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Abstract: Cement paste is the most common construction material being used in the construction
industry. Nanomaterials are the hottest topic worldwide, which affect the mechanical properties of
construction materials such as cement paste. Cement pastes containing carbon nanotubes (CNTs) are
piezoresistive intelligent materials. The electrical resistivity of cementitious composites varies with
the stress conditions under static and dynamic loads as carbon nanotubes are added to the cement
paste. In cement paste, electrical resistivity is one of the most critical criteria for structural health
control. Therefore, it is essential to develop a reliable mathematical model for predicting electrical
resistivity. In this study, four different models—including the nonlinear regression model (NLR),
linear regression model (LR), multilinear regression model (MLR), and artificial neural network
model (ANN)—were proposed to predict the electrical resistivity of cement paste modified with
carbon nanotube. Furthermore, the correlation between the compressive strength of cement paste and
the electrical resistivity model has also been proposed in this study and compared with models in the
literature. In this respect, 116 data points were gathered and examined to develop the models, and
56 data points were collected for the proposed correlation model. Most critical parameters influencing
the electrical resistivity of cement paste were considered during the modeling process—i.e., water
to cement ratio ranged from 0.2 to 0.485, carbon nanotube percentage varied from 0 to 1.5%, and
curing time ranged from 1 to 180 days. The electrical resistivity of cement paste with a very large
number ranging from 0.798–1252.23 Ω.m was reported in this study. Furthermore, various statistical
assessments such as coefficient of determination (R2), mean absolute error (MAE), root mean square
error (RMSE), scatter index (SI), and OBJ were used to investigate the performance of different
models. Based on statistical assessments—such as SI, OBJ, and R2—the output results concluded
that the artificial neural network ANN model performed better at predicting electrical resistivity
for cement paste than the LR, NLR, and MLR models. In addition, the proposed correlation model
gives better performance based on R2, RMSE, MAE, and SI for predicting compressive strength as a
function of electrical resistivity compared to the models proposed in the literature.

Keywords: carbon nanotube; curing time; electrical resistivity; modeling; sensitivity

1. Introduction

Cement-based materials—such as paste, mortar, and concrete—are commonly used
in the construction industry for their high strength, low cost, ease of construction, and
large use. However, some drawbacks hinder the use of cement-based materials, such as
poor longevity and comparatively low flexural strength. One method for addressing the
aforementioned issue is to add nanoparticle fillers to cement-based materials [1–4], because
the mechanical strength and service life of cement composite materials are determined
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by their microstructure and nanoscale mass transfer [5]. Besides, nanofiller composites or
nanotechnology can show superior electrical conductivity [6,7] and piezoresistivity [8–10].
In other words, they can be used for smart concrete such as structural health monitor-
ing. The piezoresistive effect is a self-monitoring parameter in structural materials that
describes changing the electrical resistivity of material while it is subjected to mechanical
stresses [11–15]. Past experiments have demonstrated that nanoparticles significantly affect
the mechanical and electrical properties of cement-based materials such as cement slurry
and concrete [16–18]. Since nanoparticles have a high surface area, offering high chemical
reactivity, scattered nanoparticles may fill the gaps between cement grains, resulting in
denser concrete.

Generally, the particle size of nanomaterials can be ranged between 1 and 100 nm [1,5,19].
Furthermore, nanotechnology has attracted immense global attention due to its high success
in diverse fields. Many types of conductive nanomaterials have been used to enhance
cement paste sensitivity in previous studies, such as graphite, carbon nanofiber (CNF),
carbon fiber (CF), carbon black (CB), magnetite (Fe3O4), and carbon nanotube (CNT) [20–26].
Nanotechnology may be used in a variety of industries, including the construction sector,
through nanoparticles in the manufacturing of cement-based products. Additionally, using
conductive nanoparticles in cement-based material highly increased the sensitivity of the
material by increasing electrical conductivity [10,20,27].

CNTs are one of the most popular conductive nanoparticles widely used in construc-
tion materials such as cement paste. CNTs with a scale of several nanometers exhibit excel-
lent structural integrity, electrical conductivity, remarkably excellent mechanical strength,
and electromechanical properties [4,28–36]. Due to the excellent electrical conductivity
and the high surface-to-volume ratio of CNTs, it draws the interest of researchers to the
appropriate use of CNTs to boost the conductivity of ultra-high resistance matrix and
structural health monitoring for industrial buildings.

Electrical resistivity is one of the most essential parameters for structural health mon-
itoring in cement paste because it makes concrete sensitive for detecting any strain or
cracks. Many studies have used electrical resistivity tests for cement content applica-
tions [17,37–39]. Despite the number of studies, there is a paucity of detail in the literature
regarding tracking and quantification of electrical resistivity assessments to character-
ize cement-based materials. Measurement of electrical resistivity reaction characteristics
has sufficient sensitivity for tracking cemented materials’ characteristics, but there is no
quantification [40]. In fact, few studies have proposed statically models to estimate the
electrical resistivity of cement-based materials [39]. Moreover, cement paste’s electrical
resistivity is impacted by many factors, including water to cement ratio (w/c), temper-
ature, moisture content, nanoparticle content, and pore structure [17]. Therefore, these
parameters have been considered to propose accurate models—namely w/c, curing, and
compressive strength.

According to the matters mentioned above, the purpose of this study was to analyze
and quantify the influence of a wide variety of combination proportions on the electrical
resistivity of cement paste, including CNT concentration, curing time, and w/c ratio.
Different model techniques such as linear regression (LR), nonlinear regression (NLR),
multi-logistic regression (MLR), and artificial neural network (ANN) were implemented to
predict the electrical resistivity of CNT-cement using 116 data samples from the literature
review [4,30,32–36].

2. Research Significance

This study aims to predict the electrical resistivity of CNT-based paste as a function
of w/c, curing time, and CNTs using different multiscale models. The models’ sensitiv-
ity was evaluated using statistical assessment tools such as Microsoft Excel, Weka [41],
and Minitab software. Accordingly, a set of experimental data have been collected from
other research papers and utilized with different statistical modeling method target (i) to
perform a statistical assessment and investigate the impact of mixture compositions such
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as CNTs, water to cement ratio, and curing time on the electrical resistivity of cement
paste; (ii) to find the threshold value of carbon nanotube content in cement paste to reduce
electrical resistivity and create smart cement paste; (iii) to assess and discover the best
dependable model to evaluate the cement paste’s resistivity with CNTs between all models
(linear model, nonlinear model, multi-logistic relation model, and ANN) using statistical
evaluation parameters.

3. Methodology

The literature study yielded 116 experimental data, which were then statistically
analyzed and classified into two categories. The first group, consisting of 82 data points,
was used as a training data set. The second group, which includes 34 data points, was
considered a testing data set [42,43]. The summary of data collection includes water to
cement ratio (w/c), CNT percentage, and curing time as input variables and measured
electrical resistivity as an output parameter (Table A1). As mentioned previously, the main
goal of this study is to design a model to predict the electrical resistivity of cement paste
modified with carbon nanotube. Therefore, four different statistical models were used to
evaluate the predicted electrical resistivity. In addition, the following flow chart shows the
process of modeling based on the selected parameters (Figure 1). Further details regarding
the figures and predicting models have been shown in the following sub-sections.
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Figure 1. This study follows the flow chart diagram process (R2 is coefficient of determination; root
mean square, RMSE; mean absolute error, MAE; scatter index, SI; and objective, OBJ).
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3.1. Statistical Evaluation

This study performed multiple mathematical algorithms to demonstrate strong rela-
tions among input variables and electrical resistivity. From this point of view, all considered
variables, including (i) CNT content; (ii) w/c; (iii) curing time, as input variables were
plotted and analyzed with electrical resistivity. Additionally, the statistical function such as
standard deviation, skewness, kurtosis, and variance was calculated to demonstrate the
distribution of each variable with electrical resistivity. As for the kurtosis parameter, the
shorter distribution tails have a strong negative value relative to the normal distribution,
whereas the longer tails reflect a positive value.

(i) Carbon Nanotubes (CNTs)

Based on data collected from the literature review, which contains 116 data, the
CNTs utilized in the mix proportions had the particle size diameter between 10–50 nm, its
purity was 95–98%, and the surface area between 60–250 m2/g. The proportion of carbon
nanotubes utilized in the cementitious mixes ranged between 0 and 1.5 percent by weight
of cement. Moreover, the standard deviation, variance, skewness, and kurtosis are 0.34,
0.118, 0.48, and 0.61, respectively (Figure 2).
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Figure 2. Histogram for CNT% and the electrical resistivity of cement paste.

(ii) Water to Cement Ratio (w/c)

According to the aggregated data from earlier studies, the w/c ratio of cement paste
modified with carbon nanotubes ranged between 0.2 and 0.485, with a median value of
0.27. Other characteristics such as standard deviation, kurtosis, variance, and skewness,
were determined to be 0.061, 1.72, 0.0037, and 1.48, respectively, according to the statistical
analysis. Furthermore, the change between electrical resistivity and w/c and the histogram
of cement paste modified with CNTs is illustrated in Figure 3.
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(iii) Curing Time (t)

According to published statistics, the curing period for cement paste enhanced with
carbon nanotubes ranged from 1 to 180 days, with an average of 28 days. Based on the
statistical analysis, the standard deviation, kurtosis variance, and skewness are 53.53, 0.87,
2864.93, and 1.35 respectively. Figure 4 indicates the histogram of electrical resistivity of
cement paste.
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(iv) Electrical Resistivity (ρ)

The electrical resistivity (ρ) of cement paste mixtures adjusted with CNTs ranged from
0.798 to 1252.23 Ω.m, with a median of 71.66 Ω.m, a standard deviation of 187.64 Ω.m,
and a variance of 35516.14 Ω.m, according to the comprehensive data listed in Table A1
(Appendix A). From the overall data, 65%, 23%, and 12% of the mixes had electrical
resistivity of 0.798–141.92, 141.92–350, and 350 Ω.m, respectively (Table A1).
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3.2. Modeling

No direct relationships between electrical resistivity and other formulations of CNT-
based paste—such as CNT content, w/c, and curing time up to 180 days—can be observed
following the statistical study and figures stated in Section 4, even according to the R2

value. Therefore, four different models are proposed to test the Effect of the various mixture
proportions described above on cement paste adjusted with CNTs, as stated below.

The models suggested in this study are used to estimate cement paste’s electrical
resistivity and choose the best one that gives a better estimate of electrical resistivity. A
validation study of the various models’ predictions was conducted using the following
criteria: the model must be statistically valid; the percentage error measured and predicted
should be very low; the RMSE, MAE, SI should be lower; and higher R2 values should
be obtained.

3.2.1. Linear Regression Model

The linear regression model (LR) [44] is the most common approach to forecasting the
electrical resistivity of cement paste, as seen in Equation (1)

ρ = a + b (w/c) (1)

where ρ indicated the output result, a represents the intercept value with the y-axis, b is a
slope, and w/c represents the input variable consequently. On the other hand, the equation
above does not incorporate other components, and factors of cement paste modified with
CNT that influence electrical resistivity, such as (CNT), and curing time. Equation (2) is
then recommended to incorporate all other mixing quantities and factors that could affect
electrical resistivity to have more accurate and scientific observations.

(ρ) = a + b(CNT) + c(t) + d
(w

c

)
(2)

where ρ is the electrical resistivity, CNT is the carbon nanotube in %, t is curing time in
(days), and (w/c) is water to cement ratio. In addition, a, b, c, and d are model parameters.
The suggested Equation (2) can be viewed as an expansion of Equation (1) since all variables
can be modified linearly. While all variables may influence electrical resistivity and interfere
with each other, this may not always be the case in all contexts. Therefore, to accurately
approximate the electrical resistivity with adequate precision, the model must always
be updated.

3.2.2. Multi Logistic Regression Model

If the predictor variable has a parameter of more than two, it has been suggested
that a multi logistic regression model be used (MLR). MLR can also be found equivalent
to multiple linear regression, which is also a predictive method. It may also be used to
describe the difference between the predictor variables and the independent variables
(Equation (3)).

(ρ) = a
(w

c

)b
∗ (t)c ∗ (CNT)d (3)

However, Equation (3) has a constraint that cannot be applied to forecast electrical
resistivity without CNT content. Therefore, the CNT content of this model should be greater
than zero (the constraint of Equation (3) is CNT content > 0 percent). The least-square
method was also used to determine model parameters (a, b, c, and d) and model variables.

3.2.3. Nonlinear Regression Model

The subsequent Equation (4) may be utilized to construct a nonlinear regression model
in general [45–47]. The connection between the variables in Equations (1) and (2) are shown
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in Equation (4), which is used to estimate the electrical resistivity of cement paste enhanced
with carbon nanotubes.

(ρ) = a∗(w
c
)

b
+ c∗(t)d + e∗(CNT)f + g (4)

where ρ is the electrical resistivity, CNT is the carbon nanotube in %, t is the curing time
in (days), and (w/c) is water to cement ratio. In addition, a, b, c, d, e, f, and g are model
parameters that are calculated based on the least square method.

3.2.4. Artificial Neural Network

ANN is a counterpart to the forward neural network feed [48]. It comprises three
layer types—the input layer, the output layer, and the hidden layer, which might consist of
many layers as seen in Figure 5.
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The input layer will receive the input signal to be analyzed. The requisite task, such
as forecasting and classification, is conducted by the output layer. The real computational
ANN engine is an arbitrary number of hidden layers positioned between the input and
output layers. Similar to the feed-forward network in the ANN, the data flows forward from
the input to the output layer. The multi hidden layer was given better output performance
during trial iterations for choosing the best-hidden layer number for a model to minimize
error and increase R2. However, due to a complication of equation of multi hidden layer,
the single hidden layer with four neurons was chosen in this study based on trial and error
to get minimum RMSE and lowest MAE Figure 6 and higher R2. Equation (5) shows the
ANN for one hidden layer.

(ρ) =
Node1

1 + e−β1 −
Node2

1 + e−β2 −
Node3

1 + e−β3 −
Node4

1 + e−β4 + threshold (5)
Sustainability 2021, 13, x FOR PEER REVIEW 10 of 27 
 

 
Figure 6. Choosing best-hidden layer and neurons for Artificial Neural Network model based on 
lower RMSE and MAE values. 

                   (𝜌) = 𝑁𝑜𝑑𝑒11 + 𝑒ିఉଵ − 𝑁𝑜𝑑𝑒21 + 𝑒ିఉଶ  − 𝑁𝑜𝑑𝑒31 + 𝑒ିఉଷ − 𝑁𝑜𝑑𝑒41 + 𝑒ିఉସ + 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑      (5) 

Node1, Node2, Node3, Node4, and threshold can be determined directly from the 
WEKA software’s neural network machine. The values β1, β2, β3, and β4, can be determined 
by multiplying the attribution values which were given by software with each variable as 
shown below. 

β1 = 0.488 ∗ w/c + 0.594 ∗ t + 2.01 ∗ CNT − 2.07 (5a) 

β2 = −1.288 ∗ w/c − 1.287 ∗ t + 12.52 ∗ CNT + 14.4 (5b) 

β3 = −2.02 ∗ w/c − 1.49 ∗ t + 0.48 ∗ CNT − 0.207 (5c) 

β4 = 2.11 ∗ w/c − 1.76 ∗ t − 1.16 ∗ CNT − 5.04 (5d) 

3.3. Assessment Criteria for Models 
Various output parameters, including the R2, RMSE, MAE, SI, and OBJ which are 

specified, have been used to test and evaluate the efficiency of the suggested models. 

𝑅ଶ = ቆ  ∑ (𝑥𝑖 − 𝑥̅௜ ) ∗ (𝑦𝑖 − 𝑦ത)ඥ∑ (𝑥𝑖 − 𝑥̅)ଶ௜ ∗ ඥ∑ (𝑦𝑖 − 𝑦ത)ଶ௜ ቇଶ
 (6)

𝑅𝑀𝑆𝐸 = ඨ∑ (𝑦𝑖 − 𝑥𝑖)ଶ௡௜ୀଵ 𝑛        (7)

0

10

20

30

40

50

60

70

80

90

2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 3 5 8 9 12 13 8 12 13 15

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3

R
M

SE
 (Ω

.m
), 

M
A

E
(Ω

.m
)

# hidden layer, and # of neuron

RMSE MAE

# of neuron

# of hidden 
layer

Figure 6. Choosing best-hidden layer and neurons for Artificial Neural Network model based on
lower RMSE and MAE values.



Sustainability 2021, 13, 12544 9 of 26

Node1, Node2, Node3, Node4, and threshold can be determined directly from the
WEKA software’s neural network machine. The values β1, β2, β3, and β4, can be determined
by multiplying the attribution values which were given by software with each variable as
shown below.

β1 = 0.488∗w/c + 0.594∗t + 2.01∗CNT− 2.07 (5a)

β2 = −1.288∗w/c − 1.287∗t + 12.52∗CNT + 14.4 (5b)

β3 = −2.02∗w/c − 1.49∗t + 0.48∗CNT− 0.207 (5c)

β4 = 2.11∗w/c − 1.76∗t− 1.16∗CNT− 5.04 (5d)

3.3. Assessment Criteria for Models

Various output parameters, including the R2, RMSE, MAE, SI, and OBJ which are
specified, have been used to test and evaluate the efficiency of the suggested models.

R2 =

 ∑i(xi− x) ∗ (yi− y)√
∑i(xi− x)2 ∗

√
∑i(yi− y)2

2

(6)

RMSE =

√
∑n

i=1(yi− xi)2

n
(7)

MAE =
∑n

i=1(yi− xi)2

n
(8)

SI =
RMSE

yi
(9)

OBJ =
(

ntr

nall
∗ RMSEtr + MAEtr

R2
tr + 1

)
+

(
ntst

nall
∗ RMSEtst + MAEtst

R2
tst + 1

)
(10)

where yi = experimental value; xi = predicted value by the proposed model; y = the average
value of experimental values; x = average of the predicted value; and n is the number of
data points.

4. Analysis and Output
4.1. Predicted and Measured Electrical Resistivity Relationships
4.1.1. Linear Regression Model

The correlation between the calculated and experimental electrical resistivity of cement
paste mixtures adjusted with CNTs for training and testing datasets is seen in Figure 7.
Model parameters have shown that the w/c ratio material substantially affects the electrical
resistivity of cement paste modified with CNTs. This is due to a low water to cement ratio
because the electrical resistivity increases by decreasing the w/c ratio [49]. For the current
model, each parameter’s weight was calculated by minimizing the sum of the error squares
and the least square formula used by the Excel software to identify the optimal weight (a
certain value, minimum or maximum) for the equation in a cell called the objective cell.
The equation for the LR model with different weight parameters can be written as follow
Equation (11)

(ρ) = 146.4
w
c
+ 2.80t− 171.2CNT− 30.119 (11)

where w
c is water to cement ratio, t is a curing time (days), and CNT is a carbon nanotube

in (wt % of cement).
As shown by the equation above, carbon nanotubes have a greater effect in lowering

electrical resistance. At the same time, w/c is the second factor that influences the increment
of electrical resistivity. Statistical evaluation for this model, such as R2, RMSE, and MAE
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for the training dataset, is 0.69, 115.37, and 77.43 Ω.m, respectively Figure 7. In addition,
the scatter index for this model is 0.725 for the training dataset.
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4.1.2. Multi Logistic Regression Model

The relation between calculated versus actual electrical resistivity of cement paste
mixtures adjusted with CNT for training and test datasets is seen in Figure 8. Similar to
other models, the most influential parameter affecting the electrical resistivity of cement
paste is the CNTs that significantly decrease the value of electrical resistivity. In addition,
the second parameter that directly affects the value of electrical resistivity is curing time.
When the curing time is increased, the electrical resistivity is increased accordingly. The
formula developed for the MLR model with different variable parameters can be written as

(ρ) = 4.56(
w
c
)

1.071
t1.13 CNT−0.096 (12)
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The evaluation parameters for this model, such as R2, RMSE, and MAE, are 0.88, 71.24,
and 44.79 Ω.m, respectively. Moreover, the SI values for the current model are 0.45 for the
training dataset.

4.1.3. Nonlinear Regression Model

The relation between calculated versus experimental electrical resistivity from cement
paste mixtures adjusted with CNTs for training and test datasets is seen in Figure 9.
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The model parameters indicate that the curing time significantly increases the electrical
resistivity of CNTs in cement. The second parameter that directly affects the value of
electrical resistivity is curing time; when the curing time increases, the electrical resistivity
is increased accordingly. The formula developed for the NLR model with different variable
parameters can be written as follows (Equation (13))

(ρ) = 0.05(
w
c
)

0.199
+ 0.95t1.2 − 273.1CNT0.136 + 235.84 (13)
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The evaluation parameters for this model—such as R2, RMSE, and MAE—are 0.75,
104.84, and 62.45 Ω.m, respectively. Moreover, the SI values for the current model are 0.659
for the training dataset.

4.1.4. Artificial Neural Network Model

To predict the electrical resistivity values for the right input parameters, the network
was given the training data set as well as the test data (Figure 10). The creation of the
ANN model is a trial and error process (such as the number of hidden layer neurons,
number of hidden layers, momentum, learning rate, and iteration). The number of hidden
layers used in this study is one hidden layer with four neurons, the learning rate = 0.1,
momentum = 0.1, and training time = 50,000. Furthermore, the number of epochs is a
hyperparameter that specifies how many times the learning algorithm can process the
entire training dataset. The higher epochs number will give higher R2, lower RMSE value,
and lower MAE value because it will reduce the error. The predicted electrical resistivity
vs. actual is shown in Figure 10, which indicates the main idea of generating data based on
the ANN model.
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The evaluation parameters for this model, such as R2, RMSE, and MAE, are 0.93, 54.48,
and 36.37 Ω.m, respectively. Moreover, the SI values for the current model Equation (14)
are 0.34 for the training dataset.

ρ =
−0.659

1 + e−β1 −
4.81

1 + e−β2 −
1.02

1 + e−β3 −
4.216

1 + e−β4 + 4.85 (14)

4.1.5. Comparison between Different Models

As described above, five separate statistical parameters, RMSE, MAE, SI, R2, and OBJ,
have been placed to determine the efficacy of the proposed models. Figure 11 provides a
comparison of the models based on RMSE and MAE, and Figure 12 indicates R2 for training
and testing dataset of cement paste modified with CNTs. Among the four main models, the
ANN model has higher R2 value and lower RMSE and MAE values relative to the LR, MLR,
and NLR models, the previous study also used the ANN model for predicting compressive
strength of cement mortar with R2 value slightly less than achieved from this study and
the RMSE and MAE values are greater than this study results [50]. Another research used
ANN model to predict the mechanical properties such as compressive strength of concrete
modified with carbon nanotube which get R2 value slightly higher than achieved from this
study and this might be due to the high data numbers used in this study [51]. In addition,
Figure 13 indicates that the residual error for all models uses dataset preparation, training,
and testing. It can be shown from both figures that the actual and calculated values of
electrical resistivity are closer to the ANN model, suggesting the superior efficiency of
the ANN compared to other models. The OBJ rates of all proposed models are given in
Figure 14. The OBJ values for LR, NLR, MLR, and ANN are 105.06, 82.44, 57.49, and 43.10,
respectively. The OBJ value of the ANN model is 59% less than the LR model, 47.7% lower
than the NLR model, and 25% less than the MLR model. This also indicates that the ANN
model is more efficient in estimating the electrical resistivity of cement paste mixtures
modified with CNTs.
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Figure 11. Comparison of the RMSE and MAE performance parameters of different developed models for training data and
testing data.
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Figure 12. Comparison of the R2 performance parameters of different developed models for training data and testing data.
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The SI assessment parameter values for the proposed models in the training and
testing phases are presented in Figure 15. As can be seen from Figure 15, for all models and
all stages (training and testing), the SI values were between 0.1 and 0.5, indicating excellent
performance for all models. However, similarly to the other performance parameters, the
ANN model has lower SI values than other models. The ANN model has a lower scatter
index value than the LR model, which is 53% and a 44% lower scatter index value in the
testing phase. Additionally, compared to the NLR model, the ANN model had reduced SI
values in all stages, including 49% lower SI values in the training phase and 27% lower SI
values in the testing phase. Additionally, compared to the MLR model, the ANN model had
lower SI values throughout all stages, for instance, 24% smaller in the training phase and
23% less in the testing phase. Furthermore, this demonstrated that the ANN model is more
effective and performed better than the LR, MLR, and NLR models when forecasting the
electrical resistivity of cement paste mixes enhanced with carbon nanotubes. In addition,
Figure 16 indicated the comparison between actual electrical resistivity versus predicted
electrical resistivity among all different models using training data set.
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4.2. Correlation between Compressive Strength and Electrical Resistivity Based on the Proposed
Model and Models from the Literature

As mentioned earlier, 56 data points were collected from literature review
Table A2 [32,33,35,52–55] in order to create a correlation between compressive strength
and electrical resistivity using models from literature review and proposed model. Based
on data collected from the literature, the maximum compressive strength of cement paste
has been recorded with the addition of CNTs with 0.5 wt % of cement and nano ferrite
NF 4 wt % of cement was 94 MPa and 97 MPa, respectively [56,57]. Several experiments
have proposed that the electrical resistivity of cementitious materials can be used to es-
timate compressive resistance at various levels of hydration [53,54,58,59]. Many studies
have proposed linear correlation and logarithm models for predicting cement paste’s com-
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pressive strength in Equations (15) and (16) [4,53,55,59,60]. Equation (17a,b) shows the
Vipulanandan correlation model and proposed model in this study for predicting com-
pressive strength of cement paste as a function of electrical resistivity. Figure 17 indicates
the correlation between cement paste’s compressive strength as a function of electrical
resistivity for both the proposed model and models from the literature.
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Based on statistical assessment parameters such as R2, RMSE, MAE, SI, and residual
error, the proposed model gives better performance for predicting the compressive strength
of cement paste compared to the models presented in the literature. The R2 value for the
proposed model is 0.74, which is 10.80% larger than the logarithm function and 16.22%
greater than the linear model Equation (15); the RMSE value is 13.04% lower than logarithm
function and 19.35% lower than the linear function. In addition, the proposed model also
has a lower MAE value than the other models, 14.77% lower than the logarithm model and
25.37% lower than the linear model Equation (15) as shown in Figure 18. The proposed
model also has a lower scatter index value than the models proposed in the literature,
which is 14.29% lower than the logarithm model Equation (16) and 20.48% lower than the
linear model Equation (15) in Figure 19. The residual error for all three models is indicated
in Figure 20. From Figure 20, the proposed model is also giving a better residual error
compared to the other models.

General Equation Model 1
σc = 34.22 + 0.11ρ (15)

General Equation Model 2

σc = 19.88 + 8.03 ln(ρ) (16)

General equation proposed model σc = Yo +
ρ

A + Bρ
(17a)

σc = 30.21 +
ρ

2.67 + 0.015ρ
(17b)

where Yo, A, and B are models parameters, ρ is electrical resistivity, and σc is compressive strength.
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Figure 20. Residual error Model 1 [48], Model 2 [50], and proposed model (Equation (17a,b)).

Based on the compressive strength of cement paste value reported in the literature
review [56,57], the main disadvantage of linear model Equation (15) is that high electri-
cal resistivity gives a high compressive strength beyond the limit value. However, the
linear model Equation (15) can be applied for low electrical resistivity ranging between
1.57–200 Ω.m according to Figure 17 with the high performance of predicting compressive
strength of cement paste [53–55,59,60]. The logarithm model Equation (16) proposed by the
literature review cannot predict the compressive strength for very high electrical resistivity
because it gives a value beyond the limited value mentioned in the literature review [56,57].
Furthermore, the logarithm model can predict cement paste’s compressive strength for
electrical resistivity ranging from 1.57 to 600 Ω.m based on Figure 17. For example, assume
the electrical resistivity reaches infinity by replacing the electrical resistivity value in both
linear models Equation (15) and logarithm model Equation (16). Both models give infinite
compressive strength, which is scientifically incorrect because the cement’s compressive
strength never reaches infinity. While the Vipulanandan model Equation (17c,d) can predict
the maximum compressive strength of cement paste.

When ρ→ ∞
By replacing the infinity electrical resistivity into Equation (17b), the model can be

rewritten as Equation (18a,b), which gives the maximum compressive strength 96.87 MPa,
which is almost the same as the maximum compressive strength of cement paste indicated
in the literature review [56,57].

σc = 30.21 + lim
ρ→∞

ρ

2.67 + 0.015ρ
(17c)

The maximum power of resistivity ρ is one hence the parametrs must be divided by ρ

in order to get a limit

σc = 30.21 + lim
ρ→∞

ρ
ρ

2.67
ρ + 0.015ρ

ρ

(17d)

When ρ is going to ∞ the equation can be written as

σc,max = 30.21 +
1

0 + 0.015
(18a)

σc,max = 30.21 +
1

0.015
(18b)
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5. Sensitivity Examination

A sensitivity comparison was conducted for the models to determine the most affecting
component that affects the electrical resistivity of cement paste mixtures modified with
CNTs (Figure 21). For the sensitivity analysis, the most effective model, ANN, was selected
using data from Table A1, and the result of sensitivity has been indicated in Table 1. Several
separate training data sets were used in the sensitivity analysis, and each sample had a
single input variable collected at a time. Each training dataset’s evaluation parameters—
such as R2, RMSE, and MAE—were determined independently. In the first scenario, all
parameters were considered to account for estimated electrical resistivity (scenario no. 1 in
Table 1). For the second scenario, w/c was removed in order to see its effect on statistical.
In the third scenario, the curing time was removed. Lastly, CNT was removed. From both
Table 1 (Scenario 1–4) and Figure 21, it was noticed that the curing time is the most critical
and sensitive parameter, which affects the output results by removing curing time, the R2

was reached the lower limit, and both RMSE and MAE have high magnitude. This happens
because there is a significant difference between the performance of CNT-based paste at
early and long ages [52]. The curing time for the collected data was varied from 1 to 180 days
in this analysis. Increasing the curing time significantly improved the electrical resistivity
of cement paste mixes containing CNTs. Almost all of the experimental findings listed in
Table A1 (Appendix A) support this.
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Table 1. Sensitivity analysis using ANN-based model.

Scen. No. Input Combination Removed Parameter R2 MAE (Ω.m) RMSE (Ω.m) Ranking

1 w/c, CNT, curing time - 0.93 36.37 54.48 -
2 CNT, curing time w/c 0.89 49.49 69.41 3
3 w/c, CNT Curing time 0.18 140.67 190.21 1
4 w/c, curing time CNT 0.63 73.01 127.53 2

6. Conclusions

The sensitivity of smart materials can be achieved by adding a required amount of
conductive nanomaterials, such as CNTs, to the mix composition that reduces the electrical
resistivity and helps piezoresistive sensor to cover a large area regarding structural health
monitoring. This is very important to save human life when catastrophic failures occur due
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to earthquakes and environmental effects in the structural building. There is no accurate
model that has been proposed by literature to predict the electrical resistivity of cement
paste containing CNTs. Therefore, valid and credible models for estimating electrical
resistivity have been proposed in this study to save both costs and time in choosing a
proper amount of nanoparticles. The following observations may be made based on the
analysis and modeling of data from prior research.

1. The median proportion of carbon nanotubes used in the manufacture of cement
paste mixes was 0.45%. Additionally, the amount of carbon nanotubes in the cement varied
between 0 and 1.5 percent. The data from different experimental programs were cured for
a period ranging from 1 to 180 days.

2. The LR, NLR, MLR, and ANN models were the models built in this research to
forecast the electrical resistivity of cement paste mixtures. Based on the various evaluation
parameters such as R2, RMSE, MAE, SI, and OBJ. Results indicated that the sequence of
models are LR, NLR, MLR, and ANN, which means that the ANN was the best model
proposed in this study based on data collected from literature which gives higher R2 and
lower RMSE and MAE.

3. The ANN model’s OBJ value is 59% less than the LR model, 48% less than the NLR
model, and 25% less than the MLR model. This also demonstrates that the ANN model is
more effective in predicting the electrical resistivity of CNT-modified cement paste mixes.

4. The best model has been chosen based on the SI value, which must be as low as
possible. In this study, the SI value for both LR and NLR models was between 0.50–0.75 for
the training and testing data set, indicating poor quality of predicted models. Besides, the
SI value for MLR was between 0.45 and 0.49 for the training and testing data set. The ANN
model had less SI than all other models, which was 11 % lower than the MLR model, 45%
lower than the LR model, and 39% less than the NLR model, respectively.

5. A sensitivity investigation demonstrates that the most significant input variable
for predicting the electrical resistivity of cement paste mixtures modified with CNTs is
the curing age. Increasing the curing age significantly changes the electrical resistivity of
cement-based mixes with or without CNTs.

6. Based on statistical evaluation parameters such as R2, MAE, RMSE, SI, and residual
error, the model proposed in this study gives better performance than that of the models
proposed by literature to predicate the electrical resistivity of CNT-based paste as a function
of electrical resistivity.
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Appendix A. Effect of Carbon Nanotubes on Cement Paste Resistivity at Different w/c
Ratios and Different Curing Age

Table A1. Effect of carbon nanotubes on cement paste resistivity at different w/c ratios and different
curing ages.

No. of
Data References w/c Curing Time

(day)
CNT

%
Electrical Resistivity

(Ω.m)

1

[4]

0.2 28 0 72.33

2 0.2 28 0.1 68.39

3 0.2 28 0.5 32.54

4 0.2 28 1 6.42

5

[28]

0.2 27 0 72.53

6 0.2 27 0.1 68.39

7 0.2 27 0.5 32.54

8 0.2 27 1 6

9

[30]

0.27 1 0 9.67

10 0.27 7 0 20.92

11 0.27 28 0 90.65

12 0.27 60 0 330

13 0.27 90 0 620.22

14 0.27 180 0 1252.23

15 0.27 1 0.05 5.64

16 0.27 7 0.05 16.75

17 0.27 28 0.05 57.8

18 0.27 60 0.05 188.57

19 0.27 90 0.05 241.61

20 0.27 180 0.05 601.56

21 0.27 1 0.15 4.97

22 0.27 7 0.15 14.78

23 0.27 28 0.15 51.17

24 0.27 60 0.15 157.14

25 0.27 90 0.15 238.66

26 0.27 180 0.15 597.14

27 0.27 1 0.25 4.15

28 0.27 7 0.25 13.01

29 0.27 28 0.25 46.11

30 0.27 60 0.25 141.92

31 0.27 90 0.25 223.44

32 0.27 180 0.25 518.57

33 0.27 1 0.35 3.59

34 0.27 7 0.35 12.95

35 0.27 28 0.35 43.12

36 0.27 60 0.35 128.66

37 0.27 90 0.35 219.51
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Table A1. Cont.

No. of
Data References w/c Curing Time

(day)
CNT

%
Electrical Resistivity

(Ω.m)

38 0.27 180 0.35 484.69

39 0.27 1 0.45 2.94

40 0.27 7 0.45 12.87

41 0.27 28 0.45 38.21

42 0.27 60 0.45 115.89

43 0.27 90 0.45 207.23

44 0.27 180 0.45 468.97

45 0.27 1 0.55 2.87

46 0.27 7 0.55 11.79

47 0.27 28 0.55 33.93

48 0.27 60 0.55 113.44

49 0.27 90 0.55 190.04

50 0.27 180 0.55 417.9

51 0.27 1 0.65 2.06

52 0.27 7 0.65 10.7

53 0.27 28 0.65 33.17

54 0.27 60 0.65 103.13

55 0.27 90 0.65 178.75

56 0.27 180 0.65 374.2

57 0.27 1 0.75 1.57

58 0.27 7 0.75 9.7

59 0.27 28 0.75 30.08

60 0.27 60 0.75 102.83

61 0.27 90 0.75 164.02

62 0.27 180 0.75 362.41

63 0.27 1 0.85 1.42

64 0.27 7 0.85 9.3

65 0.27 28 0.85 28.24

66 0.27 60 0.85 75.97

67 0.27 90 0.85 137.5

68 0.27 180 0.85 339.82

69 0.27 1 0.95 1.37

70 0.27 7 0.95 8.72

71 0.27 28 0.95 24.01

72 0.27 60 0.95 64.13

73 0.27 90 0.95 117.86

74 0.27 180 0.95 312.81

75 0.27 1 1 1.2

76 0.27 7 1 8.23

77 0.27 28 1 22.25
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Table A1. Cont.

No. of
Data References w/c Curing Time

(day)
CNT

%
Electrical Resistivity

(Ω.m)

78 0.27 60 1 58.19

79 0.27 90 1 102.14

80 0.27 180 1 276.47

81

[31]

0.27 7 0 218.5

82 0.27 28 0 268.3

83 0.27 60 0 360.8

84 0.27 90 0 473.8

85 0.27 120 0 536.4

86 0.27 7 0.25 111.4

87 0.27 28 0.25 167.3

88 0.27 60 0.25 211.7

89 0.27 90 0.25 250.4

90 0.27 120 0.25 302.9

91 0.27 7 0.5 84.5

92 0.27 28 0.5 134.3

93 0.27 60 0.5 178.6

94 0.27 90 0.5 203.9

95 0.27 120 0.5 245.6

96

[32]

0.4 7 0.05 0.798

97 0.4 14 0.05 1.225

98 0.4 28 0.05 3.46

99 0.4 7 0.1 0.897

100 0.4 14 0.1 1.84

101 0.4 28 0.1 5.52

102 0.4 7 0.3 1.9

103 0.4 14 0.3 2.18

104 0.4 28 0.3 5.22

105 0.4 7 0.5 3.29

106 0.4 14 0.5 3.9

107 0.4 28 0.5 5.34

108

[33]

0.485 28 0 84

109 0.485 28 0.1 61

110 0.485 28 0.5 71

111

[36]

0.4 28 0 500

112 0.4 28 0.25 350

113 0.4 28 0.5 190

114 0.4 28 0.75 176

115 0.4 28 1 180

116 0.4 28 1.5 35

Remarks
Ranged
between
0.2–0.485

varied
between

1–180 (days)

Ranged
between
0–1.5 (%)

varied
between

0.798–1252.23 (Ω.m)
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Table A2. Electrical and compressive strength correlation data.

No. Data References Electrical Resistivity
(Ω.m) Compressive (MPa)

1

[32]

536.4 73.7

2 473.8 70.1

3 360.8 65.37

4 302.9 76.85

5 268.3 58.51

6 250.4 72.125

7 245.6 76.96

8 211.7 69.425

9 203.9 74.04

10 196.48 68.22

11 190.04 64.74

12 178.6 71.225

13 167.3 62.56

14 134.3 65.71

15 111.4 48.16

16 105.978 56.88

17 90.65 49.23

18 84.5 52.21

19

[35]

20.92 27.66

20 11.79 47.72

21 1.57 32.2

22 11.87 47.72

23 33.93 59.53

24 190.04 64.74

25

[33]

84 31.7

26 61 33.8

27 71 35.3

28

[53]

2.09 18.73

29 8.29 45.95

30 2.41 25.68

31 5.27 36.49

32 3.73 31.27

33 1.79 14.86

34

[54]

3.04 45.6

35 2.94 45.1

36 2.88 44.6

37 3.74 54.7

38 3.74 53.8

39 7.08 37.51

40 7.06 25.48

41 5.63 19.7



Sustainability 2021, 13, 12544 24 of 26

Table A2. Cont.

No. Data References Electrical Resistivity
(Ω.m) Compressive (MPa)

42

[55]

71 35.3

43 61 33.8

44 60.73 49.49

45 28.04 37.19

46

[52]

6.99 35.03

47 6.92 34.39

48 6.81 31.99

49 6.54 33.53

50 6.45 30.6

51 6.23 29.47

52 6.18 24.9

53 6.05 28.2

54 5.98 26.62

55 5.79 19.38

56 5.71 21.92

Remarks
Electrical resistivity

ranged between
(1.57–536.4) Ω.m

Compressive strength
varied between

(14.86–76.86) MPa
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