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Abstract: Medium-term electricity consumption and load forecasting in smart grids is an attractive
topic of study, especially using innovative data analysis approaches for future energy consumption
trends. Loss of electricity during generation and use is also a problem to be addressed. Both
consumers and utilities can benefit from a predictive study of electricity demand and pricing. In this
study, we used a new machine learning approach called AdaBoost to identify key features from an
ISO-NE dataset that includes daily consumption data over eight years. Moreover, the DT classifier and
RF are widely used to extract the best features from the dataset. Moreover, we predicted the electricity
load and price using machine learning techniques including support vector machine (SVM) and deep
learning techniques such as a convolutional neural network (CNN). Coronavirus herd immunity
optimization (CHIO), a novel optimization approach, was used to modify the hyperparameters to
increase efficiency, and it used classifiers to improve the performance of our classifier. By adding
additional layers to the CNN and fine-tuning its parameters, the probability of overfitting the classifier
was reduced. For method validation, we compared our proposed models with several benchmarks.
MAE, MAPE, MSE, RMSE, the f1 score, recall, precision, and accuracy were the measures used for
performance evaluation. Moreover, seven different forms of statistical analysis were given to show
why our proposed approaches are preferable. The proposed CNN-CHIO and SVM techniques had
the lowest MAPE error rates of 6% and 8%, respectively, and the highest accuracy rates of 95% and
92%, respectively.

Keywords: smart grid; electricity price forecasting; energy management; electricity load forecasting;
convolutional neural network; corona virus herd immunity optimization

1. Introduction

Electricity is now a critical component of economic and social growth. It revolves
around electricity. Our lives are thought to be stuck if we do not have electricity. Industrial,
commercial, and residential electricity use are classified into three groups. According to [1],
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residential areas consume nearly 65% of total generated electricity. The majority of energy
is lost in the conventional grid during the production, delivery, and supply of electricity.
To resolve the aforementioned issues, the smart grid (SG) was developed. By incorporat-
ing information and communications technology (ICT) into a traditional grid, it can be
transformed into an SG as shown in Figure 1.

Figure 1. Hierarchical network of smart grid.

1.1. Smart Grid

SG is a smart power system that handles energy generation efficiently. Transmission
incorporates emerging technology into a system of energy, allowing users and utilities to
communicate in both directions. Power is also a necessity and a valuable asset. Because
of the severe energy shortages in the summer, the youth of today are drawn to Singapore.
Gadgets in the home are planned with DSM implementing meta-heuristic methods to
minimize energy costs and highest point ratios and to find a satisfactory balance between
energy costs and customer convenience [2]. By offering effective energy storage, SG
assists consumers in achieving efficiency and sustainability. By encouraging customers
and providers to exchange information in real-time, the smart meter made it possible to
gather sufficient information about future power production. It will ensure that energy
output and use are in order. The consumer engages in SG services by shifting demand
from maximum to off-hours and conserving resources and saving money on energy [3].
DSM allows customers to monitor their energy usage patterns based on the price set by the
utility. The load forecasting benefits market rivals more. Growth, distribution management
energy, production planning, performance analysis, and quality control are all things that
need to be taken into consideration that depend on upcoming load predictions. Another
problem in the energy sector is efficient energy production and use. The primary objective
of the consumer and the utility is utility maximization. Energy producers will increase their
costs with the aid of reliable load forecasts, while consumers will profit from the low cost
of buying electricity. In Singapore, there is no proper energy generation policy. A perfect
balance between generated and consumed energy is needed to avoid extra generation. As
a result, accurate load forecasting is more critical for market setup management. ISO-NE is
also a local distribution system operated by an independent power system, charging the
wholesale energy market’s activities. Vermont, Massachusetts, Connecticut, and Rhode
Island in New England are served by it. The analysis in the study was based on a large
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collection of ISO NE results. Price is not the only factor that influences the load; temperature,
weather conditions, and other factors all affect the electrical load. There is a significant
amount of real information [4].

The SG data were carefully scrutinized. The utility takes instructions from the huge
quantities of data, which allow it to conduct research and enhance business activity plan-
ning and management. To enhance the supply side of SG, a decision-making model was
developed. A method for producing is required. The successful choice process leads to
a reduction in loss of power, lower energy costs, and lower PAR in the end consumer [5].
Researchers are concentrating on the power scheduling problem in light of these issues.
Specific optimization approaches were utilized to address the energy issue [6].

1.2. Problem Statement and Motivation

Each technique in machine learning has advantages and disadvantages. In forecasting
the electricity load, however, better performance and accuracy are the primary issues.
A large volume of data, on the other hand, makes forecasting more difficult to achieve
accuracy. As a result, several strategies have been developed and adapted to fix these prob-
lems within the time constraints; however, some challenges remain, such as varying power
production and usage to monitor the varying behavior between the power consumption
and production patterns [7]. Technique precision and adjusting the hyperparameters for
the estimation of electricity demand data [8] and computational difficulty during fuzzy
details, such as unnecessary and duplicate features in the data, which increases the learning
process calculation time and decreases the reliability of energy load forecasting. A machine
learning and deep learning-based model was proposed to solve these challenges. Further-
more, to achieve optimum precision, the hyperparameter values were fine-tuned to use an
optimization algorithm. In the function engineering phase, RFE, X-G Boost, and RF were
used to remove duplication and clean the files. Finally, the CHIO optimization algorithm
was used to determine the optimal hyperparameter values for the convolutional neural
network (CNN).

2. Background and Related Work

The term “smart grid” refers to the next generation of power grids, which are power
systems in which integrated two-way communication is used to improve energy gener-
ation and management. They have the ability in interactions and pervasive computing
for stronger control reliability, durability, and protection. Electricity is delivered between
producers and customers through a SG. Digital technologies form two-way communication.
It is in charge of intelligent appliances. For buyers’ homes or buildings, it is used to save
electricity and money and to improve trustworthiness, performance, and accountability [9].
The legacy power system is required to be updated by a SG. It automatically regulates,
preserves, and maximizes the operation of the interconnected components. It includes
everything from conventional main utilities to emerging regeneration distributed genera-
tors, as well as the transmission and distribution networks and systems that link them to
industrial consumers and/or home users with heating systems, electric cars, and smart
appliances [10]. The bidirectional link of energy and knowledge flows in a SG and creates
an integrated, globally dispersed transmission network. It combines the advantages of
digital communications with the legacy electricity grid to provide real-time information
and to allow near-instantaneous supply and demand management [11]. Many of the SG
systems are now in use in other industrial applications, such as sensor networks in manu-
facturing and wireless networks in telecommunications, and are being developed for use
in this modern intelligent and integrated model. Advanced materials; sensing and mea-
suring; enhanced interfaces and decision support, protocols, and classes; and integrated
communications are the five main fields in which SG networking systems can be classified.
Home area networks (HANs), business area networks (BANs), community area networks
(NANs), data centers, and substation automation convergence schemes serve as general
frameworks for SG networking infrastructures [12]. Using bi-directional information flow
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to monitor intelligent equipment at the consumer’s side, SGs deliver electricity between
generators (both conventional power generation and distributed generation sources) and
end-users (industrial, private, and residential consumers), saving energy and lowering
costs while improving system efficiency and service. Smart metering/monitoring strategies
can include real-time energy usage as a review and can correlate to demand to/from utili-
ties with the help of a network infrastructure. Customer power demand data and online
market prices can be retrieved from data centers from network service centers in order
to optimize electricity supply and delivery based on energy consumption. In a dynamic
SG architecture, both utilities and consumers will benefit from the widespread rollout of
modern SG elements and the integration of current information and control systems used
in the legacy power grid [13]. Through incorporating digital connectivity technologies
into SGs, it will also improve the reliability of legacy power generation, transmission, and
distribution systems, as well as increase the use of sustainable renewable energy. The ca-
pacity for various organizations (e.g., intelligent instruments, dedicated software, systems,
control center, etc.) to communicate with a network infrastructure is the foundation of a
SG. As a result, the construction of a dependable and widespread network infrastructure is
critical to the structure and service of SG communication networks [14]. In this regard, the
construction of a secure connectivity system for developing robust real-time data trans-
portation across wide area networks (WANs) to the delivery feeder and consumer level is a
strategic necessity in supporting this mechanism [15]. Existing electrical utility WANs are
built on a mix of networking technologies, including wired technologies like fiber optics,
power line communication (PLC) systems, copper-wire lines, and wireless technologies
like GSM/GPRS/WiMAX/WLAN and cognitive radio [16]. They are intended to enable
monitoring/controlling technologies such as supervisory control and data aAcquisition
(SCADA)/energy management systems (EMS), distribution management systems (DMS),
enterprise resource planning (ERP) systems, generation plant automation, distribution
feeder automation, and physical protection for facilities in a variety of locations with
insufficient bandwidth. Many technologies, such as SG energy metering, have resulted
from a decade of wireless sensor network research. However, sensor networks were unable
to communicate with the Internet due to a lack of an IP-based network infrastructure, re-
ducing their real-world influence. The LoWPAN and roll working groups were established
by the Internet Engineering Task Force (IETF) to define specifications at different layers of
the protocol stack to link low-power devices to the Internet. The authors of [17] explain
how the scientific community effectively engages in this process by shaping the creation of
these working groups’ specifications and offering open-source implementations. The new
transmission infrastructures can expand into virtually universal data transport networks
capable of handling both power distribution applications and large amounts of new data
generated by SG applications. These networks should be flexible to meet the current and
future collection of functions that define the emerging SG networking technical platform,
as well as being highly ubiquitous to support the deployment of last-mile communications
(i.e., from a backbone to the terminal customers’ locations) [18]. The remainder of this
segment covers power line connections, distributed energy storage, smart metering, and
tracking and regulation, as well as other important aspects of SG systems.

There are two pieces of the associated work. The literature on energy usage prediction
is examined in the first sub-section. A systematic analysis of the literature on power price
forecasts is presented in the second sub-section.

2.1. Forecasting Electricity Load

Many techniques for load forecasting have been used in the literature. The training
data are difficult to work with as the data are so large and complex. The computing ability
of a deep neural network (DNN) allows it to manage big data training. DNN has the
capability of accurately forecasting and handling large amounts of data. A broad variety
of estimation strategies are covered in the literature. Random forest, naive Bayes, and
ARIMA, among other classifier-based techniques, are used for forecasting. Particle swarm
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optimization (PSO), shallow neural networks (SNN), artificial neural networks (ANN),
deep neural networks (DNN), and other artificial intelligence techniques, including shallow
neural networks (SNN), artificial neural networks (ANN), deep neural networks (DNN),
and others are used. Forecasting the load or price employs a variety of methods. Neural
networks have an advantage over other approaches due to automated feature extraction
and training methods. In [19], SNN had poor outcomes and an overfitting issue. Regarding
price and load forecasting, DNN outperforms SNN. The rectified linear unit (ReLU) and
the restricted Boltzmann machine (RBM) were used by the author for forecasting [20].
Data processing and training are handled by RBM, while load forecasting is handled by
ReLU. In [21], features were extracted using KPCA, and price forecasting was done using
DE-based SVM. Deep auto encoders (DAE) [10] are used to forecast electricity load. DAE is
superior in terms of data learning and accuracy. DAE is an unsupervised learning approach
that outperforms other methods in terms of achieving high accuracy. In [22], the price
was forecasted using the gated recurrent units (GRU) technique. To detect irregular load
activity, the Parameter Estimation Method (PEM) was used in [23].

DAE is an unsupervised learning system that achieves high precision while out-
performing other methods. It predicts the price using the gated recurrent units (GRU)
approach [24]. In [25], the authors used the parameter estimation model (PEM) to identify
irregular load activity. For DNN models, the predictability for outcomes is higher. Big
data from SG will assist in determining the load and cost trends. It helps utilities create a
market, distribution, and inspection routine, which is needed to achieve demand–supply
stability. DNN models have a higher degree of predictability. The use of SG’s big data
would aid in the analysis of load and cost patterns. It assists utilities in developing a pro-
duction, distribution, and maintenance strategy, both of which are essential for maintaining
production equilibrium. Feature engineering is one of the applications of the classifier. The
authors of [26] used a multi-layer neural network (MLNN) model to predict energy costs.
However, the computational time and rate of neuron failure in this model are extremely
high. Price prediction using hybrid structured deep neural networks was addressed by
the authors in [27]. The HSDNN, LSTM, and CNN algorithms were merged. The accuracy
of this framework was calculated for different benchmark schemes using performance
evaluators like MAE and RMSE. The authors established the predictive performance with
the suggested RNN and LSTM named GRU in [28]. Benchmark models such as SARIMA,
Markov chain, and naive Bayes were also used in the comparison. To limit forecasting flaws
in forecasting, [29] introduced a new framework for STLF named “back neural networks”
(BPNN). SSA was used to pre-process the information. This model forecasts using CS and
SVM. STLF accuracy was improved in this study. The envelope and embedded strategies
were used in [30], and the training data were validated using extra tree regression (ETR)
and recursive feature elimination (RFE). LSTM-RNN was used to forecast outcomes after
splitting results into preparation and trial sets. It addressed the topic of load demand on
the service side [31]. It also encouraged customers to shift their loads from maximum to
off moments, saving them money. For DR, two types of architectures have been proposed:
user- and utility-centric. The data pre-processing steps were addressed by the authors
in [32]. The authors proposed a method for selecting and extracting features. Feature
identification and filtration are essential in information pre-processing, and they play a
crucial role in reliable forecasting. Forecasting accuracy is improved using normalized data.
The actual data are inadequate to estimate demand correctly. A meta training methodol-
ogy was employed to achieve better results, with the post approach being recommended.
A battery was used to store energy in this model. It enabled facility users to discharge
excess energy during peak hours when prices were high [33]. Additionally, the authors
suggested the battery energy storage system (BESS) as a method for achieving effective
cost forecasts. It describes the intra-hour term, which is used to evaluate if the cost is rising
or decreasing at the time of publishing. The authors suggested a method for displaying the
pattern of electricity use in [34]. With Apache Spark’s library, the k-means method and the
cluster validity indices (CVI) were proposed. The RF algorithm was used for prediction
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by the authors in [35]. Using hourly data from two separate University of North Florida
buildings also determined the function value. This model can also predict monthly and
yearly consumption patterns, and RF with support vector regression (SVR) were used
to analyze the reliability of multiple aspects such as air, heat, moisture, and time type.
SVM and artificial neural networks (ANN) were considered classifiers in this analysis. The
authors considered improving forecasting accuracy in their proposed model. To extract
and pick features from large datasets, RF and regression tree (CART) were employed. The
collection of input determines the efficiency and accuracy of resources. The authors of this
study concentrated on input selection and accuracy behavior when the training and testing
sets were changed. Deep learning (DL) is a particular sub of machine learning that has
advanced significantly in recent decades. The increased computing cost of training large
models is one of the significant concerns of artificial neural networks. However, when a
deep belief network is effectively formed utilizing a method known as greedy layer-wise
pre-training, this problem is solved. The experts began to effectively train complex neural
networks with more than one layer not visible. The precision and efficiency of these new
designs have increased models that have been used to apply generalization technologies
in software engineering applications such as object processing, voice identification, and
other relevant disciplines. There are a few functions that are focused on deep processing.
Estimating performance improved by 30% due to the sorting method in the literature,
and some authors utilized CNN to obtain more precise modeling that outperformed the
competition in energy-related areas, such as load and price forecasting, in terms of accuracy.
The authors in [36–38] forecasted the short-term electricity load using the feature extraction
methods and also the improved version of a general regression neural network and deep
learning methods. The authors achieved accuracy in forecasting the electricity load. The
authors of [39] recommended and described how to use DL time-series forecasting tech-
niques for predicting electricity consumption. DL includes models such as the restricted
Boltzmann machine (DBM), deep recurrent neural networks (RNN), the stack auto-encoder
(SAE), CNN, and others. It is a subset of SAE in which the auto encoder is used as a foun-
dation framework. It involves operational inference [40] to prevent overfitting. SAE aims
to reduce the complexity of the data set. DBM is made up of layers, each of which contains
hidden Boolean units that allow different layers to communicate with one another. This
relation, however, does not exist between each layer [41]. The authors of [40–42] increased
the accuracy of pricing and load predictions, but they did not account for processing
time. Similarly, it solves the problem of load predictions, however, it does not address the
issue of overfitting. Additionally, the authors presented the BPNN model for forecasting
day-ahead electricity usage in 10; nevertheless, the recommended model’s complexity has
risen. Furthermore, we also discuss the literature on electricity price forecasting in the
next section.

2.2. Forecasting Electricity Price

In [43], the authors proposed a cost forecast approach based on deep learning methods,
which included DNN as an evolution of the DNN framework, the CNN framework, hybrid
GRU, traditional MLP, and the hybrid LSTM-DNN framework. The suggested structure
was then put up against 27 other schemes as a comparison. The suggested deep learning
framework was discovered to improve prediction consistency. A single dataset was used
to equate the proposed model to all other schemes. For all real-time experiments, a single
dataset is insufficient. GCA, KPCA, and SVM were used to create a dual process for the
choice of features, filtration of features, and a massive drop in measurements. However,
since the authors used a broad dataset that included prices for wood, steam, gas, wind, and
oil, the model’s computation overhead increased. Furthermore, collecting all of these costs
in a single real-time database is complex; these resources’ prices cannot be collected in
advance. The authors of [44] used DNN templates and the stacked DE noising auto-encoder
(SDA). To improve market predictive accuracy, the authors compared various models such
as multivariate regression DNN, classical neural networks, and SVM [45]. Additionally, the
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authors selected features using functional analysis and Bayesian optimization of variance.
The creators have suggested the prototype for simultaneously predicting the prices of two
markets. Furthermore, prediction can be improved by employing aspects of elimination
methods. They reduce the chance of overfitting. The authors, on the other hand, compared
the model that had been proposed. This study performed both price and load forecasting.
The price prediction accuracy, on the other hand, is insufficient. The authors of [46] looked
at a probabilistic model for predicting hourly prices. The generalized extreme learning
machine (GELM) was used to make predictions. To speed up the model by reducing
computational time, the authors used bootstrapping techniques. On the other hand, it
does not work best for massive, large datasets, and the volume of information increased
linearly. Oveis Abedinia et al. focused on attribute choice to improve prediction. For
feature selection, these proposed models use information-theoretic parameters such as
information gain (IG) and mutual information (MI). The hybrid filter-wrapper solution
is another contribution of this study. In [47,48], the authors suggested a mixed algorithm
for cost and demand modeling. Quasi-oppositional artificial bee colony (QOABC) and
artificial bee colony optimization (ABCO) algorithms were updated by the researchers.
Dogan Keles et al. are a group of researchers who came up with a novel solution. ANN [49]
was used to propose a system. To find the best ANN parameters, the authors used a variety
of clustering algorithms. The dynamic choice algorithm neural network (DCANN) was
introduced by [50]. This design is used to predict rates for the next day. To unplug poor
results and recognize acceptable inputs for a teaching method, this method integrates
supervised and unsupervised training. The researchers of [51] developed a mixed design
built on the neural network of Guo-Feng Fan et al. By combining the bi-square kernel
regression model with the phase space reconstruction algorithm, the PSR-BSK model [52],
a new model for predicting energy load, has been suggested. To validate the model’s
performance, the authors used an hourly dataset from NYISO in the New South Wales
and the United States market. To extend the community in CS and to maximize the
search space in [53], the authors suggested a dual SVR-chaotic cuckoo search (SVRCCS)
framework. The authors recommended SSVRCCS, a seasonal CCS with SVR, to work
with the load’s periodic linear development. Owing to a large number of iterations, the
computing period, on the other hand, was raised. It is impossible to overstate the value
of contact between SG and its users. In the sense of creation in smart cities, the authors
reduced energy usage and increased the traffic speed of device-to-device (D2D) interaction,
also known as smart interaction, in [54]; smart communication is a serious issue that
needs to be tackled. The authors broke the problem down into two parts to solving it:
uplink subcarrier assignment (SA) and power allocation (PA) with joint optimization.
The transmission power was distributed to all sub-carriers using a heuristic algorithm
for SA. After that, an optimal PA algorithm was implemented to tackle the sub problem
of convex similarity. The contact problems between SG and consumers were addressed
by the authors in [55]. The authors provided a brief overview of the wireless and wired
communication systems, as well as the various communication protocols. According to
the cyber and physical frameworks, security concerns of hardware and software were also
addressed. The authors discussed advanced metering infrastructure as well as automatic
meter readings for customer information gathered via cables and portable links. The
authors of [56] showed how SG and customers communicate digitally and with advanced
control technologies. For connected and portable communication, the functionality, safety,
robustness, efficiency, range, speed, power consumption, and protocols of wireless and
other innovations were contrasted. API, HEMS, DA, DER, and EVS were some of the
contact applications used by SG and consumers. To evaluate the efficiency of D2D delivery,
in their study [57], the authors proposed an energy efficient delivery system (ECDS). D2D is
a dependable and effective method of communication. It is not necessary to have any prior
knowledge of content delivery, mobile mobility, or user demand. The energy conservation
design system (ECDS) is used in smart cities to reduce their energy consumption. For a
random and complex world, this method achieves the optimal solution.
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Only a few logical operations were performed by ECDS, which made decisions based
on local data from each system. The authors in [58,59] forecast the electricity price us-
ing the multi-step methods and dual decomposition methods. Furthermore, they tuned
the parameters of the model using multi-objective optimization methods, which led to
better forecasting.

SG can quickly predict the demand for consumers’ energy usage after receiving
information about the use of various devices through a green communication system. To
maintain production and need equilibrium, load and price prediction are critical. Load
balancing is necessary to prevent power shortages and over-production. When resources
are abundant, storing them is very costly. A blackout could occur if a generation falls
short of demand. The utility can generate electricity with the help of generators and other
expensive tools. The cost of energy rises in all situations. A summary of related work is
shown in Table 1.



Sustainability 2021, 13, 12653 9 of 28

Table 1. Summarized related work.

Methodology (s) Aims and Objectives Source(s) of Information/Achievement(s) Drawback(s)

[10] NN with several layers. Forecasting prices Price forecasting with reasonable accuracy. The loss rate is high,
as is the computational time.

[13] HSDNN (LSTM and CNN combined). Forecasting electricity costs PJM (half-hour). The amount of time required
for computation is considerable.

[14] Recurrent units with gates (GRU). Estimating prices Turkish power sector forecast for the day. The problem of over-fitting
has gotten worse.

[15] Neural networks with back propagation
(BPNN). Load forecasting for the short term Texas Electric Reliability Council, USA,

a day ahead.
The level of complexity has
risen.

[16] CS-SSA-SVM is a combination of
CS-SSA and SVM. Forecasting Loads

New South Wales: half-hourly, hourly,
regular day, and non-working day results
(ten weeks).

The calculation takes a very
long time.

[18] LSTM and RNN. Predictions Loads Hourly and monthly payments are
accepted. France Metropolitan.

Over-fitting is a risk that
cannot be avoided.

[20] DNN, CNN, and LSTM are all
examples of deep neural networks. Forecasting the price of electricity Estimated price.

The effect of dataset size is
not measured, and redundancy
is not eliminated.

[22] The UC-DADR and CC-DADR
algorithms.

Decrease high growth and increase
consumer benefits by reducing
generation capacity.

Interconnection of the states of New
Jersey, Maryland (PJM), and Pennsylvania,

The degree of defect
detection is smaller.

[23] Storage device with batteries. Estimating prices Ontario’s power market data is
updated hourly.

The model isn’t stable
or accurate.

[24] Clustering validity indices (CVIs)
are a form of validity index that is
used to group together similar items.

The use of electricity The upcoming day. The University
of Seoul has eight buildings.

The amount of time it
takes to compute
something is enormous.
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Table 1. Cont.

Methodology (s) Aims and Objectives Source(s) of Information/Achievement(s) Drawback(s)

[26] SVM and ANN (are two different
types of artificial neural networks). Forecasting loads The day ahead. PJM and Tunisian

electricity industry.
The calculation takes
a very long time.

[27] DCA, KPCA, SVM (are all
types of simulation models). Forecasting prices Estimated cost and hybrid feature

range.

Irrelevant features
in the dataset add
to the processing time.

[28] SVM/DNN Forecasting short-term power costs
Different models are compared,
and short-term price predictions
are made.

Only for a particular situation.

[29] DNN Forecasting prices
By using Bayesian optimization,
you can improve accuracy and
finish feature selection.

There was no thought given
to redundancy or
dimensionality reduction.

[30] Multivariate model Price forecast on an hourly basis
Reduced the probability of
overfitting by using a multivariate
model instead of a univariate model.

Except for the unit-variate approach,
the model’s output is not comparable
to that of other techniques.

[31] LSTM, DNN Predictions of cost and load Predict both the price and the
volume of a product. Price forecasting is unreliable.

[32] GELM Price prediction on an hourly basis Using bootstrapping techniques,
predict hourly price and increase model speed.

For large datasets, this method
does not function well.

[33] IG/MI Hybrid algorithm for feature
selection

Accuracy has improved as a
result of a better choice of features.

The classifier’s optimization
was not taken into consideration.

[34,35] LSSVM, QOABC Forecasting prices with loads

Artificial bee colony forecasting
of price and load, as well as
conditional feature selection
and modification.

Their established scenario
was the only one that works
for them.

[36] ANN ANN parameters: finding the best Parameters for ANN and price
estimation have been optimized.

Problems of overfitting
were not taken into account.

[37] DCANN Price prediction for the next day
Price prediction and development
architecture that uses a neural
network to automate scenarios.

The computational time
is extremely long.
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3. System Models

This stud proposes two methods for forecasting energy load and price. Since they use
similar strategies, these two models are related.

The last design, on the other hand, is utilized to predict electricity demand, while the
second framework is utilized to predict energy costs. The models that were suggested are
the electricity price forecasting model and the electricity load forecasting model.

3.1. Model for Predicting Electricity Load and Price

Figure 2 depicts the load forecasting model. To predict the electricity load and price,
take the following steps:

1. Data input (i.e., dataset).
2. Feature extraction using RFE.
3. Feature selection using RF and XG-Boost.
4. Splitting of data into training and testing.
5. Load the CNN layers and parameters.
6. Tuning the CNN parameters using CHIO and then model compiling.
7. Predicted price and load.
8. Performance evaluation.
9. Statistical analysis.

Figure 2. System model for electricity price and load forecasting.

3.2. Data Collection

ISO-NE is the name given to the electricity energy sector in New England [60].
It is in charge of producing, processing, and delivering electric energy to end-users in
the processing, retail, and industrial areas. ISO-NE provides a large amount of data
about, among other things, load, cost, production, and supply. The load data for 2018
come from ISO-NE, and they were used to incorporate the proposed models. This study
used daily energy load data from Independent System Operator New England (ISO NE)
(https://www.iso-ne.com, accessed on: 29 June 2021) for three years, from January 2017 to
December 2019. It provides power to a number of English towns. Weather, temperature,
humidity, and other dependent and independent data were included in the dataset. Our
goal data are in a column called “electricity load”. The target data were affected by all
functionality other than the target features. The energy load demand pattern of a similar
month in each year is roughly the same. As a result, we took three years’ worth of results, or
36 months. To that end, the dataset was split into two sets: preparation and research. As a
result, 90% of the data was used for teaching, and 10% was used for research, since the more
data generated for training, the higher the model’s learning rate would be. Furthermore,
data from previous years’ equivalent months, such as January 2017, January 2018, and

https://www. iso-ne.com
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January 2019, were combined to provide a short-term load forecast for December 2019. The
data in the dataset were organized by month, which aids in the better training of our model
to determine the load pattern of months. All data from the first week of December 2019,
i.e., 1 December 2019 to 7 December 2019, were used as preparation for weekly forecasting.
In the first week of December, the teaching model was put to the test. Furthermore, the first
five months of 2019 were also taken into account for preparation and research. Similarly,
except for January 2019, all data were used for preparation and monitoring. In addition,
the same situation was pursued in February, March, April, and May 2019. The suggested
model’s effectiveness is shown by the simulation and the results. The data description and
function names are shown in Figure 3.

Figure 3. Dataset overview.

3.3. Feature Extraction Using (RFE)

Recursive feature elimination (RFE) is a tool for obtaining a set of attributes from
a database [61–63]. It replaces the lowest feature recursively before the required set of
attributes is achieved. RFE involves the selection of many features; however, determining
how many features are most important is difficult in advance as in Figure 4. To solve this
dilemma, cross-validation was combined with RFE. Cross-validation tests the reliability of
various categories and picks the most reliable.

Figure 4. Random forest classifier.

3.4. Feature Selection

The method of selecting more important features is known as feature selection [64–66].
The number of features in the data set was reduced. Every feature’s importance was
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calculated using RF. It was done to exclude the less relevant functions, and a hybrid
solution was proposed for the final selection, which was a mixture of XG-boost and RF as
shown in Figure 5.

XG-Boost

XG-boost gradient boosting (Extreme) is an optimized gradient boosting library [67].
It is made to be extremely compact, adaptable, and efficient. It uses the gradient method
boosting and tree boosting in tandem to effectively and reliably produce accurate classifi-
cation issues. It can be used to address estimation, grouping, and rating concerns. It is a
library that is free to use. It comes in a variety of languages, including C++ and Python, for
a variety of platforms of activity. The abstract diagram of XG-boost is shown in Figure 6.

Figure 5. Feature selection.

Figure 6. XG-boost abstract model.



Sustainability 2021, 13, 12653 14 of 28

3.5. Convolutional Neural Network

CNN is a type of neural network that belongs to the category of supervised deep learn-
ing prototypes [68]. In CNN implementation, firstly, a sequential model is implemented.
It builds model layers upon layers. A prediction framework is built using four distinct
levels in this design. A second surface, the convolution layer, is added to verify the neurons
with outcomes that are related to the input layer. The convolutional layer receives m*r as
its input. The dimensions of the height and width of the matrix are denoted by m and r,
respectively. In cases where the matrix’s dimension is less than the query, the kernel size
will be used as a filter. The network’s linked structure is determined by the filter’s height.
The equation will be used to calculate Relu, which will be used as an activation function.
If the input value is negative, Relu returns 0; otherwise, it produces the same result, where
x is the inputs:

max(0, x) = Relu(x) (1)

Following it, as a network’s third tier, max-pooling is used to provide a matrix with
small numbers. Max pooling, for example, chooses the most significant value from the
various matrices. Then, using these values, it makes a small matrix.

For example, where p stands for padding and f stands for the range of filters, and n is
the length of content: 32 × 32 × 1. To prevent the issue of over-fitting, flatten layer was
used as the fourth layer to turn all of the neurons into a single associated layer using a
dropout layer. Each entity in the system is attached to the others. Early on in the process,
the importance of the neuron failure rate was revealed. If the value of a network’s failure
rate in a stable state cannot be found by soon stopping the process it can be tested again.
Then, to prevent overfitting, one switches to the dropout layer and applies the dense layer
once more. The prediction result is finally shown in the output layer. The optimizer in
this model is called “Adam”. CNN forecasted energy demand and price under various
scenarios in this study. Algorithm 1 illustrates the proposed model step by step. The
architecture of CNN is shown in Figure 7.

Figure 7. CNN architecture.

3.6. Coronavirus Herd Immunity Optimization

In this study, we utilized the CHIO algorithm [68] to tune the parameters of Adaboost.
CHIO is used to minimize time complexity and increase precision in AdaBoost perfor-
mance measurement. The concept of coronavirus herd immunity optimization (CHIO)
was inspired by preventing the COVID-19 disease outbreak. The rate at which coron-
avirus infection spreads is regulated by how affected people interact with others in society.
To protect all members of the community from the condition, health authorities advise
social distancing. Herd immunity is a state attained by a species when the majority of its
population is immune, inhibiting disease transmission. These concepts are represented by
optimization principles. CHIO is a combination of herd immunity and social distancing
strategies. Human cases are classified into three types for herd immunity: vulnerable,
immuned, and contaminated. This is to determine whether the newly developed method
employs social distancing strategies to update the genes. Figure 8 depicts the flow of the
CHIO algorithm.
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Figure 8. CHIO algorithm flow chart.

Algorithm 1 illustrates the proposed model step by step. The proposed algorithm of
our work is:

Algorithm 1: Proposed Work Algorithm
Result: Electricity price and load forecasting
X: data features;
Y: data with a purpose;
/* Separate the data into two categories: preparation and testing. */ ;

split (x, y) = x train, x test, y train, y test;
RFE (5, x train, y train); Selected_ function;
/* Selection of hybrid features */ ;
Incorporateimp = RFimp + XGimp ;
/* Using RF and XG-boost, measure value */ ;
RF imp = RF calculates importance;
/* RFE is a technique for extracting features. */ ;
if Incorporate imp ≥ RFE and the threshold == right then

Select the feature;
else

decline feature;
end
CNN-CHIO predicting the future with fine-tuned;
Performance evaluation test, compare predictions;

3.7. Performance Evaluation

Based on efficiency metrics, the suggested models were evaluated: MSE, MAPE, MAE,
and RMSE. Equations (2)–(5) [22] provide the MSE, MAE, RMSE, and MAPE formulas.
On the data collection of ISO-NE, Tables 2 and 3 displays the measurement of output
measures of various methods. The MAPE is calculated using the formula:

MAPE =
1
y

yn

∑
yn=1

100
∣∣∣∣Sb − Gb

Ab

∣∣∣∣ (2)
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The RMSE is calculated using the formula:

RMSE =

√√√√ 1
Y

YM

∑
yn=1

(Sb − Gb)
2 (3)

The MAE and MSE are calculated using the formula:

MSE =
1
Y

YN

∑
yn=1

(Sb − Gb)
2 (4)

MAE =
∑YN

yn=1|(Gb − Sb)|
Y

(5)

Table 2. Performance evaluation values of electricity load forecasting.

Techniques Accuracy
(%)

F1-Score
(%)

Recall
(%)

Precision
(%)

RMSE
(%)

MAPE
(%)

MSE
(%)

MAE
(%)

SVM 90.89 90.32 94.456 88.21 8.43 7.23 12.34 10.77

RF 84.54 72.98 89.33 82.22 24.27 24.56 27.65 25.78

LR 81.22 75 71.555 84.94 24 22.78 27 21

LDA 76.21 74.12 82.22 65.22 29 28.78 35.22 31.56

CNN-CHIO 95.789 96.22 98.55 94.639 6.23 5.67 10.82 7.22

Table 3. Electricity price forecasting performance evaluation values.

Techniques Accuracy
(%)

Precision
(%)

F1-Score
(%)

Recall
(%)

RMSE
(%)

MSE
(%)

MAPE
(%)

MAE
(%)

LR 75.22 78.94 69 65.545 24 27 22.78 21

RF 79.54 77.22 67.98 84.33 24.27 27.65 24.56 25.78

SVM 88.89 85.21 87.32 91.466 8.34 11.34 7.23 10.77

LDA 71.21 60.22 69.12 77.22 29 35.22 28.78 31.56

CNN-CHIO 90.789 89.639 91.22 93.55 6.23 9.82 5.67 7.22

4. Simulation Results and Discussions

The implementation effects of our proposed model are explained in terms of their
performance metrics in this section. We simulated our model on the following system
specifications: 16 GB RAM and a 4.8 GHZ Core i7 processor. The IDE environment
Anaconda (Spyder) and the Python language were used.

4.1. Electricity Load Forecasting

Figures 9 and 10 show the feature importance calculated by machine learning tech-
niques, i.e., AdaBoost and RF. The feature importance means how much a feature impacts
the target feature, i.e., electricity load. The high importance value of the feature means an
important influence on the targeted function. The high impact of the feature shows the
high relevancy towards the target. Changes in these relevant features can cause a huge
impact on the target. Features with a low importance value were considered as low-impact
features. If these features are removed, they had no impact or low impact on the target.
Getting rid of the features that are not needed improves the simulation time and reduces
computational complexity. Figure 9 shows the feature score/importance calculated by the
AdaBoost technique, and Figure 10 displays the importance of features calculated by RF.
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Figure 9. ADABoost-computed feature importance.
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Figure 10. Random-forest-computed feature importance.

Figure 11 shows the daily normal load electricity of the years 2012–2020. We can
see that the normal load had some different patterns with respect to time. Figure 11 also
comprises the historical consumption pattern of consumers.
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Figure 11. Normal electricity load. of ISO-NE 2012–2020.

Using the modified machine learning algorithm SVM and the deep learning algorithm
CNN embedded with a GRU layer, we forecast the electricity load of one day as shown in
Figure 12.
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Figure 12. One-day electricity. load forecast.

Furthermore, with the same methodology, we forecasted two-day, three-day, and
one-week upcoming electricity loads with a high accuracy of 96%.

In Figures 13–15, we can see that our proposed algorithm forecasts better than the
other benchmark algorithms. The proposed algorithm CNN-CHIO performed better
than the other proposed algorithms, and SVM performed better than the most up-to-date
algorithms.
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Figure 13. Two-day load forecast.
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Figure 14. Three-day load forecast.
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Figure 15. One-week load forecast.

Figures 16 and 17 shows the accuracy and loss curve of our proposed model.
In Figure 16, we can see that the curve of training and the testing accuracy was increasing,
while Figure 17 shows the decrease in the model loss value. The increase in accuracy and
the decrease in the loss curve shows the superiority of the model that we proposed, which
means our proposed model performed better in achieving the accuracy.

4.2. Electricity Price Forecasting

Figure 18 shows the normal electricity price from 2012–2020. The price of electricity
varied with time. It also shows the seasonal change in the electricity price.

Figures 19–22 shows the electricity price forecasting of 24 h, two days, three days, and
one week. From Figures 19–22, it was determined that the proposed algorithm worked
well in terms of predicting the electricity. In comparison with the actual electricity price,
we can see that the curve of the proposed algorithm is near to the actual. In forecasting the
short-term electricity price, our proposed model outperformed benchmark algorithms.

Figure 23 describes the proposed model’s loss and accuracy. The proposed model’s
accuracy was increasing, and the loss value was decreasing with the number of itera-
tions. Our proposed methodology performed better in achieving the accuracy of 92% and
90%, respectively.

4.3. Performance Evaluation of Electricity Price and Load Forecasting

This section evaluates the proposed model and benchmark schemes using performance
evaluation techniques, performance error metrics, and statistical analysis. Figure 24 shows
the performance evaluation using the error metrics MAPE, MSE, RMSE, and MAE. We can
determine in Figure 24 that the proposed models SVM and CNN-CHIO had the lowest
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error rate compared with the RF, LDA, and RF techniques. The LDA technique had the
highest error rate in forecasting the electricity price and load. The lowest error showed the
superiority of the proposed techniques.

Figure 16. Accuracy curve of electricity load model.

Figure 17. Loss curve of electricity load model.
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Figure 18. Normal electricity price of ISO-NE 2012–2020.

5 10 15 20 25
Hours

5
10
15
20
25
30
35
40

El
ec

tri
cit

y 
Pr

ice
 ($

) Actual
LR
CNN-CHIO
RF
SVM
LDA

Figure 19. 24-h electricity price forecast.
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Figure 20. Two-day electricity price forecast.
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Figure 21. Three-day electricity price forecast.
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Figure 22. One-week electricity price forecast.

(a) Accuracy Curve (b) Loss Curve

Figure 23. Electricity price forecasting model accuracy and loss.

The performance evaluation metrics, i.e. precision, F-score, accuracy, and recall, were
also used to assess the proposed model and to compare with the benchmark algorithm.

In Figure 25, the performance evaluation of the electricity price and the electricity
load forecasting model is shown. Figure 25 clearly shows that the accuracy of CNN-CHIO
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and SVM was higher than the other benchmark algorithm. The optimization part of the
proposed model provided the exact values to the models, which increased the accuracy of
our proposed model.

(a) Model of electricity load. (b) Model of electricity price.

Figure 24. Performance error metrics of proposed and benchmark techniques.

(a) Model of electricity load. (b) Model of electricity price.

Figure 25. Evaluation metrics performance of proposed and benchmark techniques.

Our proposed model’s, i.e., SVM’s and CNN-CHIO’s, accuracy in electricity price
forecasting, was 92% and 90%, respectively. Furthermore, SVM achieved 95% accuracy,
while CNN-CHIO achieved 92% accuracy in terms of the electricity load forecasting model.

Tables 2 and 3 shows the performance evaluation of electricity load and price forecast-
ing values in tabular form. Our proposed technique CNN-CHIO achieved 95% accuracy,
and SVM achieved 90.89% accuracy in load forecasting with 90% and 87.32% accuracy in
price forecasting, respectively, as shown in Figures 26 and 27. Our proposed technique
outperformed the state of the art.

Table 4 shows the statistical analysis of the proposed algorithm. We applied ten
statistical techniques to analyze our proposed model. The supremacy of the proposed
model can also be identified in the analysis table.
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Figure 26. Electricity load forecasting accuracy proposed vs. benchmark techniques.

Figure 27. Electricity price forecasting accuracy proposed vs. benchmark techniques.

Table 4. Statistical analysis of proposed techniques vs. benchmark algo.

Techniques Kendallas Spearmans ANOVA Mann-Whitney Kruskal Chi-Squared

SVM F-statistic −0.128 −0.149 99.775 13,344.500 194.502 168.491

SVM p-Value 0.014 0.014 0.000 0.000 0.000 0.000

RF F-statistic 0.785 0.856 28.779 39,227.000 35.686 107.540

RF p-Value 0.911 0.995 0.000 0.785 0.000 0.042

CNN-CHIO F-stat 1.000 1.000 0.000 37,538.000 0.000 6028.000

CNN-CHIO p-Val 1.000 0.000 1.000 0.500 1.000 0.000

LDA F-statistic 0.801 0.867 3.100 41,232.000 70.847 109.440

LDA p-Value 0.849 0.839 0.079 0.811 0.000 0.053

LG F-statistic 1.000 1.000 0.000 37,538.000 0.000 6028.000

LG p-Value 0.000 0.000 1.000 0.500 1.000 0.000
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5. Conclusions

We proposed a CNN-GRU hybrid model tuned with a novel optimization technique
CHIO was used to simulate energy use and energy price in residential buildings in this
study. The proposed model was validated using a publicly accessible dataset from ISONE.
Since the input data were non-linear, we first normalized them using a regular min–max
scalar, then we fed the normalized data into the feature selection method using AdaBoost
and extracted the feature importance and selected the features with high importance. We
applied RF and RFE to remove the redundant features and selected the optimum and most
relevant features. The preprocessing process was performed to improve the training of
our model and to decrease the computational complexity. Following that, we looked at
various machine learning and deep learning approaches before settling on a mixed model
that merged CNN and GRU. We first used feature engineering to extract spatial features.
We then fed them into our tuned CNN-CHIO and SVM to simulate temporal characteristics
corresponding to the time series data entry. As opposed to other baseline models, the
proposed model performed well, suggesting that our presented, existing buildings model
must be able to be found in actual life. Furthermore, our proposed model of CNN-CHIO
and SVM achieved 95% and 92% accuracy in load forecasting and 92% and 89% accuracy
in price forecasting, respectively. In future work, we intend to validate the proposed
CNN-GRU and SVM model on various datasets and enhance the model’s accuracy by
incorporating fuzzy logic concepts. The model is currently being based on residential
building results, but it will also be tested on commercial loads and price datasets. We
predicted short-term electricity consumption and electricity prices in this study; however,
our long-term aim is to assess the model’s efficiency in predicting medium- and long-term
electricity consumption and electricity prices.

Author Contributions: Conceptualization, S.A. and N.A.; methodology, S.A., N.A., U.F. and M.J.A.;
software, S.A. and M.J.A.; validation, F.R.A. and G.R.; formal analysis, U.F. and A.T.A.; investigation,
A.T.A.; resources, A.T.A.; data curation, S.A. and U.F.; writing—original draft preparation, S.A., N.A.
and U.F.; writing—review and editing, F.R.A., G.R., S.I.H. and R.B.; visualization, A.T.A.; supervision,
A.T.A. and R.B.; project administration, A.T.A.; funding acquisition, F.R.A. All authors have read and
agreed to the published version of the manuscript.

Funding: The APC is funded by Taif University Researchers Supporting Project Number (TURSP-
2020/331), Taif University, Taif, Saudi Arabia.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The dataset used in this study can be found here: https://www.iso-ne.
com.

Acknowledgments: The authors would like to acknowledge the support from Taif University Re-
searchers Supporting Project Number (TURSP-2020/331), Taif University, Taif, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interrest.

References
1. Aslam, S.; Herodotou, H.; Mohsin, S.M.; Javaid, N.; Ashraf, N.; Aslam, S. A survey on deep learning methods for power load and

renewable energy forecasting in smart microgrids. Renew. Sustain. Energy Rev. 2021, 144, 110992. [CrossRef]
2. Liu, Y.; Yuen, C.; Huang, S.; Hassan, N.; Wang, X.; Xie, S. Peak-to-average ratio constrained demand-side management with

consumer’s preference in residential smart grid. IEEE J. Sel. Top. Signal Process. 2014, 8, 1084–1097. [CrossRef]
3. Aurangzeb, K.; Aslam, S.; Mohsin, S.M.; Alhussein, M. A fair pricing mechanism in smart grids for low energy consumption

users. IEEE Access 2021, 9, 22035–22044. [CrossRef]
4. Hor, C.L.; Watson, S.; Majithia, S. Analyzing the impact of weather variables on monthly electricity demand. IEEE Trans. Power

Syst. 2005, 20, 2078–2085. [CrossRef]
5. Siano, P. Demand response and smart grids—A survey. Renew. Sustain. Energy Rev. 2014, 30, 461–478. [CrossRef]
6. Aslam, S.; Iqbal, Z.; Javaid, N.; Khan, Z.A.; Aurangzeb, K.; Haider, S.I. Towards efficient energy management of smart buildings

exploiting heuristic optimization with real time and critical peak pricing schemes. Energies 2017, 10, 2065. [CrossRef]

https://www.iso-ne.com
https://www.iso-ne.com
http://doi.org/10.1016/j.rser.2021.110992
http://dx.doi.org/10.1109/JSTSP.2014.2332301
http://dx.doi.org/10.1109/ACCESS.2021.3056035
http://dx.doi.org/10.1109/TPWRS.2005.857397
http://dx.doi.org/10.1016/j.rser.2013.10.022
http://dx.doi.org/10.3390/en10122065


Sustainability 2021, 13, 12653 26 of 28

7. Liu, Y.; Wang, W.; Ghadimi, N. Electricity load forecasting by an improved forecast engine for building level consumers. Energy
2017, 139, 18–30. [CrossRef]

8. Jin, X.B.; Zheng, W.Z.; Kong, J.L.; Wang, X.Y.; Bai, Y.T.; Su, T.L.; Lin, S. Deep-Learning Forecasting Method for Electric Power
Load via Attention-Based Encoder-Decoder with Bayesian Optimization. Energies 2021, 14, 1596. [CrossRef]

9. Li, Y.; Kubicki, S.; Guerriero, A.; Rezgui, Y. Review of building energy performance certification schemes towards future
improvement. Renew. Sustain. Energy Rev. 2019, 113, 109244. [CrossRef]

10. Carmichael, R.; Gross, R.; Hanna, R.; Rhodes, A.; Green, T. The Demand Response Technology Cluster: Accelerating UK
residential consumer engagement with time-of-use tariffs, electric vehicles and smart meters via digital comparison tools. Renew.
Sustain. Energy Rev. 2021, 139, 110701. [CrossRef]

11. Ghosal, A.; Conti, M. Key management systems for smart grid advanced metering infrastructure: A survey. IEEE Commun. Surv.
Tutor. 2019, 21, 2831–2848. [CrossRef]

12. Dileep, G. A survey on smart grid technologies and applications. Renew. Energy 2020, 146, 2589–2625. [CrossRef]
13. Kuo, P.H.; Huang, C.J. An electricity price forecasting model by hybrid structured deep neural networks. Sustainability 2018,

10, 1280. [CrossRef]
14. Ugurlu, U.; Oksuz, I.; Tas, O. Electricity price forecasting using recurrent neural networks. Energies 2018, 11, 1255. [CrossRef]
15. Eapen, R.; Simon, S. Performance analysis of combined similar day and day ahead short term electrical load forecasting using

sequential hybrid neural networks. IETE J. Res. 2019, 65, 216–226. [CrossRef]
16. Zhang, X.; Wang, J.; Zhang, K. Short-term electric load forecasting based on singular spectrum analysis and support vector

machine optimized by Cuckoo search algorithm. Electr. Power Syst. Res. 2017, 146, 270–285. [CrossRef]
17. Patil, M.; Deshmukh, S.; Agrawal, R. Electric power price forecasting using data mining techniques. In Proceedings of the

2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), Pune, India, 24–26 February 2017;
pp. 217–223.

18. Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M. Optimal deep learning lstm model for electric load forecasting using feature selection
and genetic algorithm: Comparison with machine learning approaches. Energies 2018, 11, 1636. [CrossRef]

19. Keles, D.; Scelle, J.; Paraschiv, F.; Fichtner, W. Extended forecast methods for day-ahead electricity spot prices applying artificial
neural networks. Appl. Energy 2016, 162, 218–230. [CrossRef]

20. Ma, Z.; Zhong, H.; Xie, L.; Xia, Q.; Kang, C. Month ahead average daily electricity price profile forecasting based on a hybrid
nonlinear regression and SVM model: An ERCOT case study. J. Mod. Power Syst. Clean Energy 2018, 6, 281–291. [CrossRef]

21. Lago, J.; De Ridder, F.; De Schutter, B. Forecasting spot electricity prices: Deep learning approaches and empirical comparison of
traditional algorithms. Appl. Energy 2018, 221, 386–405. [CrossRef]

22. Ghadimi, N.; Akbarimajd, A.; Shayeghi, H.; Abedinia, O. Two stage forecast engine with feature selection technique and improved
meta-heuristic algorithm for electricity load forecasting. Energy 2018, 161, 130–142. [CrossRef]

23. Jindal, A.; Singh, M.; Kumar, N.; Response, C.A. Scheme for Peak Load Reduction in Smart Grid. IEEE Trans. Ind. Electron. 2018,
65, 8993–9004. [CrossRef]

24. Chitsaz, H.; Zamani-Dehkordi, P.; Zareipour, H.; Parikh, P. Electricity price forecasting for operational scheduling of behind-the-
meter storage systems. IEEE Trans. Smart Grid 2017, 9, 6612–6622. [CrossRef]

25. Pérez-Chacón, R.; Luna-Romera, J.M.; Troncoso, A.; Martínez-Álvarez, F.; Riquelme, J.C. Big data analytics for discovering
electricity consumption patterns in smart cities. Energies 2018, 11, 683. [CrossRef]

26. Wang, Z.; Wang, Y.; Zeng, R.; Srinivasan, R.; Ahrentzen, S. Random Forest based hourly building energy prediction. Energy Build.
2018, 171, 11–25. [CrossRef]

27. Lahouar, A.; Slama, J. Day-ahead load forecast using random forest and expert input selection. Energy Convers. Manag. 2015, 103,
1040–1051. [CrossRef]

28. Wang, K.; Xu, C.; Zhang, Y.; Guo, S.; Zomaya, A. Robust big data analytics for electricity price forecasting in the smart grid. IEEE
Trans. Big Data 2017, 5, 34–45. [CrossRef]

29. Wang, L.; Zhang, Z.; Chen, J. Short-term electricity price forecasting with stacked denoising autoencoders. IEEE Trans. Power Syst.
2016, 32, 2673–2681. [CrossRef]

30. Lago, J.; De Ridder, F.; Vrancx, P.; De Schutter, B. Forecasting day-ahead electricity prices in Europe: The importance of considering
market integration. Appl. Energy 2018, 211, 890–903. [CrossRef]

31. Raviv, E.; Bouwman, K.; Van Dijk, D. Forecasting day-ahead electricity prices: Utilizing hourly prices. Energy Econ. 2015, 50,
227–239. [CrossRef]

32. Mujeeb, S.; Javaid, N.; Akbar, M.; Khalid, R.; Nazeer, O.; Khan, M. Big data analytics for price and load forecasting in smart
grids. In Proceedings of the International Conference on Broadband and Wireless Computing, Communication and Applications,
Taichung, Taiwan, 27–29 October 2018; pp. 77–87.

33. Rafiei, M.; Niknam, T.; Khooban, M.H. Probabilistic forecasting of hourly electricity price by generalization of ELM for usage in
improved wavelet neural network. IEEE Trans. Ind. Inform. 2016, 13, 71–79. [CrossRef]

34. Abedinia, O.; Amjady, N.; Zareipour, H. A new feature selection technique for load and price forecast of electrical power systems.
IEEE Trans. Power Syst. 2016, 32, 62–74. [CrossRef]

35. Ghasemi, A.; Shayeghi, H.; Moradzadeh, M.; Nooshyar, M. A novel hybrid algorithm for electricity price and load forecasting in
smart grids with demand-side management. Appl. Energy 2016, 177, 40–59. [CrossRef]

http://dx.doi.org/10.1016/j.energy.2017.07.150
http://dx.doi.org/10.3390/en14061596
http://dx.doi.org/10.1016/j.rser.2019.109244
http://dx.doi.org/10.1016/j.rser.2020.110701
http://dx.doi.org/10.1109/COMST.2019.2907650
http://dx.doi.org/10.1016/j.renene.2019.08.092
http://dx.doi.org/10.3390/su10041280
http://dx.doi.org/10.3390/en11051255
http://dx.doi.org/10.1080/03772063.2017.1417749
http://dx.doi.org/10.1016/j.epsr.2017.01.035
http://dx.doi.org/10.3390/en11071636
http://dx.doi.org/10.1016/j.apenergy.2015.09.087
http://dx.doi.org/10.1007/s40565-018-0395-3
http://dx.doi.org/10.1016/j.apenergy.2018.02.069
http://dx.doi.org/10.1016/j.energy.2018.07.088
http://dx.doi.org/10.1109/TIE.2018.2813990
http://dx.doi.org/10.1109/TSG.2017.2717282
http://dx.doi.org/10.3390/en11030683
http://dx.doi.org/10.1016/j.enbuild.2018.04.008
http://dx.doi.org/10.1016/j.enconman.2015.07.041
http://dx.doi.org/10.1109/TBDATA.2017.2723563
http://dx.doi.org/10.1109/TPWRS.2016.2628873
http://dx.doi.org/10.1016/j.apenergy.2017.11.098
http://dx.doi.org/10.1016/j.eneco.2015.05.014
http://dx.doi.org/10.1109/TII.2016.2585378
http://dx.doi.org/10.1109/TPWRS.2016.2556620
http://dx.doi.org/10.1016/j.apenergy.2016.05.083


Sustainability 2021, 13, 12653 27 of 28

36. Liang, Y.; Niu, D.; Hong, W.C. Short term load forecasting based on feature extraction and improved general regression neural
network model. Energy 2019, 166, 653–663. [CrossRef]

37. Chen, K.; Chen, K.; Wang, Q.; He, Z.; Hu, J.; He, J. Short-term load forecasting with deep residual networks. IEEE Trans. Smart
Grid 2018, 10, 3943–3952. [CrossRef]

38. Deng, Z.; Wang, B.; Xu, Y.; Xu, T.; Liu, C.; Zhu, Z. Multi-scale convolutional neural network with time-cognition for multi-step
short-term load forecasting. IEEE Access 2019, 7, 88058–88071. [CrossRef]

39. Shayeghi, H.; Ghasemi, A.; Moradzadeh, M.; Nooshyar, M. Simultaneous day-ahead forecasting of electricity price and load in
smart grids. Energy Convers. Manag. 2015, 95, 371–384. [CrossRef]

40. Wang, J.; Liu, F.; Song, Y.; Zhao, J. A novel model: Dynamic choice artificial neural network (DCANN) for an electricity price
forecasting system. Appl. Soft Comput. 2016, 48, 281–297. [CrossRef]

41. Varshney, H.; Sharma, A.; Kumar, R. A hybrid approach to price forecasting incorporating exogenous variables for a day ahead
electricity market. In Proceedings of the 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and
Energy Systems (ICPEICES), Delhi, India, 4–6 July 2016; pp. 1–6.

42. Fan, G.F.; Peng, L.L.; Hong, W.C. Short term load forecasting based on phase space reconstruction algorithm and bi-square kernel
regression model. Appl. Energy 2018, 224, 13–33. [CrossRef]

43. Dong, Y.; Zhang, Z.; Hong, W.C. A hybrid seasonal mechanism with a chaotic cuckoo search algorithm with a support vector
regression model for electric load forecasting. Energies 2018, 11, 1009. [CrossRef]

44. Kai, C.; Li, H.; Xu, L.; Li, Y.; Jiang, T. Energy-efficient device-to-device communications for green smart cities. IEEE Trans. Ind.
Inform. 2018, 14, 1542–1551. [CrossRef]

45. Kabalci, Y. A survey on smart metering and smart grid communication. Renew. Sustain. Energy Rev. 2016, 57, 302–318. [CrossRef]
46. Mahmood, A.; Javaid, N.; Razzaq, S. A review of wireless communications for smart grid. Renew. Sustain. Energy Rev. 2015, 41,

248–260. [CrossRef]
47. Zhou, L.; Wu, D.; Chen, J.; Dong, Z. Greening the smart cities: Energy-efficient massive content delivery via D2D communications.

IEEE Trans. Ind. Inform. 2017, 14, 1626–1634. [CrossRef]
48. Abdullah, A.; Sopian, W.; Arasid, W.; Nandiyanto, A.; Danuwijaya, A.; Abdullah, C. Short-term peak load forecasting using

PSO-ANN methods: The case of Indonesia. J. Eng. Sci. Technol. 2018, 13, 2395–2404.
49. Fallah, S.; Deo, R.; Shojafar, M.; Conti, M.; Shamshirband, S. Computational intelligence approaches for energy load forecasting in

smart energy management grids: State of the art, future challenges, and research directions. Energies 2018, 11, 596. [CrossRef]
50. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501.

[CrossRef]
51. Rojas-Domínguez, A.; Padierna, L.C.; Valadez, J.M.C.; Puga-Soberanes, H.J.; Fraire, H.J. Optimal hyper-parameter tuning of SVM

classifiers with application to medical diagnosis. IEEE Access 2017, 6, 7164–7176. [CrossRef]
52. Li, Z.L.; Xia, J.; Liu, A.; Li, P. States prediction for solar power and wind speed using BBA-SVM. IET Renew. Power Gener. 2019, 13,

1115–1122. [CrossRef]
53. Morley, S.; Brito, T.; Welling, D. Measures of model performance based on the log accuracy ratio. Space Weather 2018, 16, 69–88.

[CrossRef]
54. Koohi-Fayegh, S.; Rosen, M. A review of energy storage types, applications and recent developments. J. Energy Storage 2020,

27, 101047. [CrossRef]
55. Rahimi, F.; Ipakchi, A. Demand response as a market resource under the smart grid paradigm. IEEE Trans. Smart Grid 2010,

1, 82–88. [CrossRef]
56. Vadari, S. Electric System Operations: Evolving to the Modern Grid; Artech House: Braga, Portugal, 2020.
57. Ayub, N.; Irfan, M.; Awais, M.; Ali, U.; Ali, T.; Hamdi, M.; Alghamdi, A.; Muhammad, F. Big Data Analytics for Short and

Medium-Term Electricity Load Forecasting Using an AI Techniques Ensembler. Energies 2020, 13, 5193. [CrossRef]
58. Yang, W.; Wang, J.; Niu, T.; Du, P. A novel system for multi-step electricity price forecasting for electricity market management.

Appl. Soft Comput. 2020, 88, 106029. [CrossRef]
59. Yang, W.; Wang, J.; Niu, T.; Du, P. A hybrid forecasting system based on a dual decomposition strategy and multi-objective

optimization for electricity price forecasting. Appl. Energy 2019, 235, 1205–1225. [CrossRef]
60. Ahmad, W.; Ayub, N.; Ali, T.; Irfan, M.; Awais, M.; Shiraz, M.; Glowacz, A. Towards short term electricity load forecasting using

improved support vector machine and extreme learning machine. Energies 2020, 13, 2907. [CrossRef]
61. Amin, S.; Wollenberg, B. Toward a smart grid: Power delivery for the 21st century. IEEE Power Energy Mag. 2005, 3, 34–41.

[CrossRef]
62. Vaccaro, A.; Villacci, D. Performance analysis of low earth orbit satellites for power system communication. Electric Power Syst.

Res. 2005, 73, 287–294. [CrossRef]
63. Albahli, S.; Shiraz, M.; Ayub, N. Electricity Price Forecasting for Cloud Computing Using an Enhanced Machine Learning Model.

IEEE Access 2020, 8, 200971–200981. [CrossRef]
64. Cupp, J.; Beehler, M. Implementing smart grid communications. TECHBriefs 2008, 4, 5–8.
65. Ghassemi, A.; Bavarian, S.; Lampe, L. Cognitive radio for smart grid communications. In Proceedings of the 2010 First IEEE

International Conference on Smart Grid Communications, Gaithersburg, MD, USA, 4–6 October 2010; pp. 297–302.

http://dx.doi.org/10.1016/j.energy.2018.10.119
http://dx.doi.org/10.1109/TSG.2018.2844307
http://dx.doi.org/10.1109/ACCESS.2019.2926137
http://dx.doi.org/10.1016/j.enconman.2015.02.023
http://dx.doi.org/10.1016/j.asoc.2016.07.011
http://dx.doi.org/10.1016/j.apenergy.2018.04.075
http://dx.doi.org/10.3390/en11041009
http://dx.doi.org/10.1109/TII.2017.2789304
http://dx.doi.org/10.1016/j.rser.2015.12.114
http://dx.doi.org/10.1016/j.rser.2014.08.036
http://dx.doi.org/10.1109/TII.2017.2784100
http://doi.org/10.3390/en11030596
http://doi.org/10.1016/j.neucom.2005.12.126
http://dx.doi.org/10.1109/ACCESS.2017.2779794
http://dx.doi.org/10.1049/iet-rpg.2018.5673
http://dx.doi.org/10.1002/2017SW001669
http://dx.doi.org/10.1016/j.est.2019.101047
http://dx.doi.org/10.1109/TSG.2010.2045906
http://dx.doi.org/10.3390/en13195193
http://dx.doi.org/10.1016/j.asoc.2019.106029
http://dx.doi.org/10.1016/j.apenergy.2018.11.034
http://dx.doi.org/10.3390/en13112907
http://dx.doi.org/10.1109/MPAE.2005.1507024
http://dx.doi.org/10.1016/j.epsr.2004.07.011
http://dx.doi.org/10.1109/ACCESS.2020.3035328


Sustainability 2021, 13, 12653 28 of 28

66. Ko, J.; Terzis, A.; Dawson-Haggerty, S.; Culler, D.; Hui, J.; Levis, P. Connecting low-power and lossy networks to the internet.
IEEE Commun. Mag. 2011, 49, 96–101.

67. Aimal, S.; Javaid, N.; Rehman, A.; Ayub, N.; Sultana, T.; Tahir, A. Data analytics for electricity load and price forecasting in
the smart grid. In Proceedings of the Workshops of the International Conference on Advanced Information Networking and
Applications, Matsue, Japan, 27–29 March 2019; pp. 582–591.

68. Al-Betar, M.A.; Alyasseri, Z.A.A.; Awadallah, M.A.; Doush, I.A. Coronavirus herd immunity optimizer (CHIO). Neural Comput.
Appl. 2021, 33, 5011–5042. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s00521-020-05296-6
http://www.ncbi.nlm.nih.gov/pubmed/32874019

	Introduction
	Smart Grid
	Problem Statement and Motivation

	Background and Related Work
	Forecasting Electricity Load
	Forecasting Electricity Price

	System Models
	Model for Predicting Electricity Load and Price
	Data Collection
	Feature Extraction Using (RFE)
	Feature Selection
	Convolutional Neural Network
	Coronavirus Herd Immunity Optimization
	Performance Evaluation

	Simulation Results and Discussions
	Electricity Load Forecasting
	Electricity Price Forecasting
	Performance Evaluation of Electricity Price and Load Forecasting

	Conclusions
	References

