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Abstract: The increasing world population and the growing quantity of solid waste have become
a challenging problem facing governments and policy makers because of the scarcity of suitable
sites for new landfills and the negative perception of these sites by the people. This study aims to
evaluate the performance of different Multi-Criteria Decision-Analysis (MCDA) approaches using
remote sensing and Geographic Information System (GIS) data for identifying suitable landfill sites
(LFSs). We evaluated the methodologies used by various investigators and selected appropriate ones
as suitable sites for Municipal Solid Waste (MSW) landfill in the Tanjero River Basin (TRB) in the
Iraqi Kurdistan region. We applied Boolean Overlay (BO), Weighted Sum Method (WSM), Weighted
Product Method (WPM), Analytic Hierarchy Process (AHP), and Technique for Order Performance
by Similarity to an Ideal Solution (TOPSIS) to allow combined use of 15 thematic layers as predictive
factors (PFs). In this study, we applied the Topographic Position Index (TPI) for the first time to select
MSW LFSs. Almost all methods showed reliable results and we identified eight suitable sites situated
in the western part of the TRB having total area of ~18.35 km2. The best accuracy was achieved
using the AHP approach. This paper emphasizes that the approach of the used method is useful for
selecting LFSs in other areas, which are located in similar environments.

Keywords: GIS; landfill; MSW; WSM; WPM; AHP; TOPSIS; MCDA

1. Introduction

Waste refers to any substance requiring disposal, which includes unusable materials,
worthless, defective and unwanted items. The site of the disposal of waste materials
is called landfill. This site involves either collecting, sorting, processing, or recycling
of wastes [1–3]. Population has a direct relationship with waste production possesses,
which contribute to environmental deterioration [4]. Therefore, for each city, solid waste
management is a crucial environmental challenge [5].

Growing world population along with ever-increasing global urbanization has emerged
as a major environmental concern in the 21st century. A direct correlation exists between
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population and waste quantity. Urbanites are generating more waste than ever before, as
56.2% of world population was residing in cities in 2020. It is estimated that by the middle
of this century about 70% of people in the world will live in cities [6]. In addition, proximity
to manufacturing facilities and industrial plants in urban areas contribute to a large amount
of waste representing a mix of ordinary garbage, termed Municipal Solid Waste (MSW).
Electronic or e-waste, medical/health care waste (that became a serious issue during the
COVID-19 pandemic) further adds to the problem of managing the increasing volume of
waste [6]. Despite the technological advances in converting waste to energy (WtE) and
increasing recycling rates, landfills, as yet, are the predominant way of MSW disposal:
For example, in 2019, China accounted for 45% landfill sites, where China produced more
than 242 million tons of MSW [7]. Yet, suitable sites for locating new landfills are getting
scarce due to various geological, engineering, legal, and societal constraints. This paper
is an attempt to provide a sound basis for landfill site (LFS) selection by using the most
widely used criteria and subjecting them to rigorous Geographic Information System (GIS)
methodologies. The article is intended to serve as a screening tool to select candidate sites
that meet the known criteria to be followed by detailed site investigations. This approach
would entail significant cost savings because field studies would be focused on only these
promising (candidate) sites that have met the criteria, thereby substantially reducing time
and expenses involved in site investigations.

Dozens of studies have been done to solve the waste disposal problem. Part of these
studies applied various Multi-Criteria Decision-Analysis (MCDA) models to select suitable
location for municipal solid waste (MSW) disposal sites [8]. The most common MCDA
models are: fuzzy Analytic Hierarchy Process (AHP) [9], Technique for Order Performance
by Similarity to an Ideal Solution (TOPSIS) [10], Weighted Sum Method (WSM) [11], and
Weighted Product Method (WPM) [12]. All these methods have been widely used in the
field of MSW management [13–18].

A simple review of 27 high quality articles (Table 1) selected from Scopus database
and published recently, dealing with landfilling of MSW shows that more than 80% of these
papers used slope gradient, distance to the villages, the towns and the cities, and distance
to the road as important predictive factors (PFs) for LFS selection. More than 73% of these
articles applied distance to surface water bodies as a predictive factor (PF), while >50%
used lithology, soil, land use and land cover (LULC), groundwater depth, and distance to
the airport as PFs. Elevation, distance to the active fault, distance to the powerline and
distance to the agricultural lands were used less frequently (between 25% and 50%).

In this study, we identified suitable sites for LFS using GIS methods and prepared
maps showing suitable LFSs for the Tanjero River Basin (TRB) in the Iraqi Kurdistan region.
The aims of this paper were twofold: (1) to compare and evaluate the efficacy of five MCDA
methods (Boolean Overlay (BO), WSM, WPM, AHP and TOPSIS); and (2) to find the most
suitable site(s) for LFS in the TRB. For this purpose, we used 15 layers to assess methods’
performance. These thematic layers involve (1) lithology, (2) soil, (3) land cover, (4) distance
to road, (5) slope gradient, (6) Topographic Position Index (TPI), (7) groundwater depth, (8)
distance to the towns and the cities, (9) distance to the village, (10) distance to the active
fault, (11) distance to the powerline, (12) distance to the surface water bodies, (13) distance
to the agricultural lands, (14) elevation, and (15) distance to the springs.

Part of the TRB has been studied by [19]. They used MCDA methods to identify seven
suitable LFSs. However, we considered the entire TRB to give full evaluation of the whole
basin. In addition, we expanded the factors used by [19] via adding some important factors,
such as distance to springs, distance to active faults, distance to agricultural lands, and
Topographic Position Index (TPI). To the best of our knowledge, the TPI as a PF for LFS
selection is being used first time in this study.
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Table 1. Significant factors used for LFS selection in recent articles.
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[2] * * * * * * * * * * * * * * *
[3] * * * * * * * * * * * * *
[19] * * * * * * * * * * * * *
[20] * * * * * * * * * * *
[21] * * * * * * * * * * * * *
[22] * * * * * * * * * * * * * * *
[23] * * * * * * *
[24] * * * * * * * * * * * * *
[25] * * * * * * * * * * * * *
[26] * * * * *
[27] * * * * * * * * *
[28] * * * * * *
[29] * * * * * * * *
[30] * * * * * * * * *
[31] * * * * * * * * * * * *
[32] * * * * * * * * *
[33] * * * * * * * * * *
[34] * * * * * * * * * * *
[35] * * * * * * * *
[36] * * * * * * * * *
[37] * * * * * * * * * * * * * * * *
[38] * * * * * * * * * *
[39] * * * * * * * * *
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Table 1. Cont.
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[40] * * * * * * * * * * *
[41] * * * * * *
[42] * * * * * * * * * *
[43] * * * * * * * * * * * * * *
Average
rate 85.2 85.2 81.5 74.1 66.7 66.7 63 63 51.9 51.9 48.2 40.7 33.3 29.6 25.9 25.9 22.2 22.2 14.8 11.1 7.4 7.4 7.4 7.4 7.4 7.4 7.4 3.7 3.7 3.7

* Predictive factor is existed.
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2. Methodology
2.1. Study Area

The Tanjero River flows northwest, west, and southeast of Sulaymaniyah governorates
in the Kurdistan Region between latitude 34◦53′34′ ′ N and 35◦47′12′ ′ N, and between
longitude 45◦11′16′ ′ E and 46◦12′7′ ′ E. The TRB covers ~3317 km2 and encompasses the
Sulaymaniyah and Halabja cities and Syed Sadiq town, in addition to Darbandikhan Lake,
which is one of the important and main water storages in Iraq (Figure 1). In the last 20 years,
the maximum water-level of the Darbandikhan Reservoir was recorded on 27 April 2016
(485.06 m above sea level (m a.s.l.), while the minimum water-level was recorded on 18
October 2015 (459.49 m a.s.l.) [44]. Tanjero River and its tributaries feed the Darbandikhan
Reservoir, which is located in the southwest part of the basin.
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The quantity of MSW generation in Sulaymaniyah City has been increasing rapidly
concomitantly with the population’s increase, underscoring the need of reliable studies to
select suitable LFSs for MSW. According to Iraqi government documents, the population
of three major cities, Sulaymaniyah, Halabja and Syed Sadiq on 1 July 2018, was 676,500,
109,000 and 61,600, respectively [45]. However, taking into account residents in over
650 villages within the TRB, the total population will be more than a million. [46] estimated
the total volume required to accommodate all municipal waste streams to be generated over
the 20 years at 39 million m3 with per capita waste producing >1.4 kg per day. This volume
needs at least two landfills [46]. Currently, all MSW is being deposited at the Tanjero
site, which is located 4.5 km south of Sulaymaniyah City [47]. Despite co-mingled waste
being deposited in an open dump that lacks engineered barriers, leakage and landfill gas
management system, Sulaymaniyah government has done its best to make the randomly
selected site environmentally safe, despite the lack of financial resources. Nonetheless,
the Tanjero dump is unsafe, causing pollution of air, water, and land, and threatening
people’s health. The problems get worse due to lack of adequate oversight, weakness
in the management, monitoring at the site, and weak enforcement of the regulations by
responsible parties [48]. It is not only the common urban waste, but wastes from oil
refineries, cement plants, along with medical waste from local hospitals are all disposed
at the same place [49]. The deficiencies of the existing Tanjero dump and the need of
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environmentally safe LFS are the major drivers of this article to determine suitable sites for
new LFS. In addition, the GIS and MCDM methods have not been applied in the larger
part of the basin, with the exception of [19] which dealt with the northeast part of the basin.

2.2. Material

GIS is a powerful approach due to its capability for processing and analyzing vast
data from different sources [1]. The Synthetic Aperture Radar (SAR) was used to identify
water bodies, since large areas in the vicinity of the Darbandikhan Reservoir are covered
by cloud. We processed one C-band scene of Sentinel 1A/Ground Range Detected High
(GRDH) data with instrument mode type of this data, which is the Interferometric Wide
Swath (IW). It has 10 m resolution and Descending orbit pass. This scene was acquired on
27 April 2016 (maximum water-level). Due to frequent cloud coverage on the region before
and after 27 April 2016, microwave data were used to penetrate cloud cover. As a first step,
we extracted the calibrated backscatter coefficient (σ0), then, converted the linear data to
log scale (dB) data. The dB data were corrected by applying the Range-Dobbler terrain
correction. The maximum water body of the reservoir was determined by thresholding the
corrected dB, where the water body has dB ≤ −20.

We mosaiced three scenes of Digital Elevation Model (DEM)-Shuttle Radar Topog-
raphy Mission (SRTM)-with resolution of 1 arc-second (~30 m). The elevation factor is
represented by the DEM, which is also used to extract the slope gradient and the TPI.

SAR data were processed using Sentinel Application Platform (SNAP) software [50].
GIS operations (slope, TPI, distance maps, inverse distance weighted interpolation, and
base map), as well as the preparation of final maps, were done using ArcGIS10 [51].
Statistical operations were performed using R-based scripts.

3. Predictive Factors

A several of appropriate factors must be taken into account to select the most suitable
LFSs. Table 1 shows the 27 reviewed high-quality articles published recently [2,3,20–43].
We depend on these articles to select the PFs dealing with landfilling. Fourteen PFs were
selected (Table 2; factors #1–5 and #7–15), which were applied >30% in the literature, and
the rest factors were excluded (Table 1). We used the TPI as a PF (Table 2; factor no. 6) to
select MSW landfill sites (LFSs) for the first time.

Table 2. Factors relations towards the LFS selection.

No Factor Relationship Type Type of Data Relation Intensity

1 Lithology No relation Discrete Strong
2 Soil No relation Discrete Weak
3 LULC No relation Discrete Weak
4 Distance to road No relation Discrete Weak
5 Slope (◦) No relation Continuous Weak
6 TPI No relation Discrete Very weak
7 Groundwater depth (m) Direct Continuous Strong
8 Distance to towns and cities (m) Direct Continuous Strong
9 Distance to village (m) Direct Continuous Strong

10 Distance to active fault (m) Direct Continuous Moderate
11 Distance to Powerline (m) Direct Continuous Weak
12 Distance to surface water bodies (m) Direct Continuous Very strong
13 Distance to agricultural lands (m) Direct Continuous Weak
14 Elevation No relation Continuous Weak
15 Distance to springs Direct Continuous Very weak

The PFs used to select the LFSs can be categorized as: hydrologic geologic, topographic,
socio-economic and land use factors [20]. We selected fifteen PFs as thematic layers
(Table 2).
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The pixel of the layers were resized to 30 m spatial resolution. Two raster formats
were used for the PFs (continuous and discrete; Table 2). We converted the continuous
factors to discrete factors by selecting multi threshold values based on our knowledge and
background of the study area. The numbers and boundaries of categories can affect the
results of the MCDA methods [52]. We classified each continuous PF into five main groups,
which are: most suitable, suitable, moderately suitable, less suitable, and not suitable. The
classes in the discrete PFs are assigned to have the same five groups (i.e., most suitable,
suitable, moderately suitable, less suitable, and not suitable). The weights of the five main
groups are 1, 3, 5, 7, and 9, where the not suitable is 1 and the most suitable is 9.

3.1. Geological Factors

Geological factors significantly influence the seepage rate and flow direction of the
leakage. Therefore, low permeability geological units were selected to mitigate the con-
tamination risk resulting from the leakage [20]. According to [53], the study area is located
within the Unstable Shelf (i.e., Imbricated Zone (IZ), and the High Folded Zone (HFZ))
and the Zagros Suture Zone (ZSZ) of the Zagros orogenic belt. This belt extends approxi-
mately 2000 km long, and trends in NW-SE direction from southern Iran through Iraq to
SE Turkey [54–59].

We used the following three geological factors, which are lithological units, distance
to active faults, and soil types. (1) Lithological units were obtained by scanning, georef-
erencing, and digitizing 1:250,000 scale geological quadrangle map of Sulaymaniyah [60]
and Khanaqin [61]. The compiled map of the study area includes 21 lithological units
(Figure 2A). The ZSZ consists of five units, which consist of limestone, shale, radiolarian
cherts, conglomerates, and basalt, ranging in age from Triassic to Late Cretaceous. The
Unstable Shelf (USh) includes 11 units. These units mainly include limestone, besides
minor amount of dolomite, marl, claystone, shale, conglomerate, siltstones, sandstones,
gypsum, and bitumen, were deposited during the Triassic and the Middle Miocene periods.
The ZSZ and USh are overlain by five types of Quaternary sediments. The Quaternary
sediments include alluvial fans, depression fill, slope debris, and flood plains deposits.

(2) Distance to active faults, where faults are potential pathways for fluid migration
and could also be seismically active. Highly faulted areas are not suitable for landfill siting
and vice versa [1]; the LFS should be located far from the active faults [62]. We obtained
the active faults by digitizing the two series of 1:250,000 scale above mentioned geological
maps [60,61]. The TRB includes 148 fault segments. Eight of them are normal faults, while
the rest are thrust faults (Figure 2B). The total length of faults is ~161.5 km but most of
them are <2 km in length. The major directions of the faults are NNW-SSE and WNW-ESE
(Figure 3A). The distance to the faults reaches 34.35 km. Several studies recommended that
the landfill could not be located within 500 m of active faults [3,38,63,64].

(3) Soil types were extracted from the Harmonized World Soil Database (HWSD) [65],
which consist of a 1 km raster image. The LFSs should be located in areas of low perme-
ability soil [66] to prevent water entering the landfill from carrying dissolved polluted
materials, causing serious contamination of groundwater system. Three types of soil are
occurred in the TRB: leptosols, vertisols, and calcisols (Figure 2C). The leptosols (thin soil
with predominantly high infiltration rate) and calcisols (thick soil with predominantly
moderately infiltration rate) are loamy soil, while the vertisols is thick light clay soil with
predominantly low infiltration rate [67,68] (Figure 3B).
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3.2. Topographic (Morphological) Factors

We used three topographic factors, which are elevation, slope gradient, and Topo-
graphic Position Index (TPI).

(1) Elevation factor: high elevation lands are most suitable for LFSs than the low
elevation lands in terms of flooding potential [70]. But the drawback is high cost of MSW
transportation in the high lands due to high runoff erosion, unstable slopes cuts for roads,
all requiring frequent maintenance [71]. In addition, the high lands maybe represent
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groundwater recharge zones [72]. The range of elevation in TRB is between 423 and 2615 m
(Figure 4A). The highest suitability rank is assigned to moderate elevation lands (Table 3).
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(2) Slope gradient data were extracted from DEM. The significance of the slope gra-
dient is in evaluating the stability of slopes and landslide potential and road failures for
construction and operation of landfill. Lands having gentle slopes are more suitable than
lands with a steep slope for landfill siting [71]. The pixels with slope > 20◦ are unsuitable
for MSW landfill [8]. Slope gradients in TRB range between flat and 76.6◦ (Figure 4B).
We determined the slope gradient pixels in the 2◦–12◦ [3,73] and 12.1◦–15◦ range to be
most suitable for landfill location. The horizontal, steep, and very steep slopes areas are
moderate, less suitable, and not suitable sites, respectively (Table 3).

(3) TPI, as a PF for landfill, is calculated using Equation (1) [74], which calculates the
fluctuation between the pixel elevation and the surrounded pixels average elevation using
a pre-specific kernel-matrix (M).

TPI = Ec − (
1

nM ∑
i∈m

Ei) (1)

There is a relationship between the slope curvature and water infiltration to the
groundwater where water infiltration increases with the concave up and decreases with
the concave down. However, the slope curvature function considers a few pixels around
the central point of the used Kernel (three by three pixels) [75], which exhibits higher errors
in terms of the occurrence of local depressions. Thus, some areas seem to be locally suitable
for landfilling while, in fact, it is unsuitable for large-scale LFS selection. To overcome this
challenge and propose more accurate sites to be used as landfilling, we proposed the use of
TPI, which considers larger area and avoid local curvature.
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Table 3. Decision rules for used PFs and finalized weights of factors acquired from WSM, SPM, AHP models.

Lithology Suitability Rank Normalized
Weight

Groundwater
Depth (m) Suitability Rank Normalized

Weight

Lake Not suitable 1 0.00317 0–13 Not suitable 1 0.003623

Floodplain Not suitable 1 0.00317 13.1–30 Less suitable 3 0.01087

Slope sediments Not suitable 1 0.00317 30.1–48 Moderately
suitable 5 0.018116

Depression fill Not suitable 1 0.00317 48.1–80 Suitable 7 0.025362

Polygenetic
sediments Not suitable 1 0.00317 80.1–159.38 Most suitable 9 0.032609

Alluvial fan Not suitable 1 0.00317
Distance to
Towns and
Cities (m)

Suitability Rank Normalized
Weight

Avroman
limestone Less suitable 3 0.009511 0–1000 Not suitable 1 0.00317

Undifferentiated
Jurassic

Moderately
suitable 5 0.015851 1000.1–5000 Less suitable 3 0.009511

Qulqula
radiolarian Not suitable 1 0.00317 5000.1–10,000 Moderately

suitable 5 0.015851

Qulqula
conglomerate Less suitable 3 0.009511 10,000.1–20,000 Suitable 7 0.022192

Basalt intrusion Most suitable 9 0.028533 20,000.1–14,725.7 Most suitable 9 0.028533

Fatha Most suitable 9 0.028533 Distance to
Village (m) Suitability Rank Normalized

Weight

Pila Spi Less suitable 3 0.009511 0–1000 Not suitable 1 0.00317

Gercus Most suitable 9 0.028533 1000.1–2000 Less suitable 3 0.009511

Khurmala-Sinjar Less suitable 3 0.009511 2000.1–3000 Moderately
suitable 5 0.015851

Kolosh Suitable 7 0.022192 3000.1–4000 Suitable 7 0.022192

Tanjero, Aqra
and Bekhme Less suitable 3 0.009511 4000.1–5768.3 Most suitable 9 0.028533

Shiranish Suitable 7 0.022192 Distance to
Active Fault (m) Suitability Rank Normalized

Weight

Balambo-
Kometan Less suitable 3 0.009511 0–500 Not suitable 1 0.002264

Undifferentiated
Cretaceous Less suitable 3 0.009511 50.1–2000 Less suitable 3 0.006793

Jurassic Less Suitable 3 0.009511 2000.1–5000 Moderately
suitable 5 0.011322

Triassic Less suitable 3 0.009511 5000.1–10,000 Suitable 7 0.015851

Soil Suitability Rank Normalized
Weight 10,000.1–34,350.2 Most suitable 9 0.02038

Leptosols Less suitable 3 0.004076 Distance to
Powerline (m) Suitability Rank Normalized

Weight

Vertisols Suitable 7 0.009511 0–300 Not suitable 1 0.001359

Calcisols Moderately
suitable 5 0.006793 300.1–5000 Less suitable 3 0.004076
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Table 3. Cont.

Lithology Suitability Rank Normalized
Weight

Groundwater
Depth (m) Suitability Rank Normalized

Weight

LULC Suitability Rank Normalized
Weight 5000.1–10,000 Moderately

suitable 5 0.006793

Water bodies Not suitable 1 0.001812 10,000.1–20,000 Suitable 7 0.009511

Urban and
built-up land Not suitable 1 0.001812 20000.1–40,864.9 Most suitable 9 0.012228

Vegetated land Less suitable 3 0.005435
Distance to

Surface Water
Bodies (m)

Suitability Rank Normalized
Weight

Harvested land Less suitable 3 0.005435 0–500 Not suitable 1 0.004076

Cultivated land Less suitable 3 0.005435 500.1–5000 Less suitable 3 0.012228

Carbonate rocks Suitable 7 0.012681 5000.1–10,000 Moderately
suitable 5 0.02038

Clastics rocks Most suitable 9 0.016304 10,000.1–30,000 Suitable 7 0.028533

Burn land Moderately
suitable 5 0.009058 30,000.1–59,722.4 Most suitable 9 0.036685

Distance to
Road (m) Suitability Rank Normalized

Weight

Distance to
Agricultural

Lands (m)
Suitability Rank Normalized

Weight

0–1000 Not suitable 1 0.001359 0–300 Not suitable 1 0.000906

1000.1 –5000 Most suitable 9 0.012228 300.1–600 Less suitable 3 0.002717

5000.1–10000 Suitable 7 0.009511 600.1–1200 Moderately
suitable 5 0.004529

10000.1–20000 Moderately
suitable 5 0.006793 1200.1–2500 Suitable 7 0.006341

>10000 Less suitable 3 0.004076 2500.1–4183.4 Most suitable 9 0.008152

Slope (◦) Suitability Rank Normalized
Weight Elevation (m) Suitability Rank Normalized

Weight

>20 Not suitable 1 0.001359 1560.1–2615 Not suitable 1 0.000906

15.1–20 Less suitable 3 0.004076 1171.1–1560 Moderately
suitable 5 0.004529

12.1–15 Suitable 7 0.009511 891.1–1171 Suitable 7 0.006341

2–12 Most suitable 9 0.012228 660.1–891 Most Suitable 9 0.008152

0–2 Moderately
suitable 5 0.006793 423–660 Less suitable 3 0.002717

TPI (m) Suitability Rank Normalized
Weight

Distance to
Springs Suitability Rank Normalized

Weight

(−274.1)–(−5) Not suitable 1 0.000453 0–500 Not suitable 1 0.004076

(−4.99)–0 Less suitable 3 0.001359 500.1–1000 Less suitable 3 0.012228

0–20 Moderately
suitable 5 0.002264 1000.1–5000 Moderately

suitable 5 0.02038

20.1–75.2 Most suitable 9 0.004076 5000.1–15,000 Suitable 7 0.028533

75.21–311.9 Suitable 7 0.00317 15,000.1–28,909.1 Most suitable 9 0.036685

Negative TPI means that the central pixel has elevation lower than the average sur-
roundings pixels, while positive TPI means that the central pixel has an elevation higher
than the average surroundings pixels [52]. We computed TPI for the study area in ArcGIS
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software using a moving window of 50 pixels [52]. The range of TPI in TRB is between
−274.1 and 311.9 m (Figure 4C). The highest rank of suitability is assigned to the areas
within moderate topographic positions (i.e., 20.1–75.2 m; Table 3).

3.3. Hydrogeological and Hydrological Factors

MSW landfills are a significant cause of groundwater pollution, so the depth to
groundwater surface at a LFS is a very critical. The depth to groundwater in the study
area is more than 10 m, which is suitable for landfilling [76]. The available data of 243
boreholes obtained from Sulaymaniyah Groundwater Directorate is used [77] to generate
depth to groundwater map, the depth ranges between 0 to 159.4 m (Figure 5A). In addition,
data of surface water and springs (which will be mentioned below) as a zero-groundwater
level are used. The groundwater in TRB classified as a fresh water [78], the TDS content
varies between <500 to 900 mg/L. Previous studies, such as [19,79–84], have revealed that
the ground and surface waters in the area are polluted with many organic and inorganic
contaminants, and the problem is getting worse due to the prevailing draught condition in
the area.
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Water bodies and surrounding areas cannot be used as sites for MSW LFS due to high
potential of direct contamination. [3,38,85] stated that 500 m distance around the surface
water is a fair buffer, while [76] thought that the buffer zone should be >5000 m. Both
the Darbandikhan Lake (with an area of 66.86 km2) and the Tanjero River, located in the
TRB, contain potable water with the TDS varying from 271 to 412 ppm, respectively [86].
The distance to water bodies is up to 59.7 km (Figure 5B), with water level of 485.06 m
a.s.l.; [87]).

Distance to springs is produced using 37 springs acquired from Sulaymaniyah Surface
Water Directorate [87]. According to [3,88], a minimum buffer of 300 m must be used
around springs to determine MSW LFSs, while [70,89] stated that a MSW landfill should
not be sited <500 m. The distance to springs areas in TRB reaches 28.9 km (Figure 5C).
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3.4. Socio-Economic Factors

This factor is included to evaluate potential impacts from landfill siting and to mini-
mize economic and aesthetic deterioration. We used four socio-economic factors, which
are: distance to towns and cities (m), distance to villages (m), distance to roads (m), and
distance to powerlines (m). The MSW landfill must be located at a reasonable distance
far from villages, towns, and cities due to health and public concerns [66]. [3,88] reported
appropriate distance of the landfill from villages, towns, and cities to be >1000 m. In the
TRB, the farthest pixel from cities and towns is ~14.7 km away (Figure 6A), while the
farthest pixel from villages is ~5.7 km (Figure 6B).
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LFSs should be selected to be at a justifiable distance away from the roads to avoid
negative aesthetic impacts [24]. The researcher used different values as minimum distance
to the road (m) for selecting the MSW landfill. They proposed 300 m [30,38], 500 m [36,37],
and 1000 m [66,90] as buffer distance from MSW landfill. Accordingly, we eliminated sites
within 1000 m of major roads. We believe that it will provide adequate buffer zone for
noise, dust, etc. created from movement of garbage trucks, without requiring construction
of new access roads for transportation and collection of solid wastes [22,27]. The farthest
point from roads in the TRB is ~28.1 km (Figure 6C).

As [36] suggested, we used a buffer 300 m (4) distance to the powerline (m) as non-
suitable areas for MSW LFSs. The farthest area from powerlines in the TRB is ~41 km
(Figure 6D). The shapefiles of the settlements, the roads and powerlines were obtained
from [91]. We calculated the Euclidean distances from existing villages, towns, cities, roads,
and powerlines minimum distances from these features to each pixel in the TRB.

3.5. Land Use Factors

We used two land use PFs: (1) land use and land cover (LULC), and (2) distance to
agricultural lands.

(1) The LULC map was supplied by Iraq Geological Survey and contains nine classes
(Figure 7A). It was produced using Landsat satellite data having 30 m spatial resolution.
It has been validated by fieldtrip with an overall accuracy of ~93.60% [92]. Several land
covers are present in the study area and include: water bodies, urban and built-up land,
vegetated land, harvested land, cultivated land, burnt land, carbonate rocks, conglomerates
and gravels, and other clastic rocks [92].
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(2) The area under forest cover must be avoided for landfill siting because it negatively
affects natural forest resources [93]. We used distance to agricultural lands (m) to avoid
selecting landfill in and near the vegetation cover. We calculated the Euclidean distances
from vegetation cover distances within TRB (Figure 7B). The Normalized Difference Vege-
tation Index (NDVI) was used to characterize the vegetation cover. We used the equation
proposed by [94] to calculate the NDVI. It was calculated after extraction of the reflectance
(ρ) from the digital number (DN) of Landsat data [38]. proposed that 300 m distance away
from agricultural and forest lands could be acceptable for locating MSW landfill.

4. Suitable Landfill Site Selection Model

There is no agreement about a specific method that can be considered to be the most
suitable for all types of decision-making technique [95–97]. A big criticism of MCDM is
the fact that various methods might obtain various results if used to the same issue [98].
The definition of a suitable MCDM approach is thus not a simple task, and the focus
should be on the precise determination of the approach [95]. Available papers show huge
practical applications of comparative analyses of various MCDM approaches [9,11–18,99].
We employed five methods to distinguish suitable locations for MSW LFSs. These methods
are BO, WSM, WPM, TOPSIS, and AHP.

4.1. Boolean Overlay (BO)

BO is a simple method, widely used to determine suitable sites for solid waste land-
fills [2,16,17,31,37,38,100–103]. It is based on reclassifying multi-factors used to select LFSs
into binary values (0, 1), where 1 and 0 are suitable (yes) and unsuitable (no) pixels, respec-
tively [31]. We prepared a final suitability map for landfilling by combining whole-created
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binary maps for the constraints using the Boolean overlay (AND operation), which is
defined by Equation (2) [17]:

1 = {if A > X ≥ B}, OR 0 (2)

where A and B are constant, and X is the factor
To be on the safe side for LFS selection, we used the maximum distance for various

factors (Table 4).

Table 4. Safe distance of Boolean conditions.

Factor Threshold Reference

Lithology * /
Soil ** /

LULC *** /
Distance to main roads (m) 1000 [66,90]

Slope (◦) >20 [8]
TPI (m) <−5 /

Groundwater depth (m) 13 [76] #

Distance to villages, city and towns (m) 1000 [3,88]
Distance to active faults (m) 500 [3,38,63,64]
Distance to Powerline (m) 300 [36]

Distance to surface water bodies (m) 500 [3,38,85]
Distance to agricultural lands (m) 300 [38]

Elevation >1560 /
Distance to spring 500 [70,89]

* Qulqula radiolarian, Lake, and all Quaternary sediments (i.e., floodplain, slope sediments, depression fill,
polygenetic sediments, and alluvial fan) is nominated as not suitable for LFS selection. ** No soil classes have been
nominated as not suitable for LFS selection. *** Water bodies, and urban and built-up land have been nominated
as not suitable for LFS selection # Abd-El Monsef and Smith (2019) used minimum groundwater depth of 10 m.

4.2. Weighted Sum Method (WSM)

WSM is a straightforward MCDM method, used for solid waste LFS selection [37,
104–106]. This method considers that all factors have equal weight, which is one of its
deficiencies [107,108]. Where the weight of the factors equals to each other. Firstly, we
categorized each factor into five categories. These are 1, 3, 5, 7, and 9 for the not suitable, less
suitable, moderately suitable, suitable, and most suitable for landfill location, respectively.
The weight of these five categories was identified according to the possibility of air, water,
and soil contamination for the surrounding areas of the proposed landfill. The relationship
between LFSs and landfill PFs is shown in Table 3. Column “Rank” shows the final WSM
ranks for the factors used to select the LFSs. Following is a summation of whole PFs using
the equation proposed by [109,110].

WSM =
n

∑
i=1

wjaij (3)

where n is the number of factors, aij is the actual value of the ith of the jth criterion and wj
is the weight of the jth criterion.

4.3. Weighted Product Model (WPM)

WPM is very similar to the WSM, the essential variation is that instead of summation
in the mathematical expression there is multiplication [109,110]. Similar to WSM, the
weight of factors equals to each other. We used the same weight of the classes used in WSM
(Table 3 column “Rank”) to select the suitable LFSs. Equation (4) suggested by Bridgman
(1922) was implemented [109].

WPM =
n

∏
i=1

(xkj/xij)
wi (4)
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where n is the number of factors, xij is the actual value of the ith of the jth criterion (Table 3),
xkj is relative value, and wi is the weight of the jth criterion.

4.4. Technique for Order Performance by Similarity to an Ideal Solution (TOPSIS)

The alternative of choosing the shortest distance from the ideal best solution and
the longest distance from the ideal worst solution in the TOPSIS method, makes this
method suitable for LFS selection [111–113]. This method is reliable because the de-
cision makers may desire a decision not only on the most suitable LFSs but also to
avoid unsuitable sites [113]. Following steps that have been used to implement TOP-
SIS method [71,109–112,114–119]. As a first step, we utilized the same weight of the classes
in Table 3 (column “Rank”) to build the TOPSIS method. Then, we normalized each PF X′ij
using Equation (5).

X′ij =
Xij√

∑n
j=0 X2

(5)

where Xij is pixel value.
Furthermore, we compute the suitability value of the PF Wj by calculating the mean

of the weights given by previous eleven papers (Table 5), and, hence, structured the normal
weighting matrix Vij by multiplying the normalized PF by its weight Equation (6).

Vij = X′ij ×Wj (6)

Table 5. Calculating the weight of the PF.
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The Euclidean distance from the ideal best (Si+ ) and Euclidean distance from the
ideal worst (Si− ) value for each layer were calculated by using Equations (7) and (8),
respectively. The final step was accomplished by calculating the performance score (Pi)
using Equation (9).

Si+ = [
m

∑
j=1

(V ij −V j+)
2]

0.5

(7)

Si− = [
m

∑
j=1

(V ij −V j−)
2]

0.5

(8)

Pi =
Si−

Si+ + Si−
(9)

4.5. Analytic Hierarchy Process (AHP)

The AHP method proposed by [123]. It measures the index weight by comparing
the PFs with each other [124]. It is one of the most common approaches applied for LFS
selection. The GIS environment was used to LFSs, ratings of each PF are provided on a
five-point continuous scale (Table 3 column “Rank”). While the suitability weight of the
PF was computed by calculating the mean of the weights (Table 5). This was based on a
simple review of 11 papers that have applied these PFs for LFS selection. Map of suitable
sites for LFS is computed by the raster overlay algorithm, using Equation (10) [125]:

AHP =
n

∑
i=1

xiwi (10)

where xi is the value of PF i [where i = (list of PFs in Table 5)], wi is the weight for PF i, and
n is the number of PFs (Table 3 column “Rank”). We correlated all PFs used by normalizing
their scales and units following the common equation, Equation (11). The final normalized
weights were computed in Table 3 column “Normalized weight”.

Zi =
Xi − Xmin

Xmax − Xmin
(11)

where Zi is normalized value of pixel, Xi is the value of pixel, Xmin is the minimum value
of pixel and Xmax is the maximum value of pixel.

The resulting maps using the WSM, WPM, TOPSIS and AHP methods were grouped
into five classes, which are most suitable, suitable, moderately suitable, less suitable, and
not suitable for landfill. We determined the final suitable LFSs based on the average weights
of the landfill probability maps. The pixels that have average ranking ≥ moderate suitable
were selected as suitable sites for landfill.

5. Results

Besides the BO map, which shows the suitable landfill locations within the TRB
(Figure 8), we generated four suitability maps for LFSs using WSM, WPM, TOPSIS, and
AHP methods in the ArcGIS environment. In BO maps, the suitable landfill locations are
presented in red color while the unsuitable locations appear in beige. Figure 8A shows
suitable landfill locations after combining all normalized binary maps using BO conditions,
which are stated in Table 4, while Figure 8B exhibits the results without the distance to
agricultural lands condition. Nearly all suitable sites are placed in the center and to the
east of the TRB (Figure 8A). The suitable locations represent 0.13% and 4.33% for the BO
with and without agricultural lands condition, respectively.
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agricultural lands factor.

The final spatial distribution for LFSs probability maps based on the WSM, WPM,
TOPSIS, and AHP models were developed using 15 PFs. The weights of the PFs have been
estimated by using the prediction model Equations (3), (4) and (7)–(10). For each method,
each PF has a specific predictive weight, which differs from one model to another. Wide
range of the predictive weights means high effectiveness of these factors for LFS selection.
We classified the LFS selection map into five groups using equal intervals. We used the
frequency threshold levels (i.e., 20, 40, 60, and 80%), representing “Not suitable”, “Less
suitable”, “Moderate suitable”, “Suitable”, and “Most suitable”.

The distributions for LFS suitability of WSM and AHP are very close to each other
(Figure 9A,D). The WSM, TOPSIS and AHP landfill maps exhibit that their spatial distribu-
tions are somewhat similar, where more than 96.6% of “very high” and “high” probability
classes are shared between these three methods. For the “very high” and “high” probability
classes, the similarity between WPM and other methods is less than 11%. For these three
models the suitable and most suitable areas for LFSs are located close to the watershed
boundary of the TRB and those for “not suitable” and “less suitable” areas are placed in
the center of the TRB (Figures 9 and 10A).
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We calculated average map of the WSM, TOPSIS, and AHP models (Figure 10A). The
WSM has been neglected from our consideration (See Section 6.2). Based on Figure 10A,
eight best sites for landfill have been selected. Several areas appeared as suitable sites for
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LF, but most of them have small areas. Figure 10B and Table 6 show the locations of the
eight suggested LFSs, with average landfill suitability weight ≥70% for the WSM, TOPSIS,
and AHP models. These suitable sites are placed in the western part of the TRB, which
have total area of 18.35 km2.

Table 6. Number and location coordinates of the biggest eight suggested landfill within Projected
Coordinate System UTM/WGS 84 zone 38N.

No. Easting Northing Area (km2)

1 555381 3897517 1.63
2 564557 3894646 2.23
3 569143 3899259 1.69
4 565540 3899390 2.68
5 561218 3898361 4.65
6 559192 3899796 1.03
7 557291 3899372 3.04
8 550614 3902710 1.4

Figure 11 shows the relationship between the suitability of the suggested sites and
the PFs. All the eight suggested sites are lying out of [19] studied area. They are located
in suitable lithological units and far from springs, with lower suitability “but acceptable”
distance to the villages. The most suitable landfill location is Site-6 while the least suitable
location is Site-5.
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6. Discussion
6.1. Evaluation Tanjero Landfill

This study was prompted by our concern for the uncontrolled solid waste dump site,
the Tanjero dump, which is the only MSW site in the Sulaymaniyah governorate [48]. Field
investigations and previous studies (e.g., [49]), reveal that the Tanjero dump was used to
dispose of huge amount of oil refineries, cement plants, and hospitals waste. No study
has been done to evaluate the Tanjero dump and propose alternative locations that meet
accepted MSW citing criteria. This research aimed at filling this need by proposing suitable
locations based on scientific studies.
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There was a lack of adequate and reliable data that could be used as LFS selection
criteria available for the study area, which limited our evaluation of the MCDA models
statistically. This prompted us to follow the recent literature [2,3,20–42] (Table 1) for
selecting the most important PFs (criteria) to select LFSs. In addition, we included TPI
as one of the PFs, because [52,55] had found that using TPI instead of the slope aspect
increased the accuracy of lithological classification for landslide susceptibility prediction.
Several studies have been done to simulate and evaluate the disaster of landfills sliding,
such as [126–128]. As the study area is a mountainous, it should be noted that TPI has been
applied for the first time for LFS selection.

Figure 12 shows the mean weight of the 15 factors that have been evaluated for Tanjero
landfill. The minimum, first quarter, third quarter, maximum, and average, of the mean
weight of these PFs are 0.0001, 0.0523, 0.2981, 1, and 0.2045, respectively. In other words,
almost all the PFs (except the distance to surface water bodies and soil factors), used to
evaluate Tanjero LFSs range between not suitable and less suitable classes.
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lithology, So is Soil, LU is land use and land cover, R is distance to the road, Sl is slope, TPI is topographic position index,
GW is groundwater depth, T is distance to the towns and cities, V is distance to village, F is distance to the active fault, P is
distance to the powerline, W is distance to surface water bodies, Ag is distance to the agricultural lands, El is elevation, and
Sp is distance to the springs.

As the lithology is one of the most important factors [5,122], which is controlling
directly and indirectly the suitability of LFS selection (Table 5). The lithology of the
Tanjero landfill is represented by the Tanjero Formation, which consists of an alternation
of shale, sandstone, claystone, mud, and conglomerate [60], which allow higher rate of
water infiltration forming large quantity of leakage that will contaminate the groundwater
system. This formation can be classified as less suitable for waste dump.

Although the distance from Tanjero dump to the surface water bodies is within the
moderate suitability class, its ranking is lower than the accepted range (43%). Only the soil
PF is acceptable for selecting the Tanjero dump (Figure 12).

We considered that the range of suitability is from 0 to 1. The average suitability of the
existing Tanjero LFS using WPM, WSM, AHP, and TOPSIS method are 0.01, 0.28, 0.41, and
0.48, respectively, giving it the subtility ranking of 0.39. Therefore, it is not adequate for the
existing Tanjero dump to be considered a suitable dump site for MSW in the Sulaymaniyah
governorate.

6.2. Statistical Evaluation of the MCDA Used in TRB

Although the BO determines suitable regions for landfill, it has a significant disad-
vantage by not providing suitable alternatives if the conditions mismatch [98]. Therefore,
we used the MCDA for selecting the suitable LFSs. For the purpose of evaluating our
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statistical models, we tested the relationship between all proposed models in this study.
Figures 13 and 14 show the uncertainty tests of the four MCDA models. Figure 13 shows
six tested graphs of the relationships between the WSM, WPM, AHP, and TOPSIS. In
this figure, all (3,615,924) pixels within the TRB have been tested. It shows that the best
correlations are between AHP and TOPSIS and AHP and WSM models, with R2 of 0.62
and 0.6, respectively. However, the correlation (R2) between the TOPSIS and WSM is 0.36.
Other correlations (i.e., WPM with WSM, AHP, and TOPSIS) are very weak. The worst
correlation is between WPM and TOPSIS methods. Therefore, as shown in Figure 10A, we
ignored WPM model from our consideration in this study.
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Figure 14 shows the subtraction between AHP and TOPSIS, AHP and WPM, AHP
and WSM, TOPSIS and WPM, WSM and TOPSIS, and WSM and WPM. The best matching
between each two subtracted models will be close to the zero value. The higher value of any
subtracted model means higher difference between these models, which in turns means
less matching. Subtraction between AHP-TOPSIS and AHP-WSM show the best matching
(located within green zone between ±0.12) among other subtracted models, similar to
TOPSIS and WSM (located within red zone between ±0.2). The highest difference can be
noted between AHP-WPM, TOPSIS-WPM, WSM-WPM. This pattern supports our decision
to ignore the WPM from our interpretation.

6.3. Landfill Sites Suitability

It should be noted that the above rankings are generalized for quick and broad
evaluation of candidate sites for LFS. The final selection of LFS should be made after
detailed on-site surface and subsurface investigations.

Improving the sites to be suitable for landfilling can be achieved by modifying the
suitability factors that render an otherwise suitable sites score low in the analyses. As can
be noticed in Figure 11, some factors lie within the lower part of the suitability boxplot. For
example, distance from villages is the least suitable factor among the eight selected LFSs
within the TRB, with Site-7 being the least suitable (Figure 11). As there are a number of
very small villages distributed within the TRB, consisting of a few houses only (less than
ten), so the lower suitability ranking of these villages can be neglected relative to the main
towns and cities.

The second and the third lower suitable factors are the distances to powerline and
distance to the road. Small villages in the TRB have their own powerlines and paved roads,
which will affect the suitability ranking of the later factors. The fourth lower suitable factor
is the distance to the agricultural land. It causes misinterpretation in the ranking as well
because it takes into account wild shrubs and forest trees, which do not belong to cropped
plants. To overcome this constraint, we proposed the overall ranking to include all PFs
(Figure 11), which show higher suitability except for Site-6, while the most suitable LFS is
Site-5.

6.4. Models Validation

In addition to the fieldtrip to check the suitability of the eight selected LFSs, we
obtained the data of twelve groundwater samples stated by [81] (Figure 15A). These data
were collected from boreholes dug in Tanjero and Quaternary aquifers outcropped within
TRB [60,61,81]. Several studies have used the total dissolved solids (TDS) in water to
validate the groundwater contamination [129,130]. The TDS has a direct relationship with
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groundwater contamination as a result of leakage from the recharge area. The higher
TDS, the higher groundwater contamination [129,130], and thus the lower suitability of
landfilling. In other words, the decreasing of the TDS concentration is consistent with the
increase of the LFS selection suitability.
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and subsurface investigations. 

Author Contributions: Conceptualization, A.A.O.; methodology, A.A.O.; software, A.A.O.; valida-
tion, A.A.O., A.K.O., and D.A.M.A-M.; formal analysis, A.A.O.; investigation, A.A.O., A.F.A.-M., 
A.T.S., and Y.I.A.-S.; resources, A.A.O., D.A.M.A-M., S.G.S.; V.L., and Z.T.A-A; writing—original 
draft preparation A.A.O., A.K.O., and M.P.; writing—review and editing, A.A.O., and A.K.O.; All 
authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Figure 15. (A) QuickBird satellite images overlapped by 12 groundwater samples collected from boreholes dug in Tanjero
and Quaternary aquifers [81]; (B) the relation between the values of the MCDA methods (i.e., WSM, TOSIS, and AHP) and
the TDS of the 12 groundwater samples.

TDS concentrations of the twelve groundwater samples were used to validate our
results. Figure 15B shows the relation between the TDS and the WSM, TOPSIS, and AHP
models. The TDS shows an inverse relationship with the WSM, TOPSIS, and AHP models
where the R2 values are 0.44, 0.56, and 0.78, respectively. The WPM model has been
excluded as the R2 value is <0.1. While the AHP model shows the best results based on the
strong relationship with the TDS concentration.

7. Conclusions

The main aim of this paper was to recognize suitable landfill sites (LFSs) in the Tanjero
River Basin (TRB) in the Kurdistan region, Iraq. In the current study, Boolean Overlay (BO)
in addition to four Multi-Criteria Decision-Analysis (MCDA) models included Weighted
Sum Method (WSM), Weighted Product Method (WPM), Analytic Hierarchy Process (AHP),
and Technique for Order Performance by Similarity to an Ideal Solution (TOPSIS) were
applied to enable combined the use of the 15 thematic layers. The distribution maps for
LFSs probability from WSM and AHP are very close to each other; while the WSM, TOPSIS
and AHP landfill results exhibit that their spatial distributions are somewhat similar; while
the similarity between WPM and other methods is less than 11%. The accuracy of all
methods was calculated, and the best accuracy was achieved by AHP method.

According to the results, the final suitable LFSs were identified by calculating average
weights of the WSM, TOPSIS and AHP maps. Accordingly, the pixels weights that have
suitable and very suitable ranks have been nominated for landfill.

To sum up, based on the final analyses, most of the suitable sites are located close to
the TRB boundary. Eight suitable sites have been identified, that have the best condition
for citing MSW landfills. These sites are situated in the western part of the TRB, and the
most suitable site is Site-6 and the less suitable is Site-5. According to this research, the
current location of the Sulaymaniyah dump is not suitable and its location might lead
to pollution in the area. It is worth noting that ours is the first study to have used the
Topographic Position Index (TPI) to select MSW LFSs. From 12 borehole dug in the TRB, a
validation shows that the best model is AHP, where it has an inverse strong relationship
(R2 = 0.78) with the TDS model. Finally, we recommend that the most suitable site among
the eight determined sites for choosing landfill should be based on detailed on-site surface
and subsurface investigations.
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