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Abstract: Soil moisture plays an important role in the land surface model. In this paper, a method of
using VV polarization Sentinel-1 SAR and Landsat optical data to retrieve soil moisture data was
proposed by combining the water cloud model (WCM) and the deep belief network (DBN). Since the
simple combination of training data in the neural network cannot effectively improve the accuracy
of the soil moisture inversion results, a WCM physical model was used to eliminate the effect of
vegetation cover on the ground backscatter, in order to obtain the bare soil backscatter coefficient.
This improved the correlation of ground soil backscatter characteristics with soil moisture. A DBN
soil moisture inversion model based on the bare soil backscatter coefficients as the foundation training
data combined with radar incidence angle and terrain factors obtained good inversion results. Studies
in the Naqu area of the Tibetan Plateau showed that vegetation cover had a significant effect on the
soil moisture, and the goodness of fit (R2) between the backscatter coefficient and soil moisture before
and after the elimination of vegetation cover was 0.38 and 0.50, respectively. The correlation between
the backscatter coefficient and the soil moisture was improved after eliminating the vegetation
cover. The inversion results of the DBN soil moisture model were further improved through iterative
parameters. The model prediction reached its highest level of accuracy when the restricted Boltzmann
machine (RBM) was set to seven layers, the bias and R were 0.007 and 0.88, respectively. Ten-fold
cross-validation showed that the DBN soil moisture model performed stably with different data. The
prediction was further improved when the bare soil backscatter coefficient was used as the training
data. The mean values of the root mean square error (RMSE), the inequality coefficient (TIC), and the
mean absolute percent error (MAPE) were 0.023, 0.09, and 11.13, respectively.

Keywords: deep belief network; water cloud model; soil moisture; Sentinel-1

1. Introduction

Soil moisture (SM) is a crucial factor in hydrology, climate, and ecology models [1–3],
and it plays an important role in the global terrestrial water, energy, and the carbon cycle [4].
Soil moisture information is a key variable for guiding in-season management decisions in
rainfed and irrigated agricultural systems [5]. At the same time, it is an important variable
in the earth’s ecosystem because SM affects the precipitation infiltration, the distribution
of surface runoff, and the control of vegetation growth [6]. Many scholars have studied
different aspects of soil moisture, such as problems with water movement into the vadose
zone [7], the effect of soil moisture on the vegetation root water uptake model [8], and
its influence on soil science and agricultural engineering [9]. SM has a high degree of
temporal and spatial variability because it is affected by multiple factors such as terrain,
soil, and vegetation [10]. Therefore, accurate acquisition of SM information is crucial for
understanding the mechanisms of climate change, surface hydrological processes, and

Sustainability 2021, 13, 12635. https://doi.org/10.3390/su132212635 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su132212635
https://doi.org/10.3390/su132212635
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su132212635
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su132212635?type=check_update&version=1


Sustainability 2021, 13, 12635 2 of 19

energy exchange between the ground and atmosphere; it also provides important reference
data for drought monitoring and flood forecasting [11].

The traditional SM collection method lacks enough sites over a large area, the moni-
toring value only represents the SM status near the area, and the spatial expression ability
is insufficient [12]. Microwave remote sensing has achieved good results in SM monitoring
due to its suitable detection depth and solid theoretical foundation, which helps us to
understand the spatiotemporal evolution mechanism of soil moisture [13,14]. Microwave
radiometer has become an important SM data source because of its better time resolution
and mature technology, but the spatial resolution of 25–40 kilometers cannot meet the
accuracy requirements of many land surface models. Many studies have improved the
spatial resolution by fusing passive microwave data with high spatial resolution data. Das
et al. fused the coarse-scale radiometer SMAP SM data with the backscatter coefficient
to produce 9 km SM data [15], and Wilson et al. combined visible light data, infrared
remote sensing data, and passive microwave data to estimate SM data [16]. Srivastava
used artificial neural networks and support vector machines to integrate MODIS surface
temperature and SM inversed SMOS [17]. Yang et al. improved the estimation accuracy by
assimilating the brightness temperature data and reducing the brightness temperature error
of AMSR2 [18]. These methods all improved the quality of SM data capture by establishing
the relationship between SM and auxiliary variables. Synthetic aperture radar has high
spatial resolution and can capture the detailed features of spatial information [19,20], and
the backscatter coefficient of synthetic aperture radar is sensitive to the soil dielectric con-
stant, which is related to soil moisture. This laid a solid physical foundation for synthetic
aperture radar to retrieve soil moisture [21]. Therefore, soil moisture retrieval based on
synthetic aperture radar data has always been a research hotspot [22]. For example, Vijay
estimated soil moisture through the improved WCM [23], and Kumar used Sentinel-1
data to estimate winter wheat crop growth parameters [15]. These studies showed that
C-band synthetic aperture radar data have unique advantages in soil moisture estimation,
but the backscatter signal is susceptible to the influence of surface vegetation and surface
roughness [24]. The interaction between vegetation and radar scattering signals is more
complicated, which increases the uncertainty of soil moisture retrieval [25,26]. Therefore, a
proper process to eliminate the influence of vegetation on backscatter is crucial to estimate
the surface soil moisture accurately.

The vegetation scattering model describes the microwave scattering process in the
vegetation canopy. It can eliminate the influence of surface roughness and vegetation cov-
erage through the coupling of the vegetation scattering model and the bare soil scattering
model. The commonly used scattering models are the WCM and MIMICS models [27,28].
Attema proposed the WCM in 1978 [29], which assumes that the backscatter is composed of
the contribution of the vegetation canopy and the soil surface. The total backscatter in the
vegetation coverage area is described as the volume scattering item directly reflected by the
vegetation and the backscatter item of the ground after the vegetation double attenuation.
The total backscatter ignores the mutual multiple scattering between the vegetation layer
and the ground surface. Ding et al. used the WCM combined with radar and optical
data to remove the vegetation scattering part from the total backscatter and to establish
the relationship between the soil backscatter coefficient and soil moisture [30]. MIMICS
additionally considers the backscatter contribution of the plant-ground interaction. For the
low grass areas of the Tibetan Plateau, the WCM model with fewer unknown parameters is
more suitable [31,32]. Therefore, this study used the WCM model to estimate the contribu-
tion of vegetation to the ground backscatter, which eliminated the influence of vegetation
coverage on the soil surface backscatter. Many studies have formed a variety of synthetic
aperture radar soil moisture algorithms based on the radiation transmission model, such
as change detection, optimized cost function, and an artificial neural network [33]. The
classical soil moisture retrieval method is mainly based on the radiative transmission
model linking the satellite brightness temperature data with the soil moisture [34], but
the nonlinear process makes the quantification of the physical model difficult. The DBN



Sustainability 2021, 13, 12635 3 of 19

model has a strong nonlinear mapping ability, can find the connection between variables
in complex relationships, and is suitable for solving nonlinear problems [35]. Xu et al.
used a generalized regression neural network to estimate SM based on sparse ground
measurement point data, which established a nonlinear relationship between active and
passive microwave remote sensing data and ground-measured data and realized large-scale
soil moisture retrieval [36]. They also improved the inversion quality of SM based on a
generalized regression neural network and a multisource data fusion method in 2018 [37].
The generalized regression neural network learned from the training data once and did not
require an iterative process [38,39]. Abowarda et al. improved the spatial resolution of soil
moisture data through data fusion, using a random forest model [40]. Some scholars also
used the BP neural network method to estimate the leaf area index [41], but this method
cannot obtain the global optimal solution due to its slow convergence speed and ease of
falling into a local minimum [42]. Compared with traditional neural networks such as
backpropagation (BP), the DBN model overcomes the shortcomings of local optimization
and the long training time caused by the random initialization of weighted parameters. It
only needs to search the spatial parameters at the local level, which greatly shortens the
convergence time. Due to this improvement, DBN has solved many problems in remote
sensing. Shen et al. used the reflectance of the top of the atmosphere to estimate ground
PM2.5 [43]. Diao et al. used the target detection method to prove the accuracy and effec-
tiveness of the model [44]. In summary, DBN is more suitable for the establishment of the
regression model in this article. Recently, DBN has achieved great success in the prediction
of surface parameters. Therefore, the application of DBN in soil moisture inversion has
great potential.

As the Tibetan Plateau is a sensitive area of global climate change, the exchange of
water and energy between the ground and the atmosphere has a great impact on the
Asian monsoon and global atmospheric circulation. Due to its unique topographical
characteristics, soil moisture has become a sensitive factor affecting precipitation and the
water cycle in the area. There have been studies on the inversion of soil moisture on the
Tibetan Plateau through radiometer or radar signals [45,46]. However, it is still necessary
to further explore high-resolution soil moisture retrieval methods and the influence of
vegetation on soil moisture retrieval. Therefore, this study focused on the Naqu area in
the Tibetan Plateau and evaluated the contribution of vegetation to the ground backscatter
based on the vegetation water cloud model, eliminating the influence of vegetation cover on
the backscatter. Then we used the bare soil backscatter coefficient as the basic training data
to establish a DBN model to improve the accuracy of the soil moisture prediction results.
At the same time, factors such as incident angle, elevation, and slope were introduced
to reduce the influence of terrain and to improve the model’s universality [47]. In the
research of estimating soil moisture based on active microwave data, vegetation cover has
an important effect on the ground surface backscatter coefficient, which affects the real
expression of soil backscatter. How to effectively eliminate the influence of vegetation
coverage on the backscatter coefficient has become a key issue for improving the accuracy
of the estimation of soil moisture from active microwave data.

2. Data and Methods
2.1. Study Area

The Tibetan Plateau has a unique geographical location, geological structure, climatic
characteristics, and rich ecological resources, all of which make it important to the global
ecosystem. The soil moisture in this area is an important reference value for the study
of the global water cycle and precipitation mechanisms. In this study, the Naqu region
in the hinterland of the Tibetan Plateau, located in the northern part of Tibet, was used
as the research area to carry out soil moisture inversion research (Figure 1). The average
elevation is around 4500 m in this area, but the terrain is relatively flat and has small
undulations, and the main vegetation cover type is high-altitude pasture. The climate is
characterized by extreme cold, lack of oxygen, little rain, and regular winds; the annual



Sustainability 2021, 13, 12635 4 of 19

precipitation is about 380 mm [48]. The climate is dry and the temperature is low in
November through March; then, it is relatively warm and the vegetation grows vigorously
from May to September. During this period, the surface cover is dominated by alpine
meadows and natural grasslands. Due to the special climatic conditions, the soil moisture
has great spatial variability in the study area [49].
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2.2. Research Data

This paper used L1 slant distance single look complex (SLC) Sentinel-1 data, the acqui-
sition mode was interferometric wide swath (IW), the spatial resolution was 5 m × 20 m,
the revisit period was 2 days, and the polarization mode was VV polarized. Equipped with
a C-band synthetic aperture radar instrument with a working frequency of 5.4 GHz, it pro-
vided radar series data all-time and all-weather. The data came from the Sentinel Satellite
Data Service Center of the European Space Agency (ESA) (https://scihub.copernicus.eu/,
accessed on 1 November 2021). After preprocessing the Sentinel-1 data, for example, orbit
correction, thermal noise removal, radiometric calibration, geocoding, and cropping, the
backscatter coefficients were extracted and converted into decibels. Landsat-8 OLI image
data, with a spatial resolution of 30 m, a synthetic image resolution of 15 m, and a time reso-
lution of 16 days came from the geospatial data cloud (http://www.gscloud.cn, accessed on
1 November 2021). DEM data, with a spatial resolution of 12.5 m, was used to extract eleva-
tion information, which came from NASA’s official website (https://search.asf.alaska.edu/,
accessed on 1 November 2021). There were 60 effective ground-measured soil moisture sites
in the study area, which were continuously observed from August 2010 to December 2016.
In this paper, the daily average observation value of soil water content at a depth of 0–10 cm
from January 2015 to December 2016 was selected as the real value for model training and
verification. The distribution of measured sites is shown in Figure 1. The data came from
the International Soil Moisture Network (ISMN).

2.3. Methodology
2.3.1. Vegetation Water Content

In this study, we used Chan’s method to calculate vegetation water content (VWC) [46].
Scholars such as Wang used this model to calculate the vegetation water content and opti-
mize the parameters for the Naqu area [50]. The specific method is shown in Equation (1):

https://scihub.copernicus.eu/
http://www.gscloud.cn
https://search.asf.alaska.edu/
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vwc =
(

1.9134NDVI2 − 0.3215NDVI
)
+ st·NDVImax − NDVImin

1 − NDVImin
(1)

where VWC is the vegetation water content (kg/m2) and NDVImax and NDVImin represent
the maximum and minimum values of the normalized difference vegetation index (NDVI).
st represents the product of the average vegetation height and the ratio of the stem area to
stem leaf area, and represents the estimated value of the stem moisture peak. The default
value of the dry factor is set to 1.5 when the vegetation type is grass [51]. The default value
may be higher because the vegetation is high-altitude pasture in the study area, which is a
low-coverage vegetation type. So the factor was adjusted to 0.3 after learning from other
research about this area [52].

2.3.2. Calculation of the Bare Soil Backscatter Coefficient by the Water Cloud Model

It is difficult for the coverage of surface vegetation to reach 100%, and the information
obtained from only optical or radar images is simultaneously affected by vegetation and
soil. Therefore, combining microwave and optical remote sensing data and using the water
cloud model to eliminate the influence of vegetation on backscatter helped to improve
the accuracy of the soil moisture retrieval results. Vegetation water content affects the
backscatter and attenuation factors of vegetation. The vegetation water content obtained
according to Equation (1) was used as a water cloud model parameter to eliminate the
influence of vegetation cover on backscatter. The model is expressed as Equations (2)–(4):

σ◦
total = σ◦

veg + τ2σ◦
soil (2)

σ◦
veg = (1 − τ2)A·VWC·cosθ (3)

τ2 = exp
(
−2B·VWC

cosθ

)
(4)

We calculated the bare soil backscatter coefficient based on the water cloud model, the
equation is as Equation (5):

σ◦
soil =

σ◦
total − σ◦

veg

τ2 (5)

where θ is the incident angle of the sensor, σ◦ is the backscatter coefficient, σ◦
veg represents

the vegetation backscatter coefficient, σ◦
soil represents the soil backscatter coefficient, τ2 is

the double-layer attenuation factor of microwave penetration through the vegetation layer,
and A and B are two parameters dependent on vegetation type. Studies have shown that
parameter A is less sensitive to the backscatter coefficient, while the backscatter coefficient
decreases along with the increase in parameter B, and the amplitude of change increases
with the increase in VWC. Referring to the B value in Table 1, we experimented with 0.01
as the interval between 0.03 and 0.14. When B was 0.05, the soil moisture inversion results
were closest to the measured soil moisture value [53].

Table 1. The vegetation parameters of the water cloud model [25].

Parameters All Vegetation Grazing Land Winter Wheat Grassland

A 0.0012 0.0009 0.0018 0.0014
B 0.0910 0.0320 0.1380 0.0840

2.3.3. Deep Belief Network Soil Moisture Retrieval Model

The deep belief network (DBN) model was proposed by Hinton in 2006. It is one of the
typical deep learning models. DBN is composed of multiple restricted Boltzmann machine
(RBM) layers and a backpropagation (BP) layer. The structure is shown in Figure 2. The
RBM consists of a visible layer and a hidden layer, where the hidden layer of the previous
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RBM is the visible layer of the next RBM. Moving from the visible layer (v) to the hidden
layer (h) is represented by Equation (6):

h1
i =

{
1, f (w0,iX + bi) ≥ µ
0, f (w0,iX + bi) < µ

µ ∼ U(0, 1) (6)

where i and bi refer to the number of the ith neuron and the bias, respectively. f represents
the ReLu function used for neuron mapping between the neural network layers. Its function
is to improve the nonlinear modeling ability of the model and to better excavate the deep
information between the input feature values, and the same is used to calculate the visible
layer from the hidden layer. The weights were updated in the nth as Equation (7):

Wn+1
0 = Wn

0 + ε((h1
1)

T
X − (h1

2)
T

V1) (7)

The bare soil backscatter coefficient, topographic factors, and soil moisture have multi-
ple and complex mapping relationships. DBN has the characteristic of quickly establishing
mapping relationships from complex relationships. Using DBN to retrieve soil moisture
has great potential. Model training included the pretraining by RBM and the process of
error backpropagation by the BP neural network to fine-tune network weights and biases.
We used an unsupervised method to train each layer of RBM, input the preprocessed
sample data into the visible layer of RBM, passed the data to the hidden layer through the
excitation function, and used the Gibbs sampling ratio divergence algorithm to update
the weights and deviations value. In the BP neural network, the SmoothL1 function was
used as the loss function; it prevented the gradient explosion caused by the running of the
model compared with the mean square error function.

The deep belief network soil moisture inversion model was based on the bare soil
backscatter coefficient calculated by the water cloud model, combined with incident angle,
terrain elevation, latitude, and longitude as input data, and the measured site data were
used as label data to invert soil moisture. The model is expressed as Equation (8):

SM = f (θ, σ◦
soil , DEM, Slope, Aspect) (8)

where f () refers to the prediction function and θ is the angle of incidence. σ◦
soil refers to

the bare soil backscatter coefficient, which was mainly used to obtain ground soil moisture
information; DEM, slope, and aspect represent the effects of terrain factors.
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2.3.4. Accuracy Evaluation

This paper used the Pearson correlation coefficient (R), root mean square error (RMSE),
bias, degree of fit (R2), average absolute percentage error (MAPE), and the Theil nequality
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coefficient (TIC) to assess the accuracy of the DBN soil moisture inversion results. For a
detailed description of each accuracy index, refer to references [54,55].

The ten-fold cross-validation technique, proposed by Rodriguez in 2010 [56], was
used to test the stability and generalization ability of the DBN soil moisture inversion
model in this study. This technique is usually used to evaluate the performance of machine
learning models on limited data samples [57]. First, all the sample data were shuffled and
randomly divided into ten groups. One group was selected as the test data set, and the
other nine groups were used as the training data set to fit the model. Then we trained
the model in turn, repeating the fitting model on the training set. Finally, the average of
ten rounds of accuracy evaluation was taken to represent the accuracy and stability of the
prediction model.

2.3.5. Technical Process

The workflow is shown in Figure 3.

1. After preprocessing the Sentinel-1 data, extract the backscatter coefficient and incident
angle information.

2. Obtain the NDVI after preprocessing Landsat-8 OLI data, and calculate VWC accord-
ing to Equation (1).

3. Combine the backscatter coefficient and VWC and calculate the bare soil backscatter
coefficient according to the water cloud model to eliminate the vegetation cover effect
on the backscatter.
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Use the incident angle, bare soil backscatter coefficient, terrain elevation, latitude, and
longitude information obtained in the previous steps as the DBN model input data, and
use the measured data as the label data to establish the DBN soil moisture inversion model.
Use the accuracy evaluation index to evaluate the model accuracy and use the ten-fold
cross-validation technique to evaluate the model stability.

3. Results and Analysis
3.1. Calculation of the Bare Soil Backscatter Coefficient and Analysis of Its Correlation with Soil Moisture

According to the water cloud model, the backscatter coefficient values, from before
and after the vegetation effect was eliminated, were obtained for the Naqu area in 2016.
The results are shown in Figure 4. The results showed that the vegetation coverage
effect increased the backscatter value. The vegetation effect on the backscatter was more
significant during the lush vegetation period from July to September, and the backscatter
coefficient increased significantly. The backscatter coefficient average value was −16.27
before removing vegetation, the bare soil backscatter coefficient average value was −19.51
after removing vegetation, and the average value of the backscatter coefficient from July to
September before and after eliminating the vegetation was −12.04 and −18.81, respectively.
The bare soil backscatter value decreased overall after eliminating the vegetation cover
effect, but the reduction was different in different time periods. The main reason is that
the vegetation varies with the climate and seasons in different periods. The small gap
period was the period of cold and dry air when vegetation was sparse and withered,
during which the ground backscatter value was close to the bare soil backscatter, so the
difference was small before and after vegetation was eliminated. However, the difference
was greater in the period of vigorous vegetation growth, and the vegetation contribution to
the backscatter was greater; hence, the backscatter coefficients before and after eliminating
the vegetation cover effect were further apart.
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The correlation analysis between the backscatter coefficient before and after removing
the vegetation effects and the soil moisture measured value is shown in Figure 5. The
results showed that the correlation between the soil backscatter coefficient and soil moisture
was significantly improved after eliminating the vegetation effect, and the R2 increased
from 0.38 to 0.51. The scattered points of bare soil backscatter coefficient and soil moisture
were more concentrated, and the aggregation effect was significantly increased in soil
moisture high-value areas. The vegetation elimination significantly improved the fit
between the backscatter value and soil moisture. Vegetation increased the contribution
of backscatter to the ground in the soil moisture high-value areas, which influenced the
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mapping relationship between soil backscatter and soil moisture. Correlation analysis fully
showed that vegetation cover was an important factor affecting the backscatter coefficient
inversion of soil moisture. Eliminating the vegetation cover effect will further clarify the
relationship between soil moisture and soil backscatter, and help improve the soil moisture
retrieval accuracy.
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3.2. Accuracy Assessment of Soil Moisture Inversion by Deep Belief Network Model

The bare soil backscatter coefficient, radar incident angle, DEM, slope, and aspect
were used as training data, and the measured soil moisture data were used as label data
to establish a DBN soil moisture inversion model. Through the experiments, we found
that compared to the Sigmoid function, the ReLu function as the activation function was
less likely to cause the gradient vanishing during backpropagation, and the convergence
speed was better. The ReLu function gave some neurons a value of zero, which was helpful
to prevent the overfitting phenomenon. We began to use MSE as the loss function, but
because it is a square operation, the difference was amplified when the soil moisture real
value was significantly different from the predicted value, and the error would easily cause
gradient explosion when the error was backpropagated. Therefore, we used the SmoothL1
loss function to effectively prevent the gradient explosion when the model was running. In
addition, the number of RBM layers had a significant impact on the prediction result in
the model; they were adjusted to determine the optimal accuracy of the prediction result
(Figure 6). We observed the changes in R2 and bias by increasing the number of RBM; R2

represented the fitting performance of the model predicted value, and bias was the degree
of deviation between the predicted value and the real value. The results showed that the
overall change of R2 was small, between 0.6 and 0.8, but the bias of the RBM prediction
results was more than 0.015 before the third layer, and the deviation was large. After
the fourth layer, the deviation was between −0.005 and 0.005, and the deviation changes
tended to stabilize. When the RBM was seven layers, R2 was 0.78 at the maximum value,
and the deviation value was also small at 0.007, so the deep belief network soil moisture
inversion model performance was most precise when the RBM was set to seven layers.

The model was tested and evaluated by three error evaluation indicators: the cor-
relation coefficient (R), inequality coefficient (TIC), and root mean square error (RMSE)
(Figure 7). The results showed that the comprehensive prediction performance of the model
was reduced when there were too many or too few RBM layers. The R-value between
the model predicted result and the measured value gradually increased along with the
increase in RBM layers, and the TIC and RMSE gradually decreased. The accuracy tended
to stabilize when the RBM reached six to eight layers. The RMSE value changed less and
the error was minimized between the predicted value and the real value when the RBM
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was increased to nine layers, but the R-value was significantly reduced. The R-value was
further reduced when the RBM was 10 layers to 0.06 and the TIC increased, which showed
that the prediction results accuracy had decreased. Through the analysis of the accuracy
changes of different RBM layer models, it was concluded that the model prediction result
had the best accuracy when the RBM was seven layers. Therefore, this study selected the
DBN model with seven RBM layers as the soil moisture inversion model.
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3.3. Ten-Fold Cross-Validation

Ten-fold cross-validation showed that multiple error evaluation indicators tended to
be stable and have small fluctuations (Figure 8); it showed that the model performance
was relatively stable after training, and there was no error fluctuation with data changes.
Compared with the ground backscatter coefficient, the inversion result accuracy was
improved and more stable when the bare soil backscatter coefficient was used as the
training data. Therefore, human intervention to increase the correlation between input data
and prediction results before creating the DBN network model improved the performance
of the DBN soil moisture retrieval model.
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3.4. Analysis of Soil Moisture Inversion Results

The DBN soil moisture inversion model was used to predict the soil moisture in the
Naqu area of the Tibetan Plateau (Figure 9). To train the soil moisture inversion model, the
backscatter coefficient before and after removing the vegetation cover influence and the
angle of incidence and terrain factor were used, and we analyzed the vegetation coverage
effect on the soil moisture inversion results’ accuracy. We retrieved one phase of soil
moisture data in July when the vegetation coverage was high and another in December
when the vegetation coverage was low, respectively, and analyzed the differences in the
inversion results before and after the removal of vegetation coverage. The results showed
that the soil moisture prediction values were different before and after the elimination of
vegetation cover in July. Vegetation coverage made the soil moisture prediction higher
especially in the eastern soil moisture high-value areas. The vegetation withered and the
ground surface was bare in December, so the ground backscatter basically represented
the bare soil backscatter status during that period. Therefore, the difference was small in
the soil moisture inversion results before and after the removal of vegetation cover, and
the soil moisture value decreased overall in December. The soil moisture overall spatial
distribution pattern was high in the east and low in the central and western regions in the
study area. Compared with the elevation information in Figure 1, most of the high soil
moisture areas were in high-altitude areas, and these areas had more vegetation coverage,
less evapotranspiration, and easy access to precipitation replenishment, so the ground
soil moisture was relatively high [23]. The soil moisture was lower in central and western
regions because most areas were bare soil, where evapotranspiration was stronger and the
vegetation coverage was lower. The spatial distribution comparative analysis shows that
the DBN soil moisture inversion model prediction results based on the bare soil backscatter
coefficient were more reliable after removing the vegetation cover.
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based on bare soil backscatter on 7 December.

The measured data were used to further verify the soil moisture results of the model
based on the backscatter coefficient and the bare soil backscatter coefficient. The fitted
scatter plot is shown in Figure 10. The inversion result fitting coefficient based on the
backscatter coefficient (R2 = 0.59, p < 0.01) was smaller than the inversion result fitting
coefficient based on the bare soil backscatter coefficient (R2 = 0.76, p < 0.01), and the RMSE
decreased from 0.042 to 0.033, which showed that the vegetation cover caused the soil
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moisture inversion results to deviate in June. The inversion results’ fitting coefficients were
(R2 = 0.74, p < 0.01) and (R2 = 0.71, p < 0.01) based on the ground backscatter coefficient and
bare soil backscatter coefficient, and the RMSE values were 0.019 and 0.021, respectively;
there was little difference in the soil moisture inversion results accuracy before and after the
vegetation cover was eliminated in December. The comparative accuracy analysis of the
two phases’ inversion results shows that the vegetation coverage reduced the soil moisture
inversion accuracy, and the influence was more significant during the vigorous vegetation
growth period.
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The soil moisture inversion results’ classification statistics (Figure 11) show that the
effects of vegetation coverage on different degrees of soil moisture values varied. The first
two levels’ average value of SM inversion results after vegetation elimination was slightly
greater than the inversion value before vegetation elimination; this difference increased at
the third and fourth level and the mean difference was 0.041 and 0.043, respectively. The
vegetation effect somewhat underestimated the soil moisture in this area. However, the fifth
level SM average value increased by 0.056 after removal of vegetation, and the third-quarter
value increased significantly, indicating that vegetation coverage caused the moisture to be
overestimated in high soil moisture values areas. The soil moisture statistical results from
one to four levels differed slightly, and the median and average values remained about the
same before and after devegetation in December. However, the fifth level’s soil moisture
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value had a large difference before and after devegetation, and vegetation still caused an
overestimation of soil moisture. Since the high soil moisture areas are at higher altitudes,
the vegetation cover is mostly shrubs, and the high coverage vegetation increases the
backscatter contribution. After a comprehensive comparative analysis, it was concluded
that vegetation coverage underestimated the soil moisture inversion value in soil moisture
low-value areas and overestimated the soil moisture inversion value in high-value areas.
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4. Discussion

Vegetation coverage has a significant effect on the soil moisture inversion of the
backscatter coefficient. Based on the ground backscattering coefficient and terrain elevation
factor as the basic training data, combined with different vegetation indices, the DBN soil
moisture inversion model prediction results were also different. The accuracy results are
shown in Figure 12. The calculation methods of each vegetation index were detailed in [58].
When only the ground backscatter and elevation factors were considered, the inversion
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results’ accuracy was the lowest; the correlation coefficient R was 0.26 (p < 0.05), and the
RMSE value was the highest at 0.072. While the prediction accuracy was improved when
the backscatter coefficient and vegetation index were combined as model training data, the
accuracy difference was small when combined with different vegetation indexes, with an R
average of 0.47 (p < 0.05). The inversion results’ accuracy was higher when the vegetation
index was EVI and OSAVI; the R-value was 0.55 and 0.57 (p < 0.05), respectively, which was
an increase of 0.1 compared to the R average. Since the EVI and OSAVI indices consider
more bands and reduce the influence of the atmosphere and vegetation canopy, it effectively
improved the sensitivity of vegetation information in high vegetation coverage areas; the
averages of RMSE and MAE were 0.044 and 0.036, respectively, and the soil moisture
inversion results’ accuracy based on different vegetation indices had little difference. The
bare soil backscatter coefficient inverse soil moisture results’ accuracy was significantly
improved; the R-value increased to 0.88 (p < 0.05), and the RMSE and MAE values decreased
to 0.021 and 0.016, respectively. Since NDVI is easily saturated in high vegetation coverage
areas, it is mainly suitable for inversion soil moisture in low vegetation coverage areas.
The comparative study further proved the significant influence of vegetation coverage on
the backscatter coefficient inversion soil moisture, and if the combination of backscatter
coefficient and vegetation index is simply used as the input data, it is difficult to effectively
improve the inversion results’ accuracy. Therefore, the water cloud model was used to
eliminate the vegetation backscatter contribution from the mechanism. Then we used the
bare soil backscatter coefficient as the input data for the DBN to establish the relationship
with soil moisture, which enabled the neural network characteristics to perform better and
significantly improved the backscatter coefficient inversion soil moisture accuracy.
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In the Naqu area of the Tibetan Plateau, many scholars have used different models for
soil moisture inversion research, for example, Yang combined a vegetation water cloud
model and cost distance function to estimate soil moisture [53]; the R2 was 0.46 and RMSE
was 0.08 in the accuracy analysis. Wang used the semiempirical Oh model to estimate
the surface roughness parameters to improve the water cloud model before soil moisture
inversion [51] and obtained a higher accuracy of soil moisture inversion results (R = 0.89
and RMSE = 0.058). However, the research model was more complicated and needed a large
number of measured parameters to improve and calibrate the model. In most studies, the
number of measured values was limited and had a greater impact on the results. Our study
obtained a good inversion result (R = 0.88, RMSE = 0.021), by eliminating the vegetation
cover influence on the backscatter. Combining this with the DBN model, the prediction
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result accuracy was further improved compared to the cost distance function prediction
result. The mapping relationship was established between bare soil backscatter and soil
moisture, which reduced the limitation of the measured parameters on the inversion results’
accuracy.

5. Conclusions

By combining the WCM and the DBN model and using Sentinel-1 synthetic aperture
radar and Landsat-8 optical data to retrieve soil moisture in the Naqu area of the Tibetan
Plateau, this paper draws the following main conclusions:

Using the ground backscatter coefficient and VWC, calculated according to NDVI,
based on the water cloud model to eliminate the vegetation cover effect on the backscatter,
and obtaining the bare soil backscatter coefficient was successful. The bare soil backscatter
coefficients were combined with the incident angle and terrain factors as training data,
and the ground-measured soil moisture data were used as the label data to establish a
DBN soil moisture inversion model. The mapping relationship between soil backscatter
and soil moisture was clarified. Studies have shown that vegetation has a great effect on
ground backscatter. There are significant differences in backscatter values before and after
removing vegetation cover. The bare soil backscatter coefficient average value compared to
the ground backscatter coefficient average value was lower by 3.23 dB. Vegetation has a
significant effect on backscatter, especially during high vegetation coverage periods. By
comparing and analyzing the soil moisture inversion results before and after the removal
of vegetation coverage in different vegetation coverage periods, it was concluded that the
soil moisture accuracy based on the bare soil backscatter coefficient (R2 = 0.50) was higher
than that based on the ground backscatter coefficient (R2 = 0.38), and more in line with the
ground-measured data.

In the DBN soil moisture inversion model, choosing ReLu as the activation function
did not cause the gradient to disappear, the convergence speed was also better, and it
prevented the model from overfitting. In the model, SmoothL1 was used as the loss
function, which effectively prevented the gradient explosion that can occur when the
difference between the true value and the predicted value is large in the backpropagation
process. Setting different RBM layers in the DBN neural network had a significant impact
on the model performance. The experiment showed that the prediction result accuracy
was best when the bare soil backscatter was used as the main input data to invert the soil
moisture and the neural network had seven layers. In addition, the prediction results’
accuracy had less volatility, and the model was more stable.

The comparative analysis of soil moisture prediction results found that the DBN soil
moisture inversion model used Sentinel-1 data to achieve good results in soil moisture
inversion. Soil moisture was overestimated in high vegetation coverage areas and un-
derestimated in low vegetation coverage areas when the model was based on ground
backscatter inversion, and between the backscatter coefficient and vegetation index simple
combination in the DBN model, it was difficult to improve the soil moisture inversion
results’ accuracy. However, when the bare soil backscatter coefficient was used as training
data after the physical model eliminated the vegetation coverage effect, its inversion results
were consistent with the actual surface conditions, and the spatial details were expressed
more clearly.

Author Contributions: Conceptualization, J.Z.; methodology, Z.Y.; software, Z.Y., J.L. and Y.W.
(Yuanyuan Wen); results analysis, Z.Y. and J.Z.; writing—original draft preparation, Z.Y.; writing—
review and editing, Z.Y., J.Z. and Y.W. (Yanqiang Wang). All authors have read and agreed to the
published version of the manuscript.

Funding: This study was financially supported by the National Natural Science Foundation of China
(41661084, 41871277).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Sustainability 2021, 13, 12635 17 of 19

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil

moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [CrossRef]
2. Pangaluru, K.; Velicogna, I.; Geruo, A.; Mohajerani, Y.; Ciracì, E.; Cpepa, S.; Basha, G.; Rao, S. Soil moisture variability in India:

Relationship with landsurface atmospheric fields using Maximum Covariance Analysis. Remote Sens. 2019, 11, 335. [CrossRef]
3. Peng, J.; Loew, A.; Merlin, O.; Verhoest, N.E.C. A review of spatial downscaling of satellite remotely sensed soil moisture. Rev.

Geophys. 2017, 55, 341–366. [CrossRef]
4. McColl, K.A.; Alemohammad, S.H.; Akbar, R.; Konings, A.G.; Yueh, S.; Entekhabi, D. The global distribution and dynamics of

surface soil moisture. Nat. Geosci. 2017, 10, 100–104. [CrossRef]
5. Rossini, P.R.; Ciampitti, I.A.; Hefley, T.; Patrignani, A. A soil moisture-based framework for guiding the number and location of

soil moisture sensors in agricultural fields. Vadose Zone J. 2021, e20159. [CrossRef]
6. Rosenzweig, C.; Tubiello, F.N.; Goldberg, R.; Mills, E.; Bloomfield, J. Increased crop damage in the US from excess precipita-tion

under climate change. Glob. Environ. Chang. 2002, 12, 197–202. [CrossRef]
7. Berardi, M.; Difonzo, F.V. Strong solutions for Richards’ equation with Cauchy conditions and constant pressure gradient. Environ.

Fluid Mech. 2020, 20, 165–174. [CrossRef]
8. Albrieu, J.L.B.; Reginato, J.C.; Tarzia, D.A. Modeling water uptake by a root system growing in a fixed soil volume. Appl. Math.

Model. 2015, 39, 3434–3447. [CrossRef]
9. Fengnan, L.; Fukumoto, Y.; Zhao, X. A linearized finite difference scheme for the Richards equation under variable-flux bounda-ry

conditions. J. Sci. Comput. 2020, 83, 1–21. [CrossRef]
10. Keshavarz, M.R.; Vazifedoust, M.; Alizadeh, A. Drought monitoring using a Soil Wetness Deficit Index (SWDI) derived from

MODIS satellite data. Agric. Water Manag. 2014, 132, 37–45. [CrossRef]
11. Jin, R.; Li, X.; Liu, S.M. Understanding the Heterogeneity of Soil Moisture and Evapotranspiration Using Multiscale Observa-tions

From Satellites, Airborne Sensors, and a GroundBased Observation Matrix. IEEE Geosci. Remote Sens. Lett. 2017, 14, 21322136.
[CrossRef]

12. Miller, G.R.; Baldocchi, D.D.; Law, B.E. Meyers An analysis of soil moisture dynamics using multi-year data from a network of
micrometeorological observation sites. Adv. Water Resour. 2007, 30, 1065–1081. [CrossRef]

13. Qin, X.D.; Pang, Z.G.; Jiang, W.; Feng, T.; Fu, J. Progress and development trend of soil moisture microwave remote sensing
retrieval method. J. Geo-Inf. Sci. 2021, 23, 1728–1742. (In Chinese) [CrossRef]

14. Kumar, S.T.; Bitar, A.A.; Sekhar, M.; Zribi, M.; Bandyopadhyay, S.; Kerr, Y. MAPSM: A Spatio-Temporal Algorithm for Merg-ing
Soil Moisture from Active and Passive Microwave Remote Sensing. Remote Sens. 2016, 8, 990.

15. Das, N.N.; Entekhabi, D.; Njoku, E.G. An Algorithm for Merging SMAP Radiometer and Radar Data for High-Resolution
Soil-Moisture Retrieval. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1504–1512. [CrossRef]

16. Wilson, D.J.; Western, A.W.; Grayson, R.B. A terrain and data-based method for generating the spatial distribution of soil moisture.
Adv. Water Resour. 2005, 28, 43–54. [CrossRef]

17. Srivastava, P.K.; Han, D.; Ramirez, M.R.; Islam, T. Machine Learning Techniques for Downscaling SMOS Satellite Soil Moisture
Using MODIS Land Surface Temperature for Hydrological Application. Water Resour. Manag. 2013, 27, 3127–3144. [CrossRef]

18. Yang, K.; Zhu, L.; Chen, Y.; Zhao, L.; Qin, J.; Lu, H.; Tang, W.; Han, M.; Ding, B.; Fang, N. Land surface model calibration through
microwave data assimilation for improving soil moisture simulations. J. Hydrol. 2016, 533, 266–276. [CrossRef]

19. Kumar, P.; Prasad, R.; Gupta, D.K.; Mishra, V.N.; Vishwakarma, A.K.; Yadav, V.P.; Bala, R.; Choudhary, A.; Avtar, R. Estimation of
winter wheat crop growth parameters using time series Sentinel-1A SAR data. Geocarto Int. 2017, 33, 942–956. [CrossRef]

20. Paloscia, S.; Pettinato, S.; Santi, E.; Notarnicola, C.; Pasolli, L.; Reppucci, A. Soil moisture mapping using Sentinel-1 images:
Algorithm and preliminary validation. Remote Sens. Environ. 2013, 134, 234–248. [CrossRef]

21. Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M.A. Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing
Models. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 35–46. [CrossRef]

22. Potin, P.; Rosich, B.; Miranda, N.; Grimont, P.; Shurmer, I.; O’Connell, A.; Krassenburg, M.; Gratadour, J.-B. Copernicus Sentinel-1
Constellation Mission Operations Status. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote
Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5385–5388. [CrossRef]

23. Yadav, V.P.; Prasad, R.; Bala, R.; Vishwakarma, A.K. An improved inversion algorithm for spatio-temporal retrieval of soil
moisture through modified water cloud model using C- band Sentinel-1A SAR data. Comput. Electron. Agric. 2020, 173, 105447.
[CrossRef]

24. Ma, C.; Li, X.; Wang, S.A. Global Sensitivity Analysis of Soil Parameters Associated With Backscattering Using the Advanced
Integral Equation Model. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5613–5623. [CrossRef]

25. Bindlish, R.; Barros, A.P. Parameterization of vegetation backscatter in radar-based, soil moisture estimation. Remote Sens. Environ.
2001, 76, 130–137. [CrossRef]

26. Ma, C.; Li, X.; Notarnicola, C.; Wang, S.; Wang, W. Uncertainty Quantification of Soil Moisture Estimations Based on a Bayesian
Probabilistic Inversion. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3194–3207. [CrossRef]

http://doi.org/10.1016/j.earscirev.2010.02.004
http://doi.org/10.3390/rs11030335
http://doi.org/10.1002/2016RG000543
http://doi.org/10.1038/ngeo2868
http://doi.org/10.1002/vzj2.20159
http://doi.org/10.1016/S0959-3780(02)00008-0
http://doi.org/10.1007/s10652-019-09705-w
http://doi.org/10.1016/j.apm.2014.11.042
http://doi.org/10.1007/s10915-020-01196-y
http://doi.org/10.1016/j.agwat.2013.10.004
http://doi.org/10.1109/LGRS.2017.2754961
http://doi.org/10.1016/j.advwatres.2006.10.002
http://doi.org/10.12082/dqxxkx.2021.210104
http://doi.org/10.1109/TGRS.2010.2089526
http://doi.org/10.1016/j.advwatres.2004.09.007
http://doi.org/10.1007/s11269-013-0337-9
http://doi.org/10.1016/j.jhydrol.2015.12.018
http://doi.org/10.1080/10106049.2017.1316781
http://doi.org/10.1016/j.rse.2013.02.027
http://doi.org/10.1109/TGRS.1985.289498
http://doi.org/10.1109/igarss.2019.8898949
http://doi.org/10.1016/j.compag.2020.105447
http://doi.org/10.1109/tgrs.2015.2426194
http://doi.org/10.1016/S0034-4257(00)00200-5
http://doi.org/10.1109/TGRS.2017.2664078


Sustainability 2021, 13, 12635 18 of 19

27. Chen, K.S.; Wu, T.-D.; Tsay, M.-K.; Fung, A.K. Note on the multiple scattering in an IEM model. IEEE Trans. Geosci. Remote Sens.
2000, 38, 249–256. [CrossRef]

28. Baghdadi, N.; Saba, E.; Aubert, M.; Zribi, M.; Baup, F. Evaluation of Radar Backscattering Models IEM, Oh, and Dubois for SAR
Data in X-Band Over Bare Soils. IEEE Geosci. Remote Sens. Lett. 2011, 8, 1160–1164. [CrossRef]

29. Attema, E.P.W.; Ulaby, F.T. Vegetation modeled as a water cloud. Radio Sci. 1978, 13, 357–364. [CrossRef]
30. Zhou, P.; Ding, J.L.; Wang, F.; Guljamal, U.; Zhang, Z.G. Retrieval methods of soil water content in vegetation covering areas

based on multi-source remote sensing data. J. Remote Sens. 2010, 14, 959–973.
31. Baghdadi, N.; El Hajj, M.; Zribi, M.; Bousbih, S. Calibration of the Water Cloud Model at C-Band for Winter Crop Fields and

Grasslands. Remote Sens. 2017, 9, 969. [CrossRef]
32. Weiß, T.; Ramsauer, T.; Löw, A.; Marzahn, P. Evaluation of Different Radiative Transfer Models for Microwave Backscatter

Estimation of Wheat Fields. Remote Sens. 2020, 12, 3037. [CrossRef]
33. Kornelsen, K.C.; Coulibaly, P. Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications.

J. Hydrol. 2013, 476, 460–489. [CrossRef]
34. Rodriguez-Fernandez, N.J.; Aires, F.; Richaume, P.; Kerr, Y.H.; Prigent, C.; Kolassa, J.; Cabot, F.; Jiménez, C.; Mahmoodi, A.;

Drusch, M. Soil moisture retrieval using neural networks: Application to SMOS. IEEE Trans. Geosci. Remote Sens. 2015, 53,
5991–6007. [CrossRef]

35. Lin, J.; Chen, X.M.; Zhang, Y.; Pang, G.X.; Zhang, X.H. Dynamic simulation of soil moisture in typical farmland of Taihu Lake
based on BP neural network. J. Nanjing Agric. Univ. 2012, 35, 140–144. (In Chinese)

36. Xu, H.; Yuan, Q.; Li, T.; Shen, H.; Zhang, L. Estimating Surface Soil Moisture from Satellite Observations Using Machine Learning
Trained on In Situ Measurements in the Continental U.S. J. Hydrol. 2020, 580, 6166–6169.

37. Vereecken, H.; Schnepf, A.; Hopmans, J.; Javaux, M.; Or, D.; Roose, T.; Vanderborght, J.; Young, M.; Amelung, W.; Aitkenhead, M.;
et al. Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone J. 2016, 15, 0131. [CrossRef]

38. Xu, H.; Yuan, Q.; Li, T.; Shen, H.; Zhang, L.; Jiang, H. Quality improvement of satellite soil moisture products by fusing with
in-situ measurements and GNSS-Restimates in the western continental U.S. Remote Sens. 2018, 10, 1351. [CrossRef]

39. Li, T.; Shen, H.; Zeng, C.; Yuan, Q.; Zhang, L. Point-surface fusion of station measurements and satellite observations for mapping
PM2.5 distribution in China: Methods and assessment. Atmos. Environ. 2017, 152, 477–489. [CrossRef]

40. Abowarda, A.S.; Bai, L.; Zhang, C.; Long, D.; Li, X.; Huang, Q.; Sun, Z. Generating surface soil moisture at 30 m spatial res-olution
using both data fusion and machine learning toward better water resources management at the field scale. Remote Sens. Environ.
2021, 255, 112301. [CrossRef]

41. Song, K.; Niu, S. Soybean LAI estimation with in-situ collected hyper-spectral data based on BP-neural networks. In Proceedings of
the 2007 3rd International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 14–16 June 2007; pp. 331–336.

42. Yu, X.H. Can back propagation error surface not have local minima. IEEE Trans. Neural Netw. 1992, 3, 1019–1021. [CrossRef]
43. Shen, H.; Li, T.; Yuan, Q.; Zhang, L. Estimating regional ground-level PM2.5 directly from satellite top-of-atmosphere reflec-tance

using deep belief networks. J. Geophys. Res. Atmos. 2018, 13, 875–886.
44. Diao, W.; Sun, X.; Zheng, X.; Dou, F.; Wang, H.; Fu, K. Efficient Saliency-Based Object Detection in Remote Sensing Images Using

Deep Belief Networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 137–141. [CrossRef]
45. Zeng, J.; Li, Z.; Chen, Q.; Bi, H. Method for Soil Moisture and Surface Temperature Estimation in the Tibetan Plateau Using

Spaceborne Radiometer Observations. IEEE Geosci. Remote Sens. Lett. 2014, 12, 97–101. [CrossRef]
46. Bai, X.; He, B.; Li, X.; Zeng, J.; Wang, X.; Wang, Z.; Zeng, Y.; Su, Z. First Assessment of Sentinel1A Data for Surface Soil Mois-ture

Estimations Using a Coupled Water Cloud Model and Advanced Integral Equation Model over the Tibetan Plateau. Remote Sens.
2017, 9, 714. [CrossRef]

47. Cui, Y.; Long, D.; Hong, Y.; Zeng, C.; Zhou, J.; Han, Z.; Liu, R.; Wan, W. Validation and reconstruction of FY-3B/MWRI soil
moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau. J. Hydrol.
2016, 543, 242–254. [CrossRef]

48. Zhao, L.; Yang, K.; Qin, J.; Chen, Y.; Tang, W.; Lu, H.; Yang, Z.-L. The scale-dependence of SMOS soil moisture accuracy and its
improvement through land data assimilation in the central Tibetan Plateau. Remote Sens. Environ. 2014, 152, 345–355. [CrossRef]

49. Van Der Velde, R.; Su, Z.; Ma, Y. Impact of Soil Moisture Dynamics on ASAR σo Signatures and Its Spatial Variability Observed
over the Tibetan Plateau. Sensors 2008, 8, 5479–5491. [CrossRef]

50. Chan, S.; Bindlish, R.; Hunt, R.; Jackson, T.J.; Kimball, J. Soil Moisture Active Passive (SMAP) Ancillary Data Report: Vegetation
Water Content. Pasadena Calif. 2013, 45, 53016.

51. Wang, H.; Magagi, R.; Goïta, K.; Wang, K. Soil moisture retrievals using ALOS2-ScanSAR and MODIS synergy over Tibetan
Plateau. Remote Sens. Environ. 2020, 251, 112100. [CrossRef]

52. Han, M.; Lu, H.; Yang, K.; Shi, J. Improvement of Vegetation Water Content Estimation Over the Tibetan Plateau Using Field
Measurements. In Proceedings of the 2018 IEEE 15th Specialist Meeting on Microwave Radiometry and Remote Sensing of the
Environment (MicroRad), Cambridge, MA, USA, 27–30 March 2018; pp. 1–5. [CrossRef]

53. Yang, M.; Wang, H.; Tong, C.; Zhu, L.; Deng, X.; Deng, J.; Wang, K. Soil Moisture Retrievals Using Multi-Temporal Sentinel-1 Data
over Nagqu Region of Tibetan Plateau. Remote Sens. 2021, 13, 1913. [CrossRef]

54. Entekhabi, D.; Reichle, R.H.; Koster, R.D.; Crow, W.T. Performance metrics for soil moisture retrievals and application require-
ments. J. Hydrometeorol. 2010, 11, 832–840. [CrossRef]

http://doi.org/10.1109/36.823917
http://doi.org/10.1109/LGRS.2011.2158982
http://doi.org/10.1029/RS013i002p00357
http://doi.org/10.3390/rs9090969
http://doi.org/10.3390/rs12183037
http://doi.org/10.1016/j.jhydrol.2012.10.044
http://doi.org/10.1109/TGRS.2015.2430845
http://doi.org/10.2136/vzj2015.09.0131
http://doi.org/10.3390/rs10091351
http://doi.org/10.1016/j.atmosenv.2017.01.004
http://doi.org/10.1016/j.rse.2021.112301
http://doi.org/10.1109/72.165604
http://doi.org/10.1109/LGRS.2015.2498644
http://doi.org/10.1109/LGRS.2014.2326890
http://doi.org/10.3390/rs9070714
http://doi.org/10.1016/j.jhydrol.2016.10.005
http://doi.org/10.1016/j.rse.2014.07.005
http://doi.org/10.3390/s8095479
http://doi.org/10.1016/j.rse.2020.112100
http://doi.org/10.1109/MICRORAD.2018.8430707
http://doi.org/10.3390/rs13101913
http://doi.org/10.1175/2010JHM1223.1


Sustainability 2021, 13, 12635 19 of 19

55. Wu, C.; Cao, G.; Chen, K.; E, C.; Mao, Y.; Zhao, S.; Wang, Q.; Su, X.; Wei, Y. Remotely sensed estimation and mapping of soil
moisture by eliminating the effect of vegetation cover. J. Integr. Agric. 2019, 18, 316–327. [CrossRef]

56. Rodríguez, J.D.; Pérez, A.; Lozano, J.A. Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation. IEEE Trans.
Pattern Anal. Mach. Intell. 2010, 32, 569–575. [CrossRef] [PubMed]

57. Li, T.; Shen, H.; Yuan, Q.; Zhang, X.; Zhang, L. Estimating ground-level PM2. 5 by fusing satellite and station observations: A
geo-intelligent deep learning approach. Geophys. Res. Lett. 2017, 44, 985–993. [CrossRef]

58. Zhang, L.; Meng, Q.; Yao, S.; Wang, Q.; Zeng, J.; Zhao, S.; Ma, J. Soil Moisture Retrieval from the Chinese GF-3 Satellite and
Optical Data over Agricultural Fields. Sensors 2018, 18, 2675. [CrossRef]

http://doi.org/10.1016/S2095-3119(18)61988-4
http://doi.org/10.1109/TPAMI.2009.187
http://www.ncbi.nlm.nih.gov/pubmed/20075479
http://doi.org/10.1002/2017GL075710
http://doi.org/10.3390/s18082675

	Introduction 
	Data and Methods 
	Study Area 
	Research Data 
	Methodology 
	Vegetation Water Content 
	Calculation of the Bare Soil Backscatter Coefficient by the Water Cloud Model 
	Deep Belief Network Soil Moisture Retrieval Model 
	Accuracy Evaluation 
	Technical Process 


	Results and Analysis 
	Calculation of the Bare Soil Backscatter Coefficient and Analysis of Its Correlation with Soil Moisture 
	Accuracy Assessment of Soil Moisture Inversion by Deep Belief Network Model 
	Ten-Fold Cross-Validation 
	Analysis of Soil Moisture Inversion Results 

	Discussion 
	Conclusions 
	References

