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Abstract: Price forecasting (PF) is the primary concern in distributed power generation. This paper
presents a novel and improved technique to forecast electricity prices. The data of various power
producers, Capacity Purchase Price (CPP), Power Purchase Price (PPP), Tariff rates, and load demand
from National Electric Power Regulatory Authority (NEPRA) are considered for MAPE reduction in
PF. Eight time-series and auto-regression algorithms are developed for data fetching and setting the
objective function. The feed-forward ANFIS based on the ML approach and space vector regression
(SVR) is introduced to PF by taking the input from time series and auto-regression (AR) algorithms.
Best-feature selection is conducted by adopting the Binary Genetic Algorithm (BGA)-Principal
Component Analysis (PCA) approach that ultimately minimizes the complexity and computational
time of the model. The proposed integration strategy computes the mean absolute percentage error
(MAPE), and the overall improvement percentage is 9.24%, which is valuable in price forecasting of
the energy management system (EMS). In the end, EMS based on the Firefly algorithm (FA) has been
presented, and by implementing FA, the cost of electricity has been reduced by 21%, 19%, and 20%
for building 1, 2, and 3, respectively.

Keywords: binary genetic algorithm; price forecasting; energy management system; mean absolute
percentage error; firefly algorithm

1. Introduction

It is necessary to forecast electricity prices for the Independent System Operator (ISO)
and the end-users and marketers. Generally, the profit bidders in the potential electricity
market need the future electricity prices in order to earn a good profit; however, the existing
electricity market has made PF more complex as it is highly deregulated and non-linear.
Due to the system’s non-linear and unstable behavior, accurate prediction of prices has
become more complex. It also affects the bidding policies in the electricity market. The PF
techniques are categorized into three classes according to their specific forecasting models:
The statistical model, time-series model, and AI-based models [1]. The AI-based forecasting
approach has attracted much attention in recent years. It assures a guaranteed level of
accuracy of price estimation compared to unstable variations of dependent or independent
variables in the statistical model.
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The current energy market depends on renewable energy resources because these
are playing a leading role in fulfilling the energy demand. In the rising energy demand,
an economical solution is needed to address persistent issues [2]. An exhaustive work
concludes that renewable energy generation resources have an extensive impact on energy
unit prices. The generation-side and demand-side companies are in contact to develop a
steadiness between supply and demand. An optimized home energy management system
(EMS) proposed in [3] computes the unit price of electricity by utilizing an RES and battery
storage system. The energy unit price is determined by correspondence from generation
groups with the requirement from the load-allocation bodies. The subsequent energy
demand is calculated from load allocation bodies and fed to the supply side to avoid
inconveniences such as an electricity shutdown.

On the other hand, the dependability and protection of the electricity system are
managed by a regulatory authority to harmonize with local distribution companies. This
regulatory authority also determines the energy unit price [4]. The cost-effective solution
in any domain is a considerable factor. Recently, the energy unit PF has been presented,
and diverse performances have also been suggested. Numerous areas, including signal
processing, statistical modeling, Machine Learning (ML), big-data analysis, and Artificial
Intelligence (AI), are anticipated tools [5]. An overview of the latest trends in power
systems is presented in Figure 1.

Figure 1. Overview of latest trends in power system.

Several methods have been proposed to forecast load consumption and per-unit
prices, such as engineering and statistical methods. Many researchers are working on AI
applications such as the Artificial Neural Network (ANN), Support Vector Machine (SVM),
evolutionary programming, expert system, fuzzy logic (FL), and LF-related problems.
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In this regard, many hybrid AI models have been developed to monitor and schedule.
They forecast electric load, including neural networks, fuzzy expert systems, fuzzy neural
networks (FNN), neural expert systems, neural-GA, and fuzzy expert [6–10].

Various steps and efforts are proposed in the latest research to meet the large gap
between demands and supply. On the other hand, an approach to decision-making and
medical diagnosis problems using the concept of spherical fuzzy sets is also evaluated
in [11]. Moreover, electricity cannot be stored in large amounts. The construction of newer
power plants is not an ultimate solution as it may lead to carbon emissions and the depletion
of resources [12]. Electric utilities have realized that consumer demands cannot be met
satisfactorily by adding new generating capacity alone [13]. Demand-Side Management
(DSM) and Demand Response (DR) are the terms used for energy management. These deal
with actions that influence consumers’ energy usage patterns in peak load times [14]. It
also includes decision making, implementation, and the following of activities of utilities
to motivate the consumers to modify their level and pattern of electricity consumption
according to the retail price [15]. Hence, the present focus of researchers is in the domain
of energy management.

This article considers the data of various power producers, CPPs, PPPs, Tariff rates,
and load demand from NEPRA for MAPE reduction in PF. Eight time-series and auto-
regression algorithms are developed for data fetching and setting the objective function
as shown in Figure 2. The feed-forward ANFIS is based on the ML approach to forecast
the PF by taking the inputs from time series and auto-regression algorithms. Best-feature
selection is conducted by adopting the BGA-PCA approach. It reduces the repeated,
irrelevant, and unnecessary data and ultimately minimizes the model’s complexity and
computational time. The proposed integration strategy computes the MAPE according to
the steps mentioned above and obtains significant improvements.

The contributions of this paper are well accomplished and summarized.

• NEPRA, Pakistan data are considered where the PF is optimized by reducing the MAPE.
• Eight time-series and autoregression algorithms are developed to fetch the dataset

and set the objective function, while the proposed equations set the basis for further
validation as improved results validate it.

• However, feedforward ANFIS based on the ML approach is proposed. Best-feature
selection is evaluated through the BGA-PCA approach.

• Our results for the PF compute the MAPE of one year by the proposed integration
strategy, and the overall improvement in MAPE is 9.24%.

• In the end, EMS based on the Firefly algorithm (FA) has been implemented, and
the cost of electricity has been reduced by 21%, 19%, and 20% for building 1, 2, and
3, respectively, which is valuable in price forecasting of the energy management
system (EMS).

2. Related Work

The forecasting medium supports establishing system models, behavior, and plans
by reviewing current and past market trends. PF is the main factor of this medium,
demonstrating generation capabilities, resource handling, capital cost, profit analysis, and
other system plans [16]. Load estimation and price prognoses are significant factors for
prime maneuver development in these viable power energy souks. Diverse methodologies
exist for price and load estimation, but without feature selection, skill methodologies are
inadequate. The mentioned feature selection skill deals with the modeling of intermingling
structures and nonlinearities of forecast progressions. By considering technicalities and
generation site plans, electricity price estimation is a more valuable chore. The energy rate
is estimated with an optimistic approach based on market-side demand and predictive
forecasting. Renewable energy backs the economical energy unit price. Detailed scrutiny of
market data in an arithmetical manner is a fundamental requirement in this approach [17].

Many researchers forecasted the price of electricity using the ANN strategy in tra-
ditional ways. In this regard, a multi-layer feed-forward Neural Network (MFFNN),
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Neuro-Fuzzy, Fuzzy Neural Network, and Adaptive Wavelet Neural Network approaches
based on the different analyses were used to extract selection features of price and load
signals for each hour [18,19]. The electricity price varies due to dynamic variations in
load demand throughout the day; therefore, this strategy minimizes the MAPE in load
and price at hourly, daily, and weekly intervals [20]. With the dynamic variations in load
containing high-frequency features, error is considerably increased; therefore, this research
recommends Wavelet Transform to resolve this issue.

In [21], the authors used a methodology based on feature selection with mathematical
and statistical modeling, utilizing the minimum block set from the input and applying a
computational filtering strategy to formulate optimized PF. The research illustrated in [22]
describes a trained RNN algorithm based on the Kalman Filter (KF) to forecast the load and
price of electricity using one-step and nth step prediction. The proposed study practiced
informative data of the European Power System (EPS) to validate the execution of the
scheme. Using the time-series-based multilayer ANN-KF model increases the forecasting
speed and tracking behavior, but the implementation of KF in the ANN algorithm is
relatively rigid in comparison to traditional strategies.

In previous research, the AI technique has been implemented for the long-term load
and PF of electricity conventionally. In [23–26], a short-term load and PF using an NN fitting
tool were used to compute hourly and daily data of weather temperature and electricity
load as input features. Furthermore, the generalized-RNN indicates temperature statistics
and price signals as input parameters. Both techniques accurately estimate prescribed
variables, but the integration of the Radial Basic Function-Neural Network (RBF-NN)
and GRNN have mutual effects that declare certain computational errors. A comparative
analysis of different AI approaches is compiled in Table 1, including their limitations.

Table 1. A comparison of related work of price forecasting.

Work Key Contribution AI Approach FS Limitations

[16] Price and LF MFFNN No
The dynamic variations in load contain

high-frequency features, which
considerably increases error

[27] PF ML-based ANN No
Due to limited feature selections, it lacks
statistical data, an optimized model, and

demand curves.

[21] Load and Price Forecast RCGA Yes
Partial environment for feature selection
to minimize the validation error occurred

by wrappers

[28] Price and LF ANN-RNN Yes Nominal error rate deficiency occurs in
other systems

[22] PF RNN-KF No
The implementation of KF in the ANN

algorithm relatively rigid than
traditional strategies

[29] PF Bivariate Distribution
Scheme No

A negative correlation factor, the
forecasted price of this distribution is less

than the marginal distribution

[30,31] Price and LF ANN-RNN No
The integration of RBFNN and GRNN

have mutual effects which declare some
sort of computational errors

Proposed
Work

PF with a novel
Proposed Modified

Strategy
ANFIS-SVR Novel

BGA-PCA
A new variety of data input and complex
auto-regression methods are not analyzed.

The authors of [5] propose a user-aware DR approach to manage residential loads.
User comfort and savings are considered mainly, and user comfort is modeled as a weight
factor before comfort over savings. The game is based on a modified regret-matching
procedure, which has the advantage of centralized and decentralized schemes. The work
can be extended with multiple energy resources in the future.
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Two optimization techniques, such as the FA and harmony search algorithm, are pre-
sented in this paper. These heuristic techniques are applied to different types of appliances
based on their energy consumption. Single and multiple home appliances are considered
in this research. Time of Use (ToU) is used as a pricing signal in the proposed technique to
calculate electrical cost [32].

In [33], a new algorithm introduces this study to solve and reduce the electricity
cost problem using two metaheuristics techniques, FA and Elephant herding optimization
(EHO). A scheduling process is used as an HEMC to maintain the balance between the
demand and load sides. This study aims to determine the low cost by considering the
maximum factors of user comfort and the average-to-peak ratio. The scheduling process
and performance are evaluated by the comparative analysis of these two meta-heuristic
techniques.

The primary purpose of this research is the successful implementation of FA in differ-
ent areas and thus the widening scope of its potential users. Table 2 presents a comparative
analysis of different methodologies related to DSM.

Table 2. Comparative analysis of work related to DSM.

Work Key Contribution Limitations

[34]

The techniques of scheduling residential appliances are
presented in this study. This study is classified into two

techniques such as meta-heuristic techniques and
heuristic techniques.

With the widespread use of home appliances,
residential consumers need to improve the strategies

for scheduling appliances.

[3]
This paper presents DSM architecture models and algorithms

based on customers behavior and smart
appliances integration

Implementations need to be done

[5] Proposes autonomous Game theory DR systems to minimize
the cost of power generation. Game theory can be an alternate to DSM

[35]
This study aims to consider the factor of maximizing user
comfort, peak-to-average ratio (PAR), and the low cost by

considering firefly optimization (FF).

Both algorithms performed a comparative analysis of
the separately implemented version to evaluate the

process of scheduling devices and improve
their performance.

[36] A swarm FA implemented except meta-heuristic algorithm
for a cost-effective solution The algorithm lacks local optimism

[33]
Two meta-heuristics techniques FA and EHO is utilized for
the scheduling process in a HEMC to maintain the balance

between the demand and load side

Due to the integration of two meta-heuristics
techniques, but the scheduling rate is low.

[37]

A comprehensive overview of the swarm intelligence of FA
is performed to express performance capabilities to

encourage new researchers and developers to implement it
in future works.

The implementation of FA is simple and highly efficient
in solving problems.

[38] The scheme used to calculate the electrical cost in this
proposed system is CPP using a Meta-heuristic algorithm

HSA perform better than FA in terms of PAR and
electricity costs

[39]
Applied on different types of appliances in single or multiple

homes based on their energy consumption using FA and
harmony search algorithm

ToU is used as a pricing signal in the proposed
technique for the calculation of the electrical cost

[40]
The proposed strategy reduces peak load and the cost by
compromising the comfort of the household consumer.
Optimization is performed using a multi-objective GA

Decreases the peak load and also reduces the utility bill

[41] This article focuses on maximizing the use of renewable
energy resources using different heuristic techniques Provide consistency in daily profit and low runs.

[42]
A concessional and maximum energy consumption schedule
uses the GA to reduce and production costs and improve the

efficiency factor at the utility and consumer level.

It is used over the single objective, which benefits
consumers with intelligent load scheduling

[43]
The author compares the performance of the HEMC, and this

controller is designed for energy consumption scheduled
based on the heuristic algorithm.

The heuristic technique, such as the GA-based energy
management controller, performs more efficiently than

other heuristic techniques.
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3. Proposed Framework for Price Forecasting

This section is based on the proposed PF techniques and framework.

3.1. Time Series and Autoregression Method

The time-series-forecasting model is proposed in [44], and nine regression algorithms
are introduced for the LF. In this model, time series and auto-regression methods are taken
into consideration for PF. Eight models are computed, where three are AR level-1, one is
exponential smoothing, and three are AR level-II.

Level I Auto-regression Model (AR1)
Variation in price demand: Peak hour P(t−1), off-peak hour P(t−2), and special

holidays or weekend P(t−3):

Pt = β0 + β1Pt−1 + β2Pt−2 + β3Pt−3 + ut (1)

Level I Auto-regression Model (AR2)
AR2 is modeled by adding the month auto-regression term Mk,t where k = 1, . . . ,12,

as there are 12 months in a year.

Pt = β0 + β1Pt−1 + β2Pt−2 + β3Pt−3 +
12

∑
k =1

αkMk,t + ut (2)

Level I Auto-regression Model (AR3)
The AR3 model has an extra auto-regression term in annual, γk Ak,t and for the seasons

of the year Mk,t where k = 1, . . . ,12.

Pt = β0 + β1Pt−1 + β2Pt−2 + β3Pt−3 + γk Ak,t +
12

∑
k =1

αkMk,t + ut (3)

Support Vector Regression (SVR)
This regression forecasts Pt by considering the inputs Pt−1, Pt−2, and Pt−3 for each

month
12
∑

k=1
αkMk,t of the annual forecasting.

Pt,SVR = SVR(Pt−1, Pt−2, Pt−3) (4)

Exponential Smoothing Method
This model is used where there is no monthly pricing, where α = smooth constant,

Pt−1 = previous pricing, and Ft−1 = PF demand.

P = αEt−1 + (1− α)Ft−1 + ut (5)

Level II Auto-regression Model (AR1)
In level-II, the model is applied to the data of the same series as AR1; however, the

price values and residential values from customer demand modeled in the exponential
smoothing method are added.

P′t = αEt−1 + (1− α)Ft−1 + ut (6)

P′′t = yt = β0 + β1Pt−1 + β2Pt−2 + β3Pt−3 + ut (7)

Pt = y′t − y′′t + ut (8)

Level II Auto-regression Model (AR2)
In level-II, the model is applied to the data of the same series as AR2; however,

price values and residential values from customer demand modeled in the exponential
smoothing method are added.
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P′t = αPt−1 + (1− α)Ft−1 + ut (9)

P′′t = β0 + β1Pt−1 + β2Pt−2 + β3Pt−3 +
4

∑
k=1

αkMk,t + ut (10)

Pt = P′t − P′′t + ut (11)

Level II Auto-regression Model (AR3)
In level II, the model is applied to the data of the same series as AR3; however, the

demand values and residential values from customer demand modeled in the exponential
smoothing method are added.

P′t = αEt−1 + (1− α)Ft−1 + ut (12)

P′′t = β0 + β1Pt−1 + β2Pt−2 + β3Pt−3 + γkYk,t +
4

∑
k=1

αkMk,t + ut (13)

Pt = P′t − P′′t + ut (14)

Eight time-series and autoregression algorithms in Equations (1)–(14) are developed
as a training of dataset and set the objective function. The proposed equations set the basis
for further validation where linear and nonlinear parameters are segregated as shown in
Figure 2. However, feedforward ANFIS based on the ML approach is considered to take
inputs from autoregression models and data set.

Figure 2. Illustration of input parameters of ANFIS.

3.2. Machine Learning Approach of Proposed Feedforward ANFIS

The model is further validated by the ML approach for implementing ANN, a com-
puter model influenced by the brain and nervous system in animals or humans. The ANFIS
model is presented in [45], and we modified it according to our requirement as the five
stages were computed. An algorithm that uses an unmonitored training data principle
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to construct a load–temperature relationship is used to forecast 24 hours of load. This
method uses real-time data as error-correcting function input, and simulation findings
reveal that an acceptable mean absolute error percentage is better than the conventional
method. In this regard, the proposed system is validated with a Feedforward Artificial
Neural Network of one-year LF data. The proposed Feedforward ANFIS model consists
of five stages as shown in Figure 3, where Random Forest training schemes are taken into
account, and the training process is given as follows.

Figure 3. Flowchart for illustration of PF processes of the proposed feedback ANFIS algorithm [46].

Stage 1: In this stage, the fuzzy fiction layer simply transmits the received signal
of any node to another layer. Each node for the linguistic parameter declares a member
function—the output estimation of electricity price on an hourly, weekly, and monthly basis.
The price estimation mainly includes power consumption statistics during the peak load
time, off-peak load time, and dynamic weather conditions. The exponential methodology
and level-2 AR methods are considered in Equations (15)–(18).

J1
i = µAi

(
Py−i

)
for i = 1, 2, 3 (15)

J1
2 = µA2

(
P′t

)
(16)

J1
3 = µA3(P′′ t) (17)

J1
4 = µA4(Pt,SVR) (18)

where Py−i, P′t , P′′t and Pt,SVR are the inputs to the nodes as shown in Figure 3 and µAi is
a member function.

A is a linguistic parameter that is linked with the node function.
The µA in the model is chosen based on Equation (19):

µAi(x) = exp
[
−Pt − ci

2ai

]2
(19)

where ai and ci are the set of premise parameters.
Stage 2: At this stage, the rule layer is employed, which simplifies the member

function of PF and minimizes the burden on nodes by processing the training dataset. The
node’s output expresses the firing strength of each rule and is obtained by the membership
functions illustrated by Equation (20).

wn= µAi(Pt−i)× µA2
(

P′t
)
× µA3(P′′ t)× µA4(Pt,SVR) for n = 1, 2, 3, 4, 5, 6 (20)
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Stage 3: Here, the normalization layer computes the ratio of firing strength of the
relative rule to the sum of firing strengths of preceding rules. Each node at this stage is a
fixed node named N. The output is given by Equation (21).

wn =
w

w1 + w2 + w3 + w4 + w5 + w6
(21)

Stage 4: At this stage, the defuzzification layer evaluates the output for each rule by
taking the product of normalized firing strength from the previous stage and the first-order
Sugeno Model. The nodes at this stage are based on adaptive nodes.

θ4
n = wn fn = wn(kn + ln + mn) (22)

where wn is the output of stage 3, and kn, ln, and mn are the parametric set.
Stage 5: Finally, the sum layer computes the total output for the proposed model. The

calculation is conducted based on the output values of each rule. There is a single node
here that computes the overall output. The overall output is computed in a single node
shape, as illustrated in Figure 2 and given in Equation (23).

θ5
n = ∑

n
wn fn =

∑n wn fn

∑n wn
(23)

It has been observed that the ANFIS model declares the final output for a given
premise by representing a linear combination of consequent parameters.

f = w1(k1 + l1 + m1) + w2(k2 + l2 + m2) + w3(k3 + l3 + m3)+
w4(k4 + l4 + m4) + w5(k5 + l5 + m5) + w6(k6 + l6 + m6) (24)

3.3. BGA-PCA for Feature Selection

In this paper, feature selection eliminates the extraneous and redundant data, improving
accuracy and reducing PF computation time. In this proposed model, the feature selection is
based on BGA by the blend of PCA. The main objective of BGA is a minimization of MSE as a
loss function for the ML approach that is formulated Equation (25) as:

f it f un =
i
n

n

∑
i=1

(Ti− Pt)2 (25)

where T is a vector function of price estimation and n is a training sample or assumption
for forecasting. The term 1 defines the values that have to be chosen, and 0 defines the
values that have not been chosen for the chromosome assessment. Thus, each irritation
of the BGA-PCA feature-selection method decreases the MSE and finds the best objective
function value.

The parameters considered for BGA are presented in Table 3.

Table 3. The parameters considered for BGA.

Sr. No Model Parameters Considered Values

1. Population Size 72
2. Selection probability 1
3. Selection Mechanism Tournament selection

4. Crossover
probability 0.90

5. Mutation Probability 0.20
6. Maximum iteration 48

7. Stopping criteria 1. When reached max no. of iteration
2. If fitness values are not better than the previous
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3.4. Proposed Integration Strategy

The PF approach is based on time series and the auto-regression model, the ML
method, and the proposed feature selection scheme. In this section, the forecasting is
further optimized by reducing MAPE. Therefore, all approaches are integrated into this part
where data fetching and modeling of time series and auto-regression model are considered
while the sequence of simulation is shown in Table 4. One-year data of twelve months with
the transformation of weekly data, ML, and feature selection are not considered as a final
decision because the integration strategy looks toward the best algorithm of the related
week of each month. Moreover, the MAPE calculations are modified as computed for the
integration strategy in [46]. We computed the MAPE of PF for each month as follows.

MAPEi =
1

Wm

Wm

∑
t=1

∣∣∣ f it f un(t)− Pa(t)
∣∣∣

Pa(t)
(26)

where f it f un (t) is a function taen from feature selection concerning time t, Pa is the actual
price, and wm is weeks per month. The average MAPE is then further calculated as:

MAPEavg =
Wm

∑
i=1

Ci ∗MAPEi (27)

Table 4. Sequence of simulation.

Proposed Algorithm

Step 1: According to Equations (1)–(13), adjust the Simulation parameters.
Step 2: Compute P(t), P′(t), P′′ (t), and P(t, svr) for different objective functions.
Step 3: Generate random estimation for feedback ANFIS model consists of five stages.
Step 4: Evaluate feature selection with BGA-PCA as per Equation (11)
Step 5: Compute f it f un = i

n

n
∑

i=1
(Ti− Pt)2 for the different objective function of P(t).

Step 6: Compute MAPEi for 12 months
Step 8: Compute MAPEavg
Step 9: Plot the Figures for MAPE of 12 months

4. PF Model Evaluation

In this section, the time-series and auto-regression models are considered for ML-
based feature selection, BGA-PCA. Furthermore, the integration strategy technique further
validates it. For this purpose, 12 power producers, such as RES, Hydel Power, Gas Power,
RNLG, imported coal, local coal, residual fuel oil, bagasse, uranium, RNLG new, imported
power, CPP per kWh of each month, PPP per kWh of each month, and load demand of
each month are taken into consideration as the input dataset.

The data from NEPRA are taken for the estimation of PF for twelve months. The
proposed work and Random Forest training scheme are shown in Figure 4 as systematized
as follows:

Time series and auto-regression algorithms are developed to fetch the dataset and set
the objective function for proposed Equations (1)–(14). According to these equations, eight
AR methods fetch the dataset by different linear and non-linear parameters.

The preprocessing of the AR method, where four types of data are fed to feedback
ANFIS, contains linear data of Level-1 AR models as shown in Figure 2.

The time-series AR data have been considered an input to the proposed Feed-forward
ANFIS and the overall output of Feed-forward ANFIS is computed in Equations (14)–(24).
w1, w2, w3, w4, w5, and w6 are the six best weights obtained from the ANFIS model. For
example, weights are w1 = 60%, w2 = 50%, w3 = 40%, w4 = 30%, w5 = 20%, and
w6 = 10%, respectively. Then the new weights according to Equation (7) could be: w1 =
60

210 = 28.5%, w2 = 50
210 = 23.8%, w3 = 40

210 = 19%, w4 = 30
210 = 14.2%, w5 = 20

210 = 9.5%,
and w6 = 10

210 = 4.7%. The forecasted weight according to Equations (23) and (24), where
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fn is the forecasting parameter of each weight according to week, weekend, month, and
year, are the parameters computed in Equations (1)–(14). Assuming that fn is 30, 25, 20,
15, 10, and 5, then the forecast weights are computed as: f = (0.28 × 30) + (0.23 × 25) +
(0.19 × 20) + (0.14 × 15) + (0.09 × 10) + (0.04 × 5) ≈ 21.15. BGA-PCA for feature selection
is used to eliminate the extraneous and redundant data that can improve the accuracy
and reduce the computation time. The main objective of BGA is minimization as the loss
function is computed in Equation (25). The BGA-PCA algorithms have removed the extra
parameters, repeated terms, and irrelevant data with the given simulation parameters
in Table 3.

Figure 4. Flowchart of the proposed framework.

MAPE calculation for the integration strategy is computed for each month, and the
average MAPE calculation is performed in Equations (26) and (27), respectively. As per the
MAPE calculation in Table 5, the MAPE of July 2019 is 5.56 as calculated from Equation (13).
The weekly coefficient from different algorithms Ci are 30%, 24%, 19%, 15%, 8%, and 4%.
The integration strategy computed by the minimum MAPE as per Equations (28) and (29)
is MAPE o f July 2019 = 0.3 ∗ 5.56 + 0.24 ∗ 5.52 + 0.19 ∗ 5.6 + 0.15 ∗ 5.54 + 0.08 ∗ 5.59 +
0.04 ∗ 5.57 = 5.55. Similarly, the MAPE of each month is calculated as given in Table 5. The
flow chart of the proposed framework PF is presented in Figure 4.

PF improvement for the MAPE of each month is calculated in Table 5. The proposed
model attained MAPE values of 5.56, 6.26, 4.61, 4.87, 4.94, 4.92, 4.74, 6.14, 6.27, 4.47, 6.32,
and 6.41 percent for July 2019 to June 2020, respectively.

The average MAPE for 12 months computed by our proposed model is (M3). Then
the improvement is formulated by:

E2 =
(M2 −M3)

M3
(28)

The overall improvement percentage can be calculated by:

E = E1 − E2 (29)
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Table 5. MAPE calculation for PF improvement per month.

Customer Type

Without Proposed
Integration

M1
MAPE Percentage

With Proposed
Integration

M2
MAPE Percentage

With Proposed Integration &
BGA-PCA Feature Selection

M3
MAPE Percentage

Percentage Overall
Improvement

Each Month MAPE % Each Month MAPE % Each Month MAPE % Each Month
Improvement %

July 2019 6.61 6.12 5.56 9.15%

August 2019 7.42 6.87 6.26 8.88%

September 2019 5.51 5.10 4.61 9.61%

October 2019 5.81 5.38 4.87 9.48%

November 2019 5.89 5.46 4.94 9.52%

December 2019 5.87 5.44 4.92 9.56%

January 2020 5.66 5.24 4.74 9.54%

February 2020 7.28 6.74 6.14 8.90%

March 2020 7.43 6.88 6.27 8.87%

April 2020 5.35 4.95 4.47 9.70%

May 2020 7.49 6.93 6.32 8.80%

June 2020 7.59 7.03 6.41 8.82%

Average 9.24%

5. EMS Model Evaluation

For the implementation of EMS, different kinds of loads have been selected for these
buildings, as shown in Table 6. These loads are commonly used appliances in houses,
industrial machines, or commercial instruments. Then the time of operation is selected by
turning devices on and off in each interval.

Table 6. Power producers with CPPs, PPPs, and load demand.

Categories Generation (%)

Power Producers

Renewable Energy Resources 2.79%
Hydro Power Generation 26.86%

Gas Production 16.41%
RLNG (RNLG) 4.46%
Imported Coal 17.73%

Local Coal 0.00%
Residual fuel oil 3.09%

Bagasse 0.84%
Uranium 5.98%

RNLG New 21.18%
Imported Power 0.34%

Mix (Captive) 0.33%

Months Capacity Purchase Price (CPP) Per kWh Power Purchase Price (PPP) Per kWh Load Demand GWh

July 2019 4.58 9.44 14,275
August 2019 4.87 9.05 14,450

September 2019 5.93 9.74 13,230
October 2019 7.43 11.77 10,107

November 2019 8.96 11.91 8306
December 2019 8.60 12.54 8493

January 2020 8.24 13.86 8753
February 2020 9.45 13.47 7686

March 2020 7.85 12.95 9556
April 2020 6.84 12.94 10,974
May 2020 5.81 11.93 12,901
June 2020 5.61 11.42 13,525
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Building 1
This building mainly contains household appliances as shown in Table 7. Here the

first column contains the name of the load. The second contains watt rating, the third
contains the probability of the on-time of the load, the fourth column contains the off time
of the load, and the fifth column contains the number of times devices are turned on in
each house. The percentage of generation by different power producers with CPPs, PPPs,
and load demand is presented in Table 6.

Table 7. Load details of building 1.

Device Type Hourly Consumption of Device (kW) Number
of DevicesWatts Start Time Off Time Count of Usage in a Day

Dryer 500 8 10 1 190
Dish Washer 1000 18 20 4 290

Washing Machine 1000 9 11 1 265
Oven 4000 7 22 8 280
Iron 1200 6 8 2 341

Vacuum Cleaner 1000 1 4 1 158
Fan 500 1 24 Continuous 288

Kettle 1000 5 22 4 406
Toaster 1000 7 9 2 48

Rice-Cooker 2000 10 20 2 59
Hair Dryer 1500 6 23 2 58

Blender 400 8 15 3 66
Frying Pan 1000 12 22 4 101

Coffee Maker 1500 1 24 10 56
Total 2500

Building 2
Building 2 has been selected to represent the commercial industry. This is because it

contains all high-power loads. The details of loads used by consumers in building 2 are
expressed in Table 8.

Table 8. Loads details of building 2.

Device Type Hourly Consumption of Device (kW) Number
DevicesWatts Start Time Off Time Count of Usage in a Day

Water Heater 2000 1 24 Continuous 39
Welding Machine 4000 7 22 20 35

Fan/AC 1000 1 24 Continuous 16
Arc Furnace 10,000 8 20 30 8

Induction Motor 2000 1 24 20 5
DC Motor 1000 1 24 20 6

Total 109

Building 3
Building 3 has been selected as the residential building. It contains all midrange loads,

as shown in Table 9. The details of the loads follow.

Table 9. Load details of building 3.

Device Type Hourly Consumption of Device (kW) Number
DevicesWatts Start Time Off Time Count of Usage in a Day

Water Dispenser 500 1 24 10 156
Dryer 1000 8 9 2 117
Kettle 2000 7 10 5 123
Oven 4000 2 23 10 77

Coffee Maker 2000 6 14 10 99
Fan/AC 1500 1 24 Continuous 93

Air Conditioner 2000 1 24 Continuous 56
Lights 300 18 7 Continuous 87
Total 808
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This building contains 808 devices. Therefore, to create the composite system, a large
number of devices have been used. Since a large building may contain these devices, this
table has been used as input data for the proposed FA. First of all, the selection of appliances
is conducted, and then the following is a sequence of the algorithm as per Figure 5:

• First it captures the on-time of each appliance after initialization.
• The duration of the run-time of every appliance is the load duration.
• Load power rating is also used as input in vector form.
• Cost of electricity so that a per-month bill can be calculated. This cost varies from

country to country.
• Peak hour details are also necessary. This is because peak hour cost affects three-phase

connection customers, not single-phase connection customers in Pakistan. However,
still, it is required because most of the users are three-phase connection customers and
load on the national power grid is high at peak hours.

• All the above parameters are used as input for the FA. These variables are modeled
based on model equations presented in Section 5.

• Next, the output of the firefly block is generated. It is useless until it is proven fruitful.
So to create a closed-loop system, unscheduled load parameters are generated.

• Unscheduled load, cost, and peak values are calculated. These values are now com-
pared with the firefly block if these values have two properties.

• Firefly Load Peak < Unscheduled Load Peak.
• Firefly Load Bill < Unscheduled Load Bill.
• Then, the proposed scheduling DSM is correct. If not, then the Firefly bock is again

called back to recalculate parameters and reschedule the load.
• If (9) is satisfied, then the output is generated. This output contains DSM data that can

be used to reduce electricity bills and power peaks in demand.

Figure 5. Illustration of the proposed firefly algorithm.

5.1. Methodology

The proposed system is based on EMS using firefly. The EMS model presented in this
paper is deterministic. The basic parameters used in this paper are fixed, such as power
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ratings of every piece of equipment used in the houses, peak hours in which the price of all
power drawn is higher, and the price of electricity.

All the appliances that cannot be controlled, for example, lights, etc., cannot be
scheduled because if the duration of higher electricity cost is ongoing, users cannot turn off
all their lights or the fans. The only freedom, in this case, is to turn off the lights and fans
in those areas where no one is sitting, and maximum conservation policies are adopted.

The second category of the load is air conditioning appliances in which our power
management and proposed techniques can be applied. These appliances can also not be
shifted temporarily. Usually, there are two types of air conditioning systems. One is HVAC,
and the other one is local air conditioning units installed in each house. Usually, HVAC
control is difficult compared to individual units because it draws a large current and will
cool an entire building even if one does not need it. However, on the other hand, the tiny
air conditioning units can be used to conserve power by shifting their cooling temperature
levels, and in this way, they will trip and conserve the power.

This paper considers the following vectors as considered in [47], and we modified them
to design the model equation for the Firefly-based power management system proposed in
this paper.

The set of appliances that can be shifted have been represented as:

A = [A1 + A2 + · · · . . . . . . . . . . . . . . . . . . . . . . . . . . . + Ak] (30)

The power ratings of each appliance are expressed as:

P = [P1 + P2 + · · · . . . . . . . . . . . . . . . . . . . . . . . . . . . + Pk] (31)

X = P/m is the power rating of each device and “m” is the number of slots per hour.
The time duration of each appliance is given as:

L = [L1 + L2 + · · · . . . . . . . . . . . . . . . . . . . . . . . . . . . + Lk] (32)

The point that each appliance is turned on is expressed as:

Ts = [t1 + ts2 + · · · . . . . . . . . . . . . . . . . . . . . . . . . . . . + tsk] (33)

For the representation of time slots in 24 h, the following vector has been used:

T = [1 + 2 + 3 + · · · . . . . . . . . . . . . . . . . . . . . . . . . . . . + n] (34)

The above vectors represent the model presented in this paper for EMS using the FA.

Power Requirement = ∑ n /∈ T ∑ a /∈ A Xn, a (35)

This is a straightforward model that can be used for power optimization. To manage
the peak hour issues in the proposed system, a separate vector has been created in which
two elements exist as this vector as:

T = [T1, T2] (36)

Here, T1 = Peak Hours and T2 = Off-peak hours.
The concept of peak hours has been introduced in the proposed system to encourage

people to save electricity. During peak hours, all residential users utilize electricity, and
therefore, the electrical stress on the power grid increases in this time. The higher cost is
applied to all the power consumed in peak hours to discourage users from turning on all
high-power devices at this time.
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For an electricity cost reduction for the consumers, the following model equation will
be used in the proposed paper.

Total Cost reduction in Bill =
n=N

∑
n=1

Power Requirementn. Cn (37)

So, if we minimize the above equation, then the total cost will be reduced. Here, Cn
represents the cost vectors, which consist of the bills of individual appliances. Now, when
we schedule loads, the customer must not be dissatisfied with arrangements. So, there
must be a satisfaction model. Therefore, if we minimize ∑ a /∈ A Ds (Ds = Discomfort level)
then the customer will bear arrangements. So

Ds =
(Ts− ast)

(βend− L− ast)Va
∈ A (38)

Here, two parameters can be operated by the customer. One is the start time and the
other is off time, and (ast) and (βend) are the start and end times of each appliance set by
users to finish the task. Here Ts is the start time and L is the time interval for each appliance
to complete the task.

The main objective is to minimize the peak load. For this purpose, the following
model can be used.

n=N

∑
n=1

Power Requirement(Scheduled) <=
n=N

∑
n=1

Actual Power Requirement (39)

This means that after scheduling, the load must be less than or equal to the actual
load. However, the following condition must be validated for the objective to be complete:

Max(T ∗ Pscheduled) < Max (T ∗ Pactual) (40)

The above condition validates that if the scheduled power drawn is less than the
actual load in peak hours, it reduces the overall cost and system capacity to handle the
maximum load.

Firefly Algorithm

Xin-she-young developed FA in [48,49]. FA is a specific rule algorithm that effectively
seeks the finest solution in local research. There are two basic variables of FA, namely
attractiveness and emission of light. There are three basic steps followed in FA:

1. At the same time, the firefly is attracted to the most attractive FA.
2. In the second step, the attraction is proportional to the flashing light.
3. In the last step, the coefficient value is used to control the intensity of the light.

The firefly is attracted to another firefly with a brighter flashlight than its own, as
presented in [50]. An explanation of the Pseudocode of the FA can be found in [50] where
the authors specify the light intensity value, initialization of light intensity, light absorption
stability, and distance between two fireflies. The flowchart of FA is shown in the following
Figure 6.
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Figure 6. Flow chart of firefly algorithm.

6. Results Discussion

The MAPE of July-2019 without the proposed integration is 6.12%, and after feature
selection and the proposed integration model, the MAPE is optimized to 5.56%. Thus, the
overall improvement of the proposed model is 9.15%. Similarly, the MAPE of August-2019
without the proposed integration is 6.87%, and after feature selection and the proposed
integration model, the MAPE is optimized to 6.26%. Thus, the overall improvement of the
proposed model is 8.88%. Figure 7 illustrates the actual vs. forecasted price of electricity
for July and August 2019 with an average MAPE of each month.

The MAPE of September-2019 without the proposed integration is 5.10%, and after
feature selection and the proposed integration model, the MAPE is optimized to 4.61%.
Thus, the overall improvement of the proposed model is 9.61%. The MAPE of October-2019
without the proposed integration is 5.38%, and after feature selection and the proposed
integration model, the MAPE is optimized to 4.87%. Thus, the overall improvement of the
proposed model is 9.48%. Figure 8 illustrates the actual vs. forecasted price of electricity
for September and October 2019 with the average MAPE of each month.
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Figure 7. Actual vs. forecasted price of electricity and average MAPE for July and August 2019.

Figure 8. Actual vs. forecasted price of electricity and average MAPE for September and October 2019.

The MAPE of November-2019 without the proposed integration is 5.46%; after feature
selection and the proposed integration model, the MAPE is optimized to 4.94%. Thus,
the overall improvement of the proposed model is 9.52%. The MAPE of December-2019
without the proposed integration is 5.44%, and after feature selection and the proposed
integration model, the MAPE is optimized to 4.92%. Thus, the overall improvement of the
proposed model is 9.56%. Figure 9 illustrates the actual vs. forecasted price of electricity
for November and December 2019 with the average MAPE of each month.

The MAPE of January-2020 without the proposed integration is 5.24%; after feature
selection and the proposed integration model, the MAPE is optimized to 4.74%. Thus, the
overall improvement of the proposed model is 9.54%. The MAPE of February-2020 without
the proposed integration is 6.74%, and after feature selection and the proposed integration
model the MAPE is optimized to 6.14%. Thus, the overall improvement of the proposed
model is 8.90%. Figure 10 illustrates the actual vs. forecasted price of electricity for January
and February 2020 with the average MAPE of each month.
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Figure 9. Actual vs. forecasted price of electricity and average MAPE for November and December 2019.

Figure 10. Actual vs. forecasted price of electricity and average MAPE for January and February 2020.

The MAPE of March-2020 without the proposed integration is 6.88%, and after feature
selection and the proposed integration model, the MAPE is optimized to 6.27%. Thus, the
overall improvement of the proposed model is 8.87%. The MAPE of April-2020 without
the proposed integration is 4.95%, and after feature selection and the proposed integration
model, the MAPE is optimized to 4.47%. Thus, the overall improvement of the proposed
model is 9.70%. Figure 11 illustrates the actual vs. forecasted price of electricity for March
and April 2020 with an average MAPE of each month.

The MAPE of May-2020 without the proposed integration is 6.93%, and after feature
selection and the proposed integration model, the MAPE is optimized to 6.32%. Thus, the
overall improvement of the proposed model is 8.80%. The MAPE of June-2020 without
the proposed integration is 7.03%, and after feature selection and the proposed integration
model, the MAPE is optimized to 6.41%. Thus, the overall improvement of the proposed
model is 8.82%. Figure 12 illustrates the actual vs. forecasted price of electricity for May
and June 2020 with an average MAPE of each month.
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Figure 11. Actual vs. forecasted price of electricity and average MAPE for March and April 2020.

Figure 12. Actual vs. forecasted price of electricity and average MAPE for May and June 2020.

In this section, the proposed system is discussed. This paper presented the FA-based
EMS technique and achieved all the objectives.

7. Results of Energy Management System
7.1. Tariff Plan

Figure 13 presents the overview of the FA regarding the cost of electricity related to its
time slot. Here, the two-stage tariff plan has been used.

Figure 13 shows the tariff plan implemented in the proposed system. The y-axis shows
the tariff rate in Pkr and the x-axis shows the time slots. It is a standard two-level tariff
plan. In 24 h, approximately 3 to 4 h are considered peak hours, from 7 pm to 11:00 p.m.
In these peak hours, the price is approximately double. Due to this, all consumers utilize
maximum appliances at this stage. Therefore, electricity demand is also higher at this time.
To encourage power conservation, these tariff plans have been introduced so that in peak
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hours’, customers must conserve electricity so that the cost of electricity and electrical stress
on the national grid can be reduced.

Figure 13. Tariff plan implemented in the proposed system for different time slots.

7.2. Load Management

Figure 14a presents the energy management of building 1 with and without FF. The
y-axis shows the power consumption in kilowatt-hour and the x-axis shows the time slots.
Here, the blue line represents the unscheduled load, while the red line is the scheduled
load with firefly. In this graph, peak load has shifted from 1700 kw to 1100 kw. It reduces
the peak load by 35%. It will also reduce the demand for power source capacity.

Figure 14b illustrates the energy management of building 2 with and without FF. The
y-axis shows the power consumption in kilowatt-hour, and the x-axis shows the time slots.
Here, the peak of the load was at 2100 kw, but the proposed system shifted it to 1600 kw. So,
in building 2, an overall 24% reduction in peak load has been observed. Figure 14c shows
the energy management of building 3 with and without FF. The y-axis shows the power
consumption in kilowatt-hour, and the x-axis shows the time slots. Here it can be seen
that the maximum peak in building 3 occurs at 2300 kw. Therefore, the proposed system
rescheduled the load and shifted it to 1600 kw. This is a 30% reduction in peak demand.
Figure 14d exhibits the total energy management of all buildings and the objective of the
proposed system. The y-axis shows the power consumption of all buildings in kilowatt-
hour and the x-axis shows the time slots. Here, the unscheduled load is blue, while the
second graph is an FA-based managed graph. As discussed earlier, the main objectives
of the proposed system are to reduce the electricity cost and trigger peak reduction. The
figure clearly explains that unscheduled load has various peaks. So, it has a higher cost per
kilowatt-hour. However, the FA has managed this unscheduled load in such a way that its
peaks are reduced.

Although some of the load peaks are greater than the unscheduled load, the overall
effect of the proposed system has reduced the electricity cost. An unscheduled load requires
a 5400 KW power source, while a DSM-based load requires only a 3500 KW source. This
means a total 35% peak reduction has occurred. Furthermore, cost and electrical stress on
the national grid have been reduced.
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Figure 14. Energy management with and without FF for: (a) Building-1, (b) Building-2, (c) Building-3, (d) all buildings.

7.3. Per Day Electricity Bill

Figure 15a presents the power cost comparison of building 1. The purple color repre-
sents a firefly-based scheduled load in this graph, while the black colored bar represents
an unscheduled load. It is visible that FA reduced the cost of electricity per day from
190,000 Rs to 150,000 Rs, which is a 21% reduction in the bill for building 1. Figure 15b
shows the power cost comparison of building 2. The y-axis shows the cost, and the x-axis
shows the time slots. It is visible that FA reduced the cost of electricity per day from
210,000 Rs to 170,000 Rs, which is a 19% reduction in the per-day bill. Figure 15c illustrates
the power cost comparison of building 3. The y-axis shows the cost and the x-axis shows
the time slots. It is visible that FA has reduced the cost of electricity per day from 250,000 Rs
to 200,000 Rs, which is a 20% reduction in the bill for building 3. Figure 15d presents the
cost of electricity of three buildings in a single day. The y-axis shows the cost and the x-axis
shows the time slots. The application of the proposed system for the DSM reduced the
electricity cost from 650,000 Rs to 520,000 Rs approximately, which is approximately a 20%
cost reduction and power saving.
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Figure 15. Power cost comparison with and without FF for (a) Building-1, (b) Building-2, (c) Building-3, (d) all buildings.

8. Conclusions and Future Studies

PF is a crucial aspect for better planning and operation of power generation systems,
as is the EMS proposed in the second part of the paper. A new combinational forecasting
model based on time-series and auto-regression algorithms, ML-based feedback ANFIS,
and a BGA-PCA algorithm is proposed for the best feature selection. This paper presents a
novel time-series and auto-regression algorithm for analyzing the larger and more complex
historical data. The time-series AR model is further validated by the ML-based feedback
ANFIS model, where eight stages are computed. The BGA-PCA approach for attaining
the best feature selection is evaluated and attained more optimized results. A remarkable
improvement in MAPE of less than 10% in overall performance and an average MAPE of
9.24 has been achieved by a proposed integration that is significantly improved compared
to previous ones. This model can optimize the performance of power grids by predicting
the optimized PF and can overcome the problems related to the planning and operation of
the smart grid.

Price and load forecasting are considered the main features of the revolutionary smart
grid system, which helps to enhance electricity generation in a decentralized grid network.
Providing reliable and uninterruptable electricity supply during peak hours facilitates
the generation system by providing essential information on load and price forecasting.
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Therefore, this paper has made an effort to minimize peak load demand by load and PF
analysis through the Machine-Learning approach.
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