humans [7–10]. Among
the CECs, non-steroidal anti-inflammatory drugs (NSAIDs) are a vast category of chem-
ical compounds that are used worldwide to treat inflammation, fever, and pain [11–13].
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NSAIDs enter the environment from discrete and dispersed sources, but their entrance
into water bodies occurs primarily via the discharge points of wastewater treatment plants
(WWTPs) treating the municipal, hospital or pharmaceutical industry’s wastewater [6,7,14].
Their extensive consumption, along with the limited capacity of conventional WWTPs to
effectively remove these emerging contaminants from wastewater [1,15,16], results in their
frequent occurrence in the aquatic environment. Moreover, the expected increase in popu-
lation in the coming decades creates additional pressure to find adequate, cost-effective
treatment technologies for the production of reclaimed water that is free of chemicals.

During the last few decades, several methods have been investigated for removing
NSAIDs from water, including adsorption techniques like activated carbon [14], electro-
coagulation [17], advanced oxidation processes [18,19], ozonation [20], sonolysis [21] and
other methods [22,23]. Nano zerovalent iron (nZVI) has been recently employed for the
removal of a wide range of complex chemical compounds, such as trichloroethylenes
(TCEs) [24,25], biphenyls [26], heavy metals [1,2,27], pesticides [3], dyes [28] and other
pollutants. Its unique structure enables nZVI to react through various mechanisms (in-
cluding adsorption, oxidation, precipitation and reduction) with the targeted pollutants to
enable their elimination [29,30]. nZVI particles consist of a Fe0 core that is surrounded by a
layer of iron oxides/hydroxides [31–33]. The thickness of the surrounding layer increases
as the core is oxidized [28,31]. Recently, nZVI performance has also been investigated in
lab experiments for the removal of various CECs, including endocrine-disrupting chemi-
cals [34,35] and antibiotics [36–38], since nZVI can be employed as a source of Fe+3/Fe+2

for initiating Fenton and Fenton-like reactions in the presence of oxidative reagents.
The main advantages of nZVI are that nanoparticles have a small particle size and large

specific area that maximize the available sites for reacting with target pollutants, with which
they are highly reactive, thus promoting mass transfer [39,40]. Furthermore, nZVI can be
synthesized via an environmentally friendly method utilizing leaf and tree extracts. Leaf
extracts contain polyphenols that are capable of reducing the trivalent iron Fe+3 to Fe0 [41].
The majority of previous studies [35,42–46] evaluated the performance of nZVI when
synthesized by the chemical reduction of iron ions using NaBH4 as a reducing agent, a costly
reagent that also generates unsafe byproducts (e.g., hydrogen gas). Instead, the application
of a green synthesis route for the production of nZVI particles may offer a more cost-efficient
and environmentally friendly option for water treatment. Garden waste and various tree
leaves can be valorized and used as polyphenol sources for the synthesis of nZVI particles.
Machado et al. [47] used extracts from natural products, such as black tea leaves, grape marc,
and vine leaves, in order to substitute sodium borohydride for the reduction of ferric iron
to elemental iron. The extraction of polyphenols from agricultural waste is a sustainable
method that can lead to high-value products, such as (i) individual pharmaceutical-grade
polyphenols isolated from the complex extract by applying novel separation techniques [48],
or (ii) nanomaterials synthesized by exploiting the antioxidant potential of extracted
polyphenols [47,49]. The recycling and transformation of agricultural waste into added-
value materials can significantly reduce the carbon footprint and environmental factors,
and promote economic sustainability [48,50].

However, nanoparticles have a tendency to agglomerate [51,52], thus decreasing the
beneficial effects of their size and reducing the active sites for reactions. Another problem
related to the use of nZVI is the ultimate fate of those nanoparticles in the case of accidental
release into the natural environment [53]. There is growing concern that nanomaterials may
have serious toxic effects on several species of the aquatic and terrestrial biota. Ecotoxic
effects have been reported for a wide range of engineered nanoparticles, including Ag,
ZnO, TiO2 nanoparticles, carbon nanotubes, etc. [54]. Research about the ecotoxicity of
iron nanoparticles is not yet conclusive [55]; however, concerns still remain and, for this
reason, the direct injection of nZVI suspensions in contaminated aquifers, which appeared
as a highly promising remediation technology in the early 2000s, had few large-scale
applications during the last few years.
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An alternative option for taking advantage of the high reactivity of nZVI and avoiding
the spread of nanoparticles in the natural environment is the incorporation and fixation of
nZVI in a porous matrix. Porous materials which have been used as host matrices for nZVI
fixation include biochar [56], carbon nanotubes [57], zeolites [58], ion exchange resins [59],
etc. In addition, supporting materials may also increase active sites for reactions with the
targeted pollutants, thus having a binary beneficial effect.

In view of the above, a novel, environmentally friendly method has been employed in
the present study in order to assess the performance of nZVI in terms of the removal of
targeted pharmaceutical compounds from water. More specifically, nZVI produced with
green tea (GT) extracts have been incorporated in a cationic exchange resin to investigate its
removal efficiency regarding four NSAIDs, these being ibuprofen (IBU), diclofenac (DCF),
ketoprofen (KTP) and naproxen (NPX) in batch tests.

The properties and chemical structure of the selected NSAIDs are presented in
Table 1. The effect of contact time, NaCl pretreatment, pH, supporting material, the target
compound’s initial concentration, the dose of the resin incorporating nZVI made with
green tea extracts (denoted hereafter as R-nFe), and the addition of oxidative reagents
were investigated.

Table 1. Chemical structure and properties of the four selected NSAIDs.

Chemical
Compound Chemical Type Chemical

Structure
Molecular

Weight (g/mol) LogKow Water Solubility
(mg L−1 AT 20 ◦C) pKa

IBU [60] C13H18O2
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2. Materials and Methods
2.1. Materials

IBU, NPX, KTP and DCF of a high purity grade (≥93%) were purchased from
Sigma Aldrich (Steinheim, Germany). MCF (Meclofenamic acid sodium salt), was
also purchased from Sigma Aldrich (Steinheim, Germany). Methanol (MeOH) and ethyl ac-
etate (ETH) of high-performance liquid chromatography (HPLC) grade were
purchased from Merck, and from Fluka, Neu-Ulm, Germany, respectively. Pyridine and
bis(trimethylsilyl)trifluoroacetamide (BSTFA) +1% trimethylchlorosilane (TMCS) for sily-
lation were purchased from Sigma Aldrich (Steinheim, Germany). Stock solutions of a
high concentration (1000 ppm) were prepared for each targeted NSAID. The solutions
were stored at −18 ◦C, as found in [64]. Cartridges of C18 6 mL for solid-phase extrac-
tion (SPE) were purchased from Isolute, Biotage. Ultrapure water was prepared in the
laboratory using a MilliQ/Milli-RO Millipore system (Millipore, Billerica, MA, USA).
Ultra-pure HCl (32%) was used for acidification of the samples (Sigma Aldrich, Steinheim,
Germany). Sodium carbonate (Na2CO3) was purchased from Merck, Darmstadt, Germany,
and sodium chloride (NaCl), iron chloride hexahydrate (FeCl36H2O) was purchased from
Fluka, Ronkonkoma, NY, USA. The resin, Amberlyst 15 hydrogen form (H+) wet, was pur-
chased from Sigma Aldrich (Steinheim, Germany). For the green tea extracts, a commercial
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product was used from Twinings of London. Hydrogen peroxide solution (H2O2), 30%
(w/w) and sodium persulfate (Na2S2O8) of high reagent grade (>98%) were purchased
from Honeywell and Sigma Aldrich (Steinheim, Germany).

2.2. Analytical Methods

To quantify the substances, the analytical method developed by Samaras et al. [65]
was followed. This method includes pre-concentration of the acidified liquid samples
(pH 2.5) to ETH solutions of 6 mL through SPE, the evaporation to dryness of the ETH
solutions by nitrogen purge, and the addition of 50 µL BSTFA + 1% TMCS, along with
10 µL of pyridine, for derivatization of the targeted compounds in a bath device at 70 ◦C for
20 min. The analyses were performed via an Agilent gas chromatograph (7890A) connected
with an Agilent mass selective detector (MSD) (5975C). MCF was used as a surrogate
for the selected NSAIDs. Water characteristics were determined according to standard
methods [66].

2.3. R-nFe Synthesis

The methodology proposed by Toli et al. [49] for the synthesis of nZVI resin was
followed. The main steps of the synthesis procedure are presented in Figure 1. Synoptically,
the beads of the resin were treated for 2 h with NaCl 1 M solution at 200 rpm (denoted
hereafter as R-Na). Then, the R-Na was agitated at 200 rpm for 4 h with FeCl3 6H2O
solution at 0.05 M concentration, to allow the sodium ions (Na+) to be replaced by trivalent
iron cations (Fe+3). Finally, the R-Fe was agitated for 20 h with the green tea extracts, to
allow the contained polyphenols to reduce the adsorbed Fe+3 to nZVI. Then, the resin
containing the nZVI (denoted hereafter as R-nFe) was ready for use.
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With the applied synthesis procedure, the total amount of incorporated iron per
gram of R-nFe was equal to 0.49 ± 0.01 mmol/g. Previous studies had indicated that
the embedded Fe was amorphous [49,67]. To be specific, the X-ray patterns of similar
R-nFe products did not contain either the characteristic peaks of elemental iron, Fe0, or
any detectable peaks of Fe+3 or Fe+2 oxides. For this reason, and in order to estimate the
valence state and the content of reduced Fe inside the resin beads after treatment with GT
polyphenols, the following procedure was applied. The R-nFe beads were mixed with
an aqueous solution containing a stoichiometric excess of Cr+6 with respect to the Fe in
the resin, i.e., the molar ratio of Cr+6/nFe in the mixture was equal to 3. The mixture was
agitated for 24 h at room temperature, then filtrated, and the aqueous phase was analyzed
for residual Cr+6. Similar experiments were carried out as control tests, mixing samples of
R-Fe (prior to GT treatment) and R-Na resin with the same Cr+6 solution. The morphology
of resin beads was studied using a scanning electron microscope (SEM), JEOL6380LV. The
elemental microanalysis of observed surfaces was carried out via an energy-dispersive
system (EDS). The resin samples were prepared by incorporating them in a cylindrical
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epoxy matrix that was cut and abraded to obtain a cut section of the incorporated resin
beads. Additional images of R-nFe at the nanoscale were also obtained by transmission
electron microscopy (TEM) using a JEOL 2100 HR machine. The R-nFe samples, which
had been incorporated in the epoxy matrix, were micro-sectioned using a Leica EM UCT
ultramicrotome equipped with a diamond knife. Finally, the resulting fine slices were
placed on a grid and were observed at 200 kV.

2.4. Batch Experiments

All experiments were performed in triplicate using 1 L conical glass flasks, where
the targeted compounds were spiked into ultrapure water at an initial concentration
of 1 µg L−1. The initial concentrations used were selected as indicative values, being
in the range of concentrations reported for NSAIDs worldwide in treated wastewater
(<0.001–4239 µg L−1) [7,68,69]. Ultrapure water was agitated with a mixture comprising
the targeted compounds in the flask for 15 min to ensure the homogeneity of the solution.
After this step, the batch experiments were performed in 1 L glass bottles, adding the
desired R-nFe dose. During the experiments, the bottles were protected against sunlight,
and they were placed in an agitation plate adjusted to 200 rpm. Liquid samples were
collected from the supernatant at regular intervals and the pH, T, and DO were measured.
The samples were then analyzed according to the aforementioned analytical protocol used
by Samaras et al. [65].

To investigate the effect of NaCl pre-treatment, the R-nFe was added to the NaCl
1 M solution for 1 day at an agitation speed of 200 rpm, before being utilized in the
experiments. In addition, in order to evaluate the pH effect, the following procedure was
applied: (i) acidic conditions (pH = 3) were achieved by adding drops of HCl 1N solution,
whereas (ii) neutral conditions (pH = 7) were established by the addition of NaHCO3. More
specifically, the initial pH adjustment was implemented through the addition of NaHCO3
to the solution at a concentration of 1.5 g L−1, to increase the pH value (the resin, the nZVI,
and the green tea extracts utilized for their production have a slightly acidic nature). In the
experiments examining the role of the resin, the synthesis methodology for incorporating
nZVI was not followed; instead, the resin was used alone, adopting only pre-treatment with
NaCl, for comparison with pre-treated R-nFe. Finally, for the experiments investigating the
synergistic effect of oxidative agents with nZVI, H2O2 or PS were added at the beginning
of the experiments, along with the R-nFe.

Prior to the above experiments, control experiments were also performed to ensure
that the targeted compounds remained stable without the addition of R-nFe. In addition,
background tests with R-nFe and ultrapure water were conducted without spiking the
compounds. The results indicated that the resin with incorporated nZVI did not have a
negative effect on the efficiency of the removal of NPX, DCF, IBU, and KTP.

3. Results
3.1. Characterization of nZVI Material

To investigate the valence state of the Fe inside the resin beads, following treatment
with the GT polyphenols, representative samples of the resin corresponding to the 3 steps of
the synthesis procedure, i.e., R-Na, R-Fe and R-nFe samples, were mixed with an aqueous
solution containing a molar excess of Cr+3. The results are presented in Figure 2. Based
on these, the amount of Cr+6 removed from the aqueous solution was close to 0.07 mmole
per gram of resin, when the solution was mixed with the resin products after the first and
second steps of the synthesis procedure, namely, with the sodium-form of the resin (R-Na)
and the resin after the adsorption of trivalent iron (R-Fe). It is noted that the resins, R-Fe
and R-Na, cannot adsorb or reduce Cr+6. The only possible removal mechanism is via
simple diffusion of the chromate anion inside the pores of the resin. When the Cr+6 solution
is in contact with the R-nFe resin (after treatment with GT), the amount of removed Cr+6

is equal to 0.43 mmole per gram of R-nFe. The most probable removal mechanism with
R-nFe is the reduction of Cr+6 into Cr+3 by the encapsulated iron. Taking into consideration
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the electron donor capacity of Fe species, it is evident that zerovalent iron, Fe0, is able to
reduce one mole of Cr+6 per mole of Fe0, divalent iron is able to reduce 1/3 of Cr+6 per
mole of Fe+2, while Fe+3 is not able to affect the valence state of Cr+6. On the other hand, if
the embedded Fe occurs in the form of Fe+3-oxides, the adsorption of Cr+6 per mole of Fe
is significantly lower (in the order of 0.01 mole/mole) [70]. As seen in Figure 2, the amount
of removed Cr+6 in contact with R-nFe was almost equimolar to the amount of the total Fe
inside the resin. It was thus deduced that during the 3rd step of the synthesis procedure,
the green tea polyphenols were able to reduce the adsorbed Fe to the elemental state at a
percentage of at least 73%.
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Figure 2. Evaluation of the Fe valence state inside the R-nFe beads, based on the reductive potential
regarding Cr+6. The bar chart shows the removal of Cr+6 when mixed with representative samples of
the resin, corresponding to the 3 steps of the synthesis procedure, i.e., R-Na, R-Fe and R-nFe.

A cut section of an R-nFe bead, as observed under the SEM, is shown in Figure 3a.
Iron content was uniformly distributed in the whole section, which is an indication that
nano iron remains dispersed in the interior of the resin beads after the step concerning
reduction with the GT extract. The EDS analyses along the diameter are given in Figure 3b.
A TEM microphotograph of a micro-sectioned R-nFe bead is shown in Figure 3c. The
iron nanoparticles can be observed in the dark regions, while the white and gray regions
represent the support resin. Iron nanoparticles have a spherical shape and size in the order
of 20–40 nm.



Sustainability 2021, 13, 12708 7 of 21Sustainability 2021, 13, x FOR PEER REVIEW 7 of 22 
 

 

 

(a) (b) 

 

 

(c) 

Figure 3. (a) SEM microphotograph of a cut section of an R-nFe bead; (b) EDS analyses along the diameter of the cut section 

in (a); (c) TEM microphotograph of a microsectioned R-nFe bead. 

3.2. Effect of Contact Time 

To investigate the effect of contact time, batch experiments were performed up to 180 

min, spiking the targeted NSAIDs at an initial concentration of 1 μg L−1 and utilizing an 

R-nFe dose of 15 g L−1. Similar to other studies [71–75] investigating the removal of these 

compounds from water, a contact time of 180 min was initially selected as maximum. The 

results are presented in Figure 4. The error bars represent the standard error, which is 

equal to the standard deviation, divided by the square root of the number of samples. 

Generally, low removal efficiencies were obtained for the R-nFe dose of 15 g L−1 at a 

contact time of 180 min for all targeted compounds. More specifically, the ratios of the 

residual concentration at a given contact time (C) to the initial concentration of the 

pollutant (C0), denoted hereafter as C/C0 ratios, were equal to 70%, 87%, and 91% for NPX, 

DCF and IBU, respectively, whereas practically no removal was achieved for KTP. This 

low removal level of KTP could partially be explained by its low affinity to adsorption 

compared to the other target compounds, as reported in other studies [75]. However, the 

concentration of most targeted compounds continued to decrease in the solution after 180 

min, indicating that equilibrium was not reached. Therefore, the experiments were 

conducted again and continued for 2 days. The results for the larger contact time are 

illustrated in Figure 5a–d, noted as non-pre-treated R-nFe. The maximum removal 

efficiencies for all compounds were observed at the contact time of 2 days, and were equal 

to 75% for NPX, 71% for DCF, 32% for IBU and 5% for KTP. In both short and long contact 

Figure 3. (a) SEM microphotograph of a cut section of an R-nFe bead; (b) EDS analyses along the diameter of the cut section
in (a); (c) TEM microphotograph of a microsectioned R-nFe bead.

3.2. Effect of Contact Time

To investigate the effect of contact time, batch experiments were performed up to
180 min, spiking the targeted NSAIDs at an initial concentration of 1 µg L−1 and utilizing
an R-nFe dose of 15 g L−1. Similar to other studies [71–75] investigating the removal of
these compounds from water, a contact time of 180 min was initially selected as maximum.
The results are presented in Figure 4. The error bars represent the standard error, which
is equal to the standard deviation, divided by the square root of the number of samples.
Generally, low removal efficiencies were obtained for the R-nFe dose of 15 g L−1 at a contact
time of 180 min for all targeted compounds. More specifically, the ratios of the residual
concentration at a given contact time (C) to the initial concentration of the pollutant (C0),
denoted hereafter as C/C0 ratios, were equal to 70%, 87%, and 91% for NPX, DCF and
IBU, respectively, whereas practically no removal was achieved for KTP. This low removal
level of KTP could partially be explained by its low affinity to adsorption compared to the
other target compounds, as reported in other studies [75]. However, the concentration of
most targeted compounds continued to decrease in the solution after 180 min, indicating
that equilibrium was not reached. Therefore, the experiments were conducted again and
continued for 2 days. The results for the larger contact time are illustrated in Figure 5a–d,
noted as non-pre-treated R-nFe. The maximum removal efficiencies for all compounds
were observed at the contact time of 2 days, and were equal to 75% for NPX, 71% for DCF,
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32% for IBU and 5% for KTP. In both short and long contact times, the removal efficiencies
of targeted compounds were in a decreasing order of NPX > DCF > IBU > KTP.
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3.3. Effect of NaCl Pretreatment

The effect of NaCl addition on the removal of the selected NSAIDs was evaluated as a
pre-treatment step of R-nFe production. As illustrated in Figure 5, pretreatment with NaCl
is beneficial for obtaining higher removal efficiencies for all selected NSAIDs at a given
contact time. More specifically, higher removal efficiencies were observed for the longest
contact time of 48 h in all cases; these were equal to 50%, 85%, 86% and 73% for IBU, NPX,
DCF and KTP, respectively.

It seems that the removal rate of all selected NSAIDs during the first 15 min of the
experiments was limited. Between 15 min and 6 h of contact time, a significant removal rate
increase occurred; thereafter, between 6 and 48 h, only a marginal improvement is obtained.
The results indicate that equilibrium can almost be reached at 24 h of contact time for
most compounds, while this is not the case for the non-pre-treated R-nFe. While the target
compounds’ removal during the first 15 min could be primarily attributed to adsorption
mechanisms, it is anticipated that, beyond this time, other mechanisms might be important
as well (e.g., oxidation). At a contact time of 6 h, the samples pretreated with NaCl R-
nFe exhibited moderate removal efficiency for IBU and KTP (42% and 55%, respectively)
but high removal efficiency for NPX and DCF (73% and 69%, respectively). Therefore, it
appears that a contact time of 6 h would be optimal with respect to the removal of target
compounds in the case of adopting NaCl pretreatment. However, from the engineering
point of view, this contact time is quite high and is practically unattainable; hence, the
effect of other parameters (3.4–3.8 paragraphs) was evaluated, conducting experiments
with shorter contact time (30–60 min) and employing pretreatment with NaCl.

3.4. Effect of pH

The effect of pH was investigated regarding the R-nFe dose of 15 g L−1 for the selected
NSAIDs, for a contact time of 30 min. Figure 6a presents the effect of pH on NPX removal,
whereas Figure 6b illustrates the ratio of C/C0 after 30 min of contact time for all targeted
compounds. As illustrated in Figure 6a, the removal efficiency for NPX was maximized
for the lower pH value (pH = 3), achieving a high value (70%) after 30 min, whereas in
neutral conditions (pH = 7), practically no removal was observed. At the intermediate
level (pH = 4), NPX was moderately efficiently removed from the liquid solution (35%).
Similar results were obtained for all targeted NSAIDs (Figure 6b). The highest removal
efficiencies were observed for IBU and NPX, while the removal of DCF and KTP was lower,
with remaining concentrations of 42% and 50%, respectively. In neutral conditions (pH = 7),
all targeted compounds were poorly removed by R-nFe.

3.5. Effect of the R-nFe Dose

The effect of R-nFe dose was evaluated for three alternative values (5, 10 and 15 g L−1)
with a pH = 3. In Figure 7a, the effect of the R-nFe dose is presented for NPX, whereas
Figure 7b illustrates the ratio of C/C0, with a contact time of 30 min, for all targeted
compounds at pH = 3. Based on the results, the increase in the R-nFe dose leads to
improved performance, as more active sites are available for adsorption and reaction.
However, in the case of NPX, the R-nFe dosing at 10 g L−1 was comparable to 15 g L−1.
Evidently, no significant difference in NPX removal was obtained within 30 min, with
values being very similar and around 70%. In general, for all selected NSAIDs at an initial
concentration of 1 µg L−1, the R-nFe dose of 5 g L−1, was incapable of removing the
compounds efficiently (<30% in all cases) within 30 min, whereas with the highest dose
(R-nFe 15 g L−1), appreciable removal efficiencies were achieved. The intermediate dose
displayed moderate results in all cases, even though, in the case of DCF, the performance
was closer to the one with the lower dose, achieving a rather low removal efficiency, while
in the case of NPX, the performance was similar to the one with the highest dose.
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The mass of each pollutant that was removed per utilized mass of R-nFe used (µg g−1)
varied among the selected NSAIDs. More specifically, for IBU, 0.02–0.05 µg were removed
per g of R-nFe; lesser removal occurred for the lower utilized R-nFe mass (5 g), and greater
removal for the higher one (R-nFe 15 g). The mass of NPX that was removed per g R-nFe
was equal to 0.06 µg for both experiments, with R-nFe doses of 5 g and 10 g, respectively,
whereas it was slightly lower (0.05 µg g−1) for the experiment with the R-nFe dose of 15 g.
Interestingly, the removal of DCF was practically zero when the R-nFe mass was 5–10 g,
and increased to 0.04 µg g−1 in the case of the R-nFe dose of 15 g. Finally, 0.03 µg of KTP
was removed per g R-nFe, for doses between 10 and 15 g, while KTP could not be removed
at an R-nFe dose of 5 g. All in all, the total mass of all NSAIDs removed per g of R-nFe
used was 0.08 µg g−1 for an R-nFe mass equal to 5 g and increased to 0.17 µg g−1 with an
increase in the mass of sorbent to 15 g. Based on these findings, the following experiments
(Sections 3.6–3.8) were performed, adopting an R-nFe dose of 15 g L−1.

3.6. The Effect of the Resin (R-Na)

The effect of the supporting material was investigated for all selected NSAIDs without
the addition of nZVI. As illustrated in Figure 8 for NPX, the resin plays an important
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role in the removal of this compound, achieving approximately 50% within 30 min of
contact time. This effect is rather significant, as the NPX removal obtained for R-nFe is
only slightly higher (70%). At the shorter contact time of 15 min, the beneficial effect of
nZVI incorporation into the resin was more profound (the difference in removal efficiency
of NPX using R-nFe and R-Na was approximately 37%). For the other target compounds
(Figure 9a), the removal efficiencies achieved with R-nFe after 15 min were 47% for IBU,
37% for DCF, and 41% for KTP. At the higher contact time of 30 min, R-nFe displayed better
results for NPX and IBU, while this was not the case for DCF and KTP (Figure 9b), where
practically similar results were obtained (moderate removal efficiencies for R-nFe and R-Na,
equal to 58% and 51% in the case of DCF, and 50% and 51% in the case of KTP, respectively).
Furthermore, as illustrated in Figure 9a,b, the retention time exerted a significant effect on
R-Na removal efficiency, as the NSAID removal obtained within 15 min ranged between 10
and 25%, whereas those obtained after 30 min were almost doubled.
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3.7. Effect of Initial Concentration

The effect of the initial concentration of the target compounds was evaluated using
the mixture of NSAIDs at a concentration of 1 µg and 10 µg L−1 each. The results are
presented in Figures 10 and 11. More specifically, in Figure 10, the evolution of NPX
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concentration over the 60-min experiments is illustrated, while Figure 11a,b presents the
removal of the target compounds at the different initial concentrations, tested after contact
times of 30 min and 60 min, respectively. Under the same conditions, the increase in the
initial concentration of target compounds leads to a lower removal rate and, as a result, to
significantly lower removal efficiencies up to 30 min. This was consistent for all selected
NSAIDs, as depicted in Figure 11a. In addition, it seems that the R-nFe dose of 15 g L−1

does not support significant removal, obtaining low removal efficiencies (< 30%) in all
experiments conducted with an initial target concentration of 10 µg L−1. On the other
hand, regarding the lower initial concentration (C0 1 µg L−1), high removal efficiencies
were achieved (> 70%) for IBU and NPX within the span of 30 min, while rather moderate
removal efficiencies were recorded for DCF (58%) and KTP (50%). However, differences in
the removal efficiencies for all studied NSAIDs were not profound after 60 min between the
two experiments. Practically similar C/C0 ratios were observed after 30 min and 60 min
for the lower initial concentration (C0 1 µg L−1), while this was not the case for the larger
initial concentration of pollutants (C0 10 µg L−1) (Figure 11b).
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Furthermore, in the experiment using a lower initial concentration of pollutants, the
specific removal capacity of R-nFe was 0.03 µg g−1 for IBU, DCF and KTP, and 0.04 µg g−1
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for NPX, after 60 min. The total mass removed per g of sorbent was 0.14 µg g−1 after
60 min in the case of the lowest initial concentration of pollutants, and corresponds to a
moderate overall removal of 51% of the total initial mass of the pollutants (4 µg). In contrast,
the specific removal capacity of R-nFe in the case of the higher initial concentration of
pollutants was approximately 7–10 times higher, ranging from 0.21 to 0.40 µg g−1 for IBU,
NPX, DCF and KTP after 60 min. The total mass removed per g of sorbent was 1.22 µg g−1

after 60 min and also corresponds to a moderate overall removal of 46% of the initial mass
of the pollutants (40 µg).

3.8. Effect of Oxidative Reagents Addition

The combined utilization of nZVI with strong oxidative agents, namely, hydrogen
peroxide (H2O2) and sodium persulfate (PS), was investigated in order to establish the effect
of the Fenton reaction on targeted compound removal. The experiments were performed
at a contact time of 60 min and with an initial concentration of pollutants at 10 µg L−1, in
order to obtain removal kinetics before the substances are completely removed. Initially,
control experiments were performed with the addition of 1 mM H2O2 and PS in the absence
of R-nFe (denoted in the following figures as “C”). Figure 12a presents the effect of the
addition of the oxidative reagents, H2O2 and PS, at 1 mM concentration with and without
the addition of R-nFe 15 g L−1 for NPX. Figure 12b illustrates the ratio of C/C0 after 60 min
of contact time for all targeted compounds. Data on NPX (Figure 12a) indicate that at a
contact time of 60 min, the dose of 1 mM H2O2 is practically insufficient to obtain high
NPX removal efficiencies at a pH = 3, with the C/C0 ratio being around 75%. The addition
of 1 mM of PS resulted in moderate NPX removal, similar to that obtained with R-nFe
alone without the addition of oxidative agents. However, improved removal efficiencies
were obtained when R-nFe was combined with an oxidative agent. The optimum results
were obtained in the case of R-nFe and PS (1 mM), with removal efficiencies of the order of
90% for NPX. This was also the case for DCF, but the removal efficiency was lower (49%).
For IBU and KTP, the removal efficiencies achieved for both combinations were moderate
but were better than those observed with R-nFe, H2O2 and PS alone. IBU and KTP removal
efficiency in the R-nFe/H2O2 systems was 44%, and IBU and KTP removals in R-nFe/PS
systems were 41% and 37%, respectively.
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4. Discussion

In this study, the performance of nZVI produced via an environmentally friendly
method and incorporated into a cationic resin was assessed for removing selected NSAIDs
by conducting batch experiments.

More specifically, the present work was carried out using GT extract as a source
of polyphenols for the reduction of iron. GT is a commercial product with well-known
antioxidant properties, related to its high polyphenol content. Machado et al. [47] have
demonstrated that several other plant extracts originating from agricultural or garden
wastes, e.g., tree leaves, vine leaves, grape marc, etc., can also be valorized and used as
polyphenol sources for the synthesis of nZVI particles. The recycling and transformation
of agricultural waste to produce high added-value materials can significantly reduce
the carbon footprint and increase the environmental and economic sustainability of the
processes involved [48].

Regarding the effect of contact duration, the contact time of 180 min was not sufficient
for obtaining significant removal efficiencies for all targeted compounds (Figure 4) when
utilizing R-nFe without pretreatment. Similar findings have been reported by other studies
as well. Evidently, Dong et al. [76] found that ZVI without the addition of oxidative
reagent achieved negligible NPX removal after a contact time of 30 min. Zhou et al. [77]
tested commercial mZVI and lab-synthesized ZVI-graphite and found the IBU removal
to be negligible after 20 h. However, higher removal efficiencies were recorded with
the increase in contact time to 2d (Figure 5). As the experiments were conducted under
aerobic conditions, and it is likely that nZVI in the presence of oxygen may initiate Fenton
reactions [46,78] even without the addition of oxidative reagents, the observed removal
efficiencies could be attributed to both adsorption and oxidation mechanisms.

Based on the results, NaCl pre-treatment of R-nFe appears to significantly improve the
removal of targeted compounds (Figure 5). NaCl is considered to enhance nZVI corrosion,
thus increasing its reactivity with the target pollutants. This result is in accordance with
the findings of Ghauch et al. [36], who studied the performance of nZVI material for the
removal of two common antibiotics and reported that low concentrations of NaCl led to
high removal efficiencies. On the other hand, Mo et al. [79] found that increasing Cl− anion
concentrations from 0 to 1 M decreased the removal of DCF and KTP through adsorption
in metal–organic frameworks, because the dissociation of Cl− from NaCl addition inhibits
the reactions between DCF and KTP with the adsorbents. Zhang et al. [80], who studied
anionic resins, found that an increase in NaCl concentration leads to a decrease in IBU
adsorption into the active sites of the resin, due to competition for ion chlorides with the
anions of IBU; Van Tran et al. [72], who studied IBU adsorption in hollow mesoporous
carbon, found that NaCl has a negative effect because IBU is in a cationic state in pH < pKa
and an increase in Na+ leads to an antagonistic environment. However, in the experiments
performed in this work, the pH was close to the pKa values of the NSAIDs, showing that
the compounds were in neutral form, and thus NaCl could not have affected adsorption.
Therefore, NaCl pre-treatment may have balanced the external and internal pressures,
enhancing the diffusion of the polluting compounds from the medium into the pores of
the resin.

Regarding the effect of pH, acidic conditions favor the removal of targeted NSAIDs
with R-nFe (Figure 6). The dominant role of pH on the degradation of NSAIDs has been
reported in several studies; usually, it affects NSAID removal through adsorption [80–83].
For example, Al Othman et al. [84] showed that the maximum adsorption of DCF was
achieved at a pH = 5 (85%) due to the carboxylic group in its molecule, resulting in the
anionic form of the compound. Furthermore, they reported that even if the surface charge
of the adsorbent becomes neutral, π-π interactions retained the adsorbed DCF in the
adsorbent, as DCF can act as a π-electron acceptor and π-π interactions can be created with
the benzene structure of the adsorbent. However, when utilizing nZVI in the presence
of oxygen, other mechanisms apart from adsorption may be activated for degrading the
pollutants. Zhou et al. [77] utilized nZVI for DCF removal and found that acidic conditions
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favor NSAID removal under aerobic conditions; they proposed that the oxidation of DCF
takes place through radicals generated from Fenton-like reactions at pH values < 4, whereas
at a pH range of between 4 and 7, oxidation and adsorption are the main mechanisms.
pH values > 7 enable the physical adsorption of DCF, which takes place in the FeOOH−

shell of the nZVI. Another study performed by Zhang et al. [80] reports maximum IBU
adsorption into the adsorbent at pH values close to its pKa value (4.17), whereas in the
case of pH values < pKa, IBU removal decreased because the molecular form of IBU did
not support electrostatic mechanism reactions taking place. All in all, the removal of all
targeted compounds in our study was maximized at the lower pH value investigated
(pH = 3), which may be attributed to adsorption via electrostatic interactions. The reason
is that the pKa of all targeted NSAIDs ranges between 4.14 and 4.59; thus, at lower pH
values, those compounds that are characterized as weak acids are neutrally charged and,
at higher pH values, they exist in the anionic form [82], whereas resin and nZVI has a
positive surface charge at pH values < 7 [85,86]. Other mechanisms of adsorption, such
as hydrophobic interactions, π-cation interaction, and hydrogen bonding in combination
with Fenton reactions in the presence of oxygen and nZVI may be also responsible for the
removal rates obtained. For DCF in particular, which has a chlorinated ring, reductive
dichlorination can take place via the transfer of electrons from the nZVI surface [87].

Moreover, adopting a higher R-nFe dose resulted in higher removal capacity for
all targeted NSAIDs (Figure 7). The increase in the R-nFe dose increases the availabil-
ity of active sites where adsorption and interaction can take place between nZVI and
NSAIDs. Ali et al. [88] reported increased removal efficiencies of IBU with an increase in
the adsorbent’s dose but this was only up to a maximum point, after which additional
material could not lead to higher removal efficiencies. The same conclusion was reached
by Soares et al. [82] regarding DCF, KTP and NPX, using a chitosan-based magnetic nano
adsorbent. In this study, the use of R-nFe at 15 g L−1 was the maximum dose investigated
and the effect was positive, meaning that the full extent of the material’s capacity regarding
these compounds was not reached. In parallel, it should also be noted that in many studies,
experiments are performed to obtain the removal efficiency of a single NSAID and do not
refer to multiple-NSAID matrixes, as presented in this study. Accordingly, the removal
efficiency obtained in the literature for a specific NSAID may vary, depending on the
concentrations of other pollutants, even if the same experimental conditions are applied;
this should be considered when comparing the results of different treatment methods
with nZVI. For example, Liu et al. [89] observed that when multiple NSAIDs exist in a
solution, the removal efficiencies are decreased compared to single-NSAID systems by
approximately 10%. The same study reports that the existence of hydrophobic substances
and oils decreases the removal efficiency of NSAIDs with electrocoagulation–flotation. As
these drugs are quite similar regarding their physicochemical characteristics, they may
compete for vacant sites in the active porous areas of the resin.

The maximum specific removal capacity of R-nFe achieved in our work was 0.17 µg g−1

for the total mass of the pollutants. In comparison with the aforementioned studies [82,88],
which utilized other types of iron nano adsorbents, this capacity does not seem to be
substantial, suggesting that larger doses of R-nFe should be investigated and that the
employment of R-nFe in Fenton processes could be more cost-effective than utilizing R-nFe
as a stand-alone process.

Furthermore, the increase in initial pollutants concentration leads to a decrease in the
removal efficiencies of the targeted compounds under the same experimental conditions
(Figures 10 and 11). The active sites in the pores of the resin, and the reactivity of nZVI are
diminishing, as the initial concentration of pollutants increases and the rate of removal
decreases. Dong et al. [76] also observed that when increasing the initial concentration of
NPX from 5–25 µM, the rate of removal decreases in the ZVI/PS system. This was attributed
to the increased ratio of NPX to oxidative radicals. On the other hand, Ali et al. [88],
who studied the removal of IBU from water using an iron nano adsorbent, found that
the removal efficiency of DCF increased with the increase in the initial concentration
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until a maximum concentration point, where adsorption could not be further enhanced.
Al Othman et al. [84] also reached the same conclusion. The maximum removal capacity
of R-nFe achieved in this study was 1.22 µg g−1 for the total mass of the pollutants in the
experiment at a higher initial concentration (C0 10 µg L−1). Al-Rimawi et al. [90], who
investigated the removal of NSAIDs, among other pharmaceuticals, using zeolite, reached
the same conclusion and attributed this trend to the increased driving force helping to
overcome mass transfer limitations and enhance adsorption onto the sorbent’s surface.

The effect of the supporting material seems to be important for NSAID removal
(Figures 8 and 9). Although the resin used was capable of exchanging cations, it could also
abet the adsorption of the targeted compounds, promoting other interactions and bonding
mechanisms, along with nZVI. Having an anionic resin may promote targeted compound
removal because it further enhances the occurrence of electrostatic interactions as well. For
example, Mo et al. [79] attributed DCF and KTP adsorption to electrostatic forces between
the highly positive charge of the ionic covalent organic frameworks (iCOFs) that led to the
attraction of anions to its surface; however, the feasibility of incorporating nZVI in anionic
resin should be investigated. It should be noted that only a relatively small number of
studies consider the effect of nZVI’s supporting material or its modification—especially
when nZVI is used as a nanocomposite—on the removal of pollutants, even though this
effect can be significant.

Finally, the combination of nZVI with advanced oxidation methods seems optimal
for the removal of NSAIDs (Figure 12). R-nFe exhibited better performance when utilized
in nZVI/H2O2 and nZVI/PS systems. This was in agreement with other studies [76,91].
For example, Wu et al. [44], who investigated the performance of both H2O2 and PS
combined with nZVI, suggested this as a more economically sustainable method to remove
pharmaceuticals from water. Furthermore, Liang et al. [87] demonstrated the improved
removal efficiency of DCF when nZVI was combined with H2O2. Therefore, this practice
may offer a promising method for treating recalcitrant pharmaceutical compounds at
trace-level concentrations.

In view of all the aforementioned studies, and to the best of our knowledge, this is
the first time that nZVI, produced with the utilization of leaf extracts and incorporated
into a cationic resin, has been used to remove pharmaceuticals from water. The cationic
resin serving as the supporting material is capable of adsorbing iron cations (Fe+2/Fe+3),
recirculating iron into the treatment system and promoting further reactions with the target
pollutants. Thus, the proposed method is not expected to release nanoparticles that may
affect living microorganisms in soil and water. Another advantage of the method is that
nZVI is produced utilizing herbal extracts, instead of the common synthesis method with
NaBH4, offering a more sustainable method for removing micropollutants.

However, it should be mentioned that possible limitations of the method should be
further investigated to explore its overall sustainability. A matter of concern refers to the
possible limitations presented by the complex wastewater matrix, which might possibly
result in a higher contact time and/or nZVI dose.

Furthermore, the possibility of regenerating and reusing R-nFe, after the exhaustion
of its remedial capacity, is a crucial aspect of the final evaluation of the sustainability of this
technology. The exhaustion of nZVI particles is characterized by the gradual oxidation of
elemental iron, Fe0, into Fe+3 species. Depending on the operating pH, the oxidized iron
remains inside the pores of the resin beads, as soluble cations are retained by electrostatic
forces via the sulfonate functional groups of the resin, or as solid iron oxyhydroxide
precipitates. Regeneration of the R-nFe composite material can be carried out by applying
a four- or a two-step treatment. The four-step regeneration treatment was tested in a
similar R-nFe product that was used for Cr+6 removal from contaminated water [67]. It
involved an initial treatment of the exhausted resin beads with a strongly acidic solution,
2N HCl, to wash out all Fe+3 species, including the reduced Cr+3 species. The bare resin
beads were then treated with all the steps of the synthesis procedure, as described in
Figure 1. In that study, regeneration was conducted 3 times, and Cr+6 removal remained
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very high, with a slight decrease of effectiveness from 96% in the fresh R-nFe to 87% after
the third regeneration cycle. When R-nFe is used for the removal of organic contaminants,
regeneration can be carried out by applying only a two-step treatment. The exhausted
R-nFe can be treated with a less acidic solution, e.g., 0.1 M HCl, in order to dissolve the Fe+3

precipitates and remove the adsorbed species. It is anticipated that the main part of the
Fe+3 cations will remain inside the resin beads, electrostatically attracted by the sulfonate
functional groups. The second step will be the treatment of R-Fe with plant polyphenols in
order to reduce the trivalent cation Fe+3 into its elemental state, Fe0.

5. Conclusions

To summarize, the proposed method, employing nZVI made of green tea extracts and
incorporated in a cationic resin, seems to be a promising method for removing NSAIDs
from water. An increase in contact time, NaCl pretreatment and R-nFe dose were beneficial
for process performance, whereas the increase of pH from acidic to neutral values and
the increase of the initial concentration of the pollutants had negative effects on removal
efficiency. In addition, the supporting material played a significant role in the removal of
almost all targeted NSAIDs.

The best removal efficiencies obtained for DCF and KTP were 86% and 73%, respec-
tively, after 48 h of contact time, with NaCl-pretreated R-nFe at a dose of 15 g L−1 and
pH = 4. The removal efficiency for NPX was 86% under the same conditions, quite similar
to that obtained for the experiment with the PS addition. The maximum IBU removal
value was 70% and was reached at pH 3, with a contact time of 30 min and R-nFe 15 g L−1.
However, the process performance of R-nFe was enhanced with the addition of oxidative
reagent; in particular, PS addition resulted in a significantly shorter contact time for an
increased initial concentration of pollutants. The maximum removal efficiencies recorded
in combined systems were 44% for IBU and KTP in the nZVI/H2O2 system, and 90% and
49% for NPX and DCF, respectively, in the nZVI/PS system with a contact time of 60 min,
a pH of 3, and C0 at 10 µg L−1.

Therefore, future research should focus on systems combining nZVI synthesized from
herbal extracts with oxidative reagents for the removal of NSAIDs. However, potential
limitations and drawbacks of the proposed method should be addressed. For example, the
synthesis procedure at full scale may be challenging; in addition, the effectiveness of the
R-nFe material after multiple cycles of operation, its reusability and regeneration should
be further investigated. In addition, more complex matrices should be tested to evaluate
the performance of the method using real wastewater, in order that this treatment method
may be implemented on a larger scale.
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