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Abstract: It is essential for the sustainable development of farmland landscapes to balance ecosystem
service trade-offs and improve resource use efficiency during crop production. Thus, an integrative
and concept-centric qualitative approach was applied by combining the patch–corridor–matrix model
of landscape ecology and the crop layout theory of farming systems into a theoretical framework. The
thesis concludes that a farmland landscape comprises three compositions: the crop (the main crop
and the service crop), the non-crop, and the non-vegetation, leading to heterogeneous composition
and configuration. The main crop, typically displayed as large patches with a high distribution ratio,
provides most of the provisioning services, while the service crop performs many regulation services.
The non-crop and non-vegetation compositions often appear as strips that can connect different
patches as corridors and support the provisioning services of crops. Non-crop compositions mainly
focus on support and regulation services, while non-vegetation compositions support farming
operations. Further research is needed in several respects, including the ecological impact and
ecosystem service trade-offs of the composition and configuration heterogeneity, and strategies for
the adoption of cropping systems and agronomic measures at the landscape scale, which are essential
to the evaluation, improvement, and redesign of farmland landscapes.

Keywords: farmland landscape; crop layout; composition; configuration; ecosystem services

1. Introduction

The first ‘Green Revolution’ of the mid-20th century met the food demands of millions
of people worldwide while concomitantly decreasing the sustainability of farmland produc-
tion due to the overuse of natural resources, the pollution of water, air, and land, the loss of
biodiversity, and habitat fragmentation [1,2]. It became evident over the decades that crop
production and environmental outcomes depend not only on the crop genetic performance
but also on how cropping systems are managed at the field scale, as well as interactions
among ecosystems across the landscape. Food production and dietary composition can be
tailored by agricultural systems with different intensification levels, which influence the
agro-economic performance (in terms of yield and protein content) and the environment,
in particular biodiversity [3]. There is a trend in many developed and some developing
countries to design agricultural systems that are both ecologically sound and economically
viable [4].

A landscape is defined as a geographic entity of tens to hundreds of square kilometers
with a high degree of spatial heterogeneity in an ecological context, i.e., containing mosaics
of interactive ecosystems that (re)appear in a similar form [5], which emphasizes space and
heterogeneity as a concept from field to region [6]. Therefore, heterogeneity is considered
a basic feature of a landscape. The patch–corridor–matrix model is a fundamental and
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widely used theory in landscape heterogeneity research [5,7]. It constructs a common point
for describing a landscape’s structure and ecosystem services and their relationships and
dynamics in the basic units of a landscape structure of patches, corridors, and matrices [7].

In agricultural landscapes, more than 60% of the area is typically dedicated to agricul-
tural production (croplands, pastures) and associated infrastructure [8] (e.g., roads, ponds,
hedges). In a broader context, the agricultural landscape contains materials, environments,
humans, economies, institutions, and cultural resources [9]. A farmland landscape focuses
on the land use system of contiguous farmlands, including the land and its surrounding
trenches, hedges, and other components, which have certain ecosystem services ‘on site’,
but indicate spatially broader ecological processes [10]. This property makes the farmland
landscape particularly attractive for determining, understanding, and studying the short-
and long-term sustainability trends of the ecology and the economy towards transforma-
tive agriculture, balancing the amount of production with the environment. Therefore,
compositions and configurations in the matrix of farmland are the key factors determin-
ing the biodiversity and ecosystem services [11,12], and the role of cropping systems is
particularly important.

Spatial heterogeneity is increasingly being considered in crop layout research glob-
ally [13]. The crop layout theory focuses on the agricultural plant species and their propor-
tion and distribution in farmlands within a farm or a region, to not only increase resource
use efficiency and the capacity for and potential of sustainable development but also adapt
to the local climate, market, and nutrient demands of residents [13,14].

The patch–corridor–matrix model and the crop layout theory complement each other
when studying farmland heterogeneity. They both focus on spatial and temporal het-
erogeneity and can be used at basic scales of composition and configuration. The patch–
corridor–matrix model describes a landscape’s spatial heterogeneity, i.e., interactions and
the relationship of farmland landscape compositions and configurations. The crop layout
theory clarifies crop production input and output benefits, crop climate adaptations, re-
sponse abilities, and layout principles on farmland and larger scales. Thus, the two theories
have a huge amount of potential in the research on farmland landscapes. Landscape
heterogeneity comprises compositional and configurational heterogeneity. Compositional
heterogeneity refers to different land surfaces present in the farmland landscape (land cover
and its spatial abundance), while configurational heterogeneity represents the complex
patterns of space allocation for different compositions [8] (distribution form and spatial
arrangement). Farmland landscapes are diverse and highly heterogeneous due to the
presence of natural and artificial resources, cropping systems, cultivation measures, and
farming practices.

The problem of agriculture nowadays requires a scientifically sound and environmen-
tally adaptable ‘arrangement’ of composition and configuration from a landscape perspec-
tive in order to balance ecosystem service trade-offs and improve resource use efficiency,
which ultimately provides the theoretical basis for sustainable development [8,12,15]. Yet,
the adoption of this approach in practice remains hampered overall for both large—and
especially small-hold—farmers, the main force of agricultural production worldwide, due
to economic and resource constraints [4,15]. Therefore, a great deal of potential exists
in improving the agricultural landscape heterogeneity, i.e., composition and configura-
tion, and, hence, ecosystem services. However, the role and the relationships between
the structure of and ecosystem services in landscapes of farmland remain unclear [16,17].
As with many growing areas of research, there is the risk of hindering the cross-study
synthesis of results due to the lack of consistency in conceptualization and terminology
among studies and disciplines. The main objectives of this review are threefold. Firstly,
this paper (i) describes the relationships/connections between compositional and configu-
rational heterogeneity, as well as the resulting ecosystem services (Sections 3 and 4). Such a
description is valid for the future redesign of farmland landscapes to achieve green and
sustainable agriculture development. Based on the proposed description, the paper then
(ii) refines and improves the existing knowledge about the farmland landscape in order
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to build a theoretical framework (Section 5), which combines the patch–corridor–matrix
model of landscape ecology and the crop layout theory of farming systems as the entry
point to research farmland instead of the ecosystem at the field scale typically studied
by other studies. Finally, this paper (iii) critically reviews the mutually influenced and
interconnected composition, structure, and ecosystem services of farmland landscapes,
reveals the current status and difficulties, and, thereby, proposes future research avenues
(Section 6). The ecosystem services in agricultural landscapes and their governance have
previously been critically reviewed in an eco-societal context [18] and the present review
further elaborates in detail the biophysical structure of the farmland landscape and the
ecosystem services within.

2. Materials and Methods
2.1. Overall Design and Selection of Papers

This study adopted an integrative and concept-centric qualitative approach based on
the existing literature, including different theories and principles, to construct or reconcep-
tualize a novel body of scientific knowledge in the form of a framework, models, theories,
and hypotheses following a logical reasoning procedure [19,20]. This approach is suit-
able for integrative theoretical research as it comprehensively analyzes insights from the
published literature and sets a theoretical basis for future research [21]. Therefore, given
the scope of this study, the review concentrated on studies encompassing compositions,
configurations, and ecosystem services of cropping systems and farmland landscapes.
Research and review articles published in English were selected under a search set in the
Web of Science (https://apps.webofknowledge.com/ (accessed on 7 January 2021) based
on topics (TS) = (farm* landscape* or heterogeneity) and research area (SU) = (agriculture)
not research area (SU) = (public administration or urban studies or entomology or forestry
or business economics or zoology or marine biology or sociology or horticulture) and year
published (PY) = (2000–2020). These criteria yielded 7484 papers. Abstracts of the initially
selected papers were screened, and 1923 publications were selected with a focus on crop
diversity (different cropping systems such as monocropping, intercropping, rotation, and
strip cropping). We further filtered the selected 239 publications with a focus on ecosystem
services (e.g., productivity, pollination, and insect control). Full-text reading was conducted
thereafter and after filtering those articles with answers to the same or similar questions
to avoid the duplication of content, 91 papers were finally selected. The framework it-
self, as well as tables and diagrams, were refined under a combination of narrative and
visualization techniques in order to analyze and synthesize the existing knowledge based
on the patch–corridor–matrix model and the crop layout theory by listing it in a concept
matrix containing a categorization of different themes (composition and its subsections;
configuration and its subsections). Ultimately, the current research status and difficulties,
as well as future research avenues, were determined.

2.2. Analysis, Synthesis, and Reconceptualization Methods

The concept of this review employs the patch–corridor–matrix model and the crop
layout theory and primarily contains the topics of composition proportion, distribution
shape, and spatial arrangement. The selected papers were classified based on their topics
and documented relationships were critically analyzed by the logical reasoning method
through reading abstracts and full-texts. The composition category, ecosystem services,
and relationships of each composition were critically categorized and summarized. This
helped us combine the patch–corridor–matrix model and the crop layout theory together
into an integrated novel framework when specific studies were discussed and analyzed in
the context of these two theories. The summarized relationships, the theoretical synthesis,
and the framework were gathered into mind maps, flow charts, and concept figures.
Furthermore, problems and potential solutions to problems in current farmland landscape
research identified in the critical analysis are listed in a table to clarify future research topics
in order to fill the gap newly revealed by using the novel framework. Finally, the same
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rationalist method was also used to specify and explain the impacts of field management,
research methods and spatio-temporal analyses, and scaling issues to provide a foundation
for future researchers of farmland landscape heterogeneity and its ecosystem services.

3. Compositional Heterogeneity Influences Ecosystem Services
3.1. Vegetation Heterogeneity

Vegetation diversity enhances the stability of the farmland ecosystem, e.g., by con-
tributing to crop yield stability [22]. Improving the non-crop diversity promotes the
quality of the biological habitats and provides shelter for different animals in the farmland
(Figure 1). It also controls soil erosion and non-point sources of pollution, improving the
farmland’s microclimate and aesthetics [23]. Previous studies reported negative impacts on
up to 50% of ecosystem services in simplified farmland landscapes with a loss of biodiver-
sity and crop yield [24]. Additionally, it should be noted that, despite an increase in species
richness by an increase in compositional heterogeneity, surpassing the optimal level can
result in habitat fragmentation and actual species loss [25].
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3.1.1. Crop Heterogeneity

The main crop is the most important aspect of the vegetation heterogeneity and is
grown for food, feed, or fuel with the primary purpose of economic benefits for the farmer
and a contribution to the majority of the provision services (Figure 1). Main crops, such as
wheat, corn, and rice, form the dominant population in the farmland landscape. The cover
crop, which is a well-known service crop, aims to provide additional benefits to either the
main crop or the farmland landscape as a whole, improve the crop yield, soil quality, and
nutrient utilization [26–28], reduce and suppress weed growth [29], and ultimately improve
the farmland’s ecological environment [30]. A catch crop is a cover crop grown outside of
the main crop season in order to capture soil available nutrients that would otherwise leach
out of the root zone, thus comprising an important element for maintaining the sustainable
development of the farmland landscape [27,30]. Studies have shown that both legume and
non-legume catch crops can effectively reduce nitrogen leaching [31]. Green manures are
specific plant species grown to improve the overall soil quality (nutritional status, organic
matter) by either being cut and plowed into the soil or simply being left on the soil surface
for an extended period of time prior to tillage.

Increasing the crop diversity benefits the ecological functions of the farmland land-
scape through maintaining and improving the soil fertility and accelerating nutrient cycling
(Figure 1). For example, grain–legume intercropping increases nitrogen and phosphorus
uptake by the grain crops and enhances iron absorption by the legume [32]. Alongside
increased crop diversity, intercropping also increases the resource use efficiency [27,33] and
regulates the rhizosphere’s temperature and humidity [34]. Isbell et al. [35] showed that
diverse crop species and varieties, which occupy different spatio-temporal niches in the
farmland landscape, increase crop yield. Long-term planting of a single species/variety,
i.e., monocropping, on a large area is known to reduce the farmland’s genetic diversity
and the ecosystem stability, leading to a large reduction in predators [36]. Despite the
crop diversity introduced by intercropping, the effect of mixed cropping and other di-
versification patterns on various services in the farmland landscape remains inconsistent
overall (e.g., [37]). There are benefits to disease and pest resistance with effects on pests
and predators and their mechanisms largely determined by the biological characteristics
and behavioral responses of all involved crops [36,38]. Additionally, the secretions of
corn, wheat, and sunflower crops can inhibit pathogen microorganisms and prevent pest
development, thereby providing other beneficial organisms such as insects with nectar and
other foods to increase diversity [39,40]. Moreover, crop heterogeneity consists of different
crop species and varieties [38] and the failure of one crop due to, e.g., unfavorable weather
conditions or a pest attack can be ‘compensated for’ to an extent by another crop [36].

3.1.2. Non-Crop Heterogeneity

The number of studies on the structure and the function of non-crop heterogeneity in
farmland landscapes has been increasing during the last few years, as non-crop vegetation
and its diversity are being recognized to play a major role in promoting the supporting,
regulating, and cultural services of the entire ecosystem [41] (Figure 1). Heterogeneous non-
crop structures, which persist for a longer time (for instance, old hedges), may conserve
biodiversity and even protect endangered species [42]. Therefore, hedges and farmland
windbreaks can be used for soil fixation, wind protection, and improved landscape connec-
tivity, thereby promoting the formation of a microclimate and corridors for animals and
plants to move throughout the entire farmland landscape [23].

Schulte et al. [43] reported that 10% grass strips instead of crops in a farmland land-
scape not only has the lowest impact on crop yield, but also increases the numbers of
insects, pollinators, and birds and reduces water runoff and soil and phosphorus loss. In
addition to their high aesthetic value, flower strips set according to insect feeding habits can
significantly decrease the number of aphids in potato and leaf beetles in winter wheat, with
a positive effect on pest control that might even reduce pesticide use [35,44]. In addition,
planting a certain proportion of grass in strips on the field can simultaneously increase the
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number of pollinators and birds, reduce water runoff and phosphorus loss, and ensure
crop yields [40]. Farmland borders and hedges accommodate many species, especially
those highly dependent on semi-natural habitats, such as birds, wild bees, aphids, and
yellow peaks, which also reduce pests in adjacent farmlands. Flowering plants are of
particular importance as they provide important habitats to pollinators, including bees,
butterflies, and moths [45]. Perennial grass and vegetation litter increase the diversity of
arthropods and provide food resources and nests for birds [46]. Previous studies show that
the presence of woodland or grassland adjacent to farmland has a large influence on the
species richness and the populations of small animals, butterflies, and birds [47,48].

3.2. Non-Vegetation Heterogeneity

Local roads connect fields and enable the transportation of goods and the movement
of people and machinery in the field [47,48] (Figure 1). At the same time, roads are the
‘transport channels’ for (micro)organisms and seeds carried by agricultural machinery
and other tools. Naturally occurring streams and ponds, as well as manmade ditches,
are used for irrigation and drainage in the field, providing both water conservation and
habitats for animals and plants [49,50]. An improperly constructed or unmaintained
manmade composition greatly affects the farmland landscape’s functions. For instance,
while concrete and asphalt roads are artificial and lack water permeability [51], field
roads, which are usually made of soil, sand, and gravel, support side vegetation growth
and insect dynamics [51]. Stone ditches are uneven and their surface is conducive to
mosses, fish, and larvae, whereas concrete canals are suitable for areas with extremely poor
soil conditions and large irrigation and drainage needs [49,50]. Hardened buildings and
ruins in the farmland, including telegraph poles, abandoned old factories present in some
agricultural landscapes, and storage ponds, form relatively safe and stable habitats for
many amphibians, birds, and plants [42].

3.3. Composition Proportion

There are different compositions in the farmland landscape and their area proportions
account for different ecosystem services and values (Figure 2). For instance, crop yield,
animal diversity, and weed diversity are largely influenced by the plant species in the
farmland landscape. Animal diversity increases with an increasing proportion of natu-
ral or semi-natural habitats [8,52], which in turn increases the natural enemies of pests
and thus pests’ mortality [53]. Maintaining at least 5% of natural habitat on a farm can
effectively maintain biodiversity [54]. In grassland ecosystems, higher species diversity
by, e.g., sowing a mixture of grass or grass–clover species may also increase forage pro-
duction [55]. Yet, few studies focus on the proportion and the ecological function of each
composition in the farmland ecosystem. Pywell et al. [22] found that 3% and 8% of natural
and semi-natural habitat, respectively, under the same management on a farm increased
crop yield after four years. Studies under European conditions showed that high crop
diversity at the edges of farmlands was partly responsible for increased production, and
10–20% of semi-natural habitat on farms showed a higher yield, while less than 40% of
arable land had the lowest yield [37].
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4. Configurational Heterogeneity Influences Ecosystem Services
4.1. Distribution Shapes

There are several distribution shapes in the farmland landscape. Patches occupy
the main and the largest area, thereby supporting critical provision services, whereas
strips and points occupy smaller areas based on composition features and their expected
function (Figure 2). Small natural features (SNFs) have attracted attention over the years
as they usually appear as strips and points but have a larger ecological effect than the
size of their area reflects [42,56]. For instance, at certain times SNFs can limit larger-scale
ecological processes and at other times support biodiversity, species abundance, and
crop productivity [56]. Generally, SNFs are of natural origin or manmade with natural
materials and exist in fixed locations for a long time. Typical SNFs in farmland landscapes
include various strips, such as farmland boundaries, hedges, aisles, and riverbanks, points
containing large old trees randomly distributed in farmland landscapes, residues/objects
from previous and current farmland landscape use (succession or interference residues),
small ponds, burial heads, and other point-like structures [42].
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4.1.1. Patches

In any given farmland landscape, a larger marginal effect results in larger mosaics;
therefore, decreasing mosaics can decrease the patch density as well as the area of marginal
effect. There are two important patch strategies that emphasize the land use change of crops
and semi-natural habitats. The first is land sharing, which is based on land use by integrat-
ing crop production and biodiversity on the same land and reducing external chemical
inputs and preserving natural habitat patches in the farmland (Figure 2). Land sharing has,
therefore, high habitat heterogeneity and can help to maintain higher biodiversity [57,58]
by employing organic cultivation methods and promoting pollination and biological pest
control [59]. The second patch strategy is land sparing, which combines lands for intensive
agricultural production and for natural habitats and ecosystem conservation, such as nature
reserves, ecological control, and rotational farming [57,58,60]. The ecological effects of land
sharing and land sparing are different, and the choice of strategy requires consideration of
local factors such as the farmland landscape’s structure and background and the presence
of species [58]. Previous studies have shown that land sparing should be adopted when
food provisions are higher than other services, despite the limitations to the ecological
functional distance of non-productive composition, whereas land sharing is suitable when
food provisions are lower than other services [61,62]. Since land sharing requires more
land to achieve the same purpose, the overall footprint of patches under land sparing is
smaller [62,63]. The integration of large and small patches to form a diverse landscape and
increase spatial connectivity is an effective strategy for protecting biodiversity [59].

4.1.2. Strips

Strips enhance the landscape connectivity of farmland landscapes, making it easier
for flora and fauna to distribute. Common strips include hedges, shelterbelts, flower
and grass strips, roads, ditches, and farmland boundaries. The area ratio of the marginal
effect of strips is large and thus often cannot retain the same species for a long time [64].
Strips offer habitats for birds and insects to forage, nest, and avoid natural enemies [42]
and, at the same time, help to intercept water and nutrients and reduce soil erosion.
Compared with farmland, other strips containing riparian corridors, hedges, irrigation and
drainage systems, etc. provide support for different functional populations and local plant
species [41] and promote species connectivity [56]. Previous studies reported a reduction in
pests due to the presence of edges, which increase the mortality of crop pests, for example
in rapeseed [53] and winter wheat [65]. The longer the total length of the strips, the greater
the biodiversity in the farmland landscape. For instance, a study on German farmland
landscapes found that after land consolidation, the total length of hedges had significantly
reduced, with a concomitant reduction in the vegetation diversity [42].

4.1.3. Points

Points are scattered spots in farmland landscapes that usually occupy a small area
and have a rather strong ecological function. The compositions that appear as points are
mainly non-crop or non-vegetation compositions, such as large old trees, utility poles, and
water wells. A certain number of points promotes ecosystem biodiversity and provides
soil, water, habitats, and nutrients [42]. Large old trees are typical point compositions and
important structures in farmland ecosystems with rich ecosystem services [66]. The treetop
is a habitat for birds, the middle part provides dwelling places for field mice and insects,
and the lower canopy and the trunk provide nutrients for lichens, moss, and parasitic
plants. Tall canopies can intercept sunlight energy to convert solar energy into biomass and
provide nectar sources for pollinators and shade for small trees and animals. At the same
time, the extensively developed root system helps to maintain the soil and water status
and promotes nutrient cycling [66].
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4.2. Spatial Arrangement

The spatial arrangement of the various compositions and structures in the farmland
landscape affects the landscape’s connectivity and fragmentation (Figure 2). The connectiv-
ity of non-crop areas in farmland landscapes influences the migration capacity of the biome,
which impacts many important regulating services, such as pollination, pest control, seed
transmission, disease regulation [67], and diversity persistence [68]. The fragmentation of
non-crop areas includes a decrease in the number of habitats and their patch sizes and an
increase in the number of habitat patches and patch isolation [69]. Studies have suggested
that landscapes with a high density of patches (i.e., their boundaries) have more pollination
than those with a low patch boundary density [67,70]. Moreover, the above- and below-
ground components of the vegetation interact with each farmland landscape composition
directly or indirectly, and the effective distance is limited, thus affecting the degree of
fragmentation. For example, different row ratios of corn and soybean in an intercropping
system would have different impacts on their yield and the presence of trees can decrease
crop yields due to the competitive advantage for resource uptake, which nevertheless
lessens with an increase in distance [39]. In sloped farmland landscapes, setting buffer
zones can effectively reduce the loss of soil water and nutrients.

5. Framework of Farmland Landscape Heterogeneity
5.1. Layout of the Farmland Landscape

The heterogeneity of the farmland landscape determines the layout of the farmland,
which affects the flows of matter and energy in the production system and confers different
values on the farmland, i.e., attributes, services, and aesthetics [71]. The compositional
heterogeneity consists of different compositions and their amounts, and compositions com-
prise vegetation compositions and non-vegetation compositions (Figure 3). The amount
of a composition defines the population amount, such as the crop area and its proportion.
Non-vegetation compositions include land surfaces such as field roads and ditches, natural
or semi-natural streams and ponds, wells, and communication poles, i.e., facilities neces-
sary for sound agricultural production and an appropriate living standard, but also for
maintaining and improving the farmland landscape’s function. The vegetation composition
is one of the main factors affecting the farmland landscape’s structure [72] and includes
crop and non-crop types. The former are further divided into main and service crops. Main
crops are distributed over a larger area and have crucial impacts on the agro-ecological
ecosystem services, such as wheat in wheat fields, rice in paddy fields, and cotton in cotton
fields. Service crops are grown temporally and spatially during or after the growth of the
main crops and provide ecosystem services whose impacts are often greater than those
of harvested crops [72], such as improving the soil fertility by legumes (a service crop)
intercropped with corn (a main crop) [73] or reducing nutrient losses after the harvest of the
main crop [31]. The same crop can have both main and service functions, but in different
farmland landscapes. Non-crop types include vegetation in the farmland landscape other
than crops, such as non-crop grasses, shrubs and trees, wildflower strips, and scattered
semi-natural or economic forests, all of which play an important role in regulating water
and nutrient allocation and use as well as farmland aesthetics.

The configurational heterogeneity is a complex characteristic of the farmland land-
scape that reflects the spatial layout of each composition, i.e., the shape and the spatial
arrangement (Figure 3), as well as the connectivity and the fragmentation as a whole.
The distribution shape refers to the presented shape of a composition, whereas the spa-
tial arrangement is the relative position of the composition and the structure [74]. All
compositions can be distributed into patches, especially when the main crops occupy a
continuous and large area of the farmland landscape. Strips are special patches and almost
all compositions can be put into strips. Compared with patches, strips generally occupy
a smaller area and include non-crop and non-vegetation species, such as hedges, roads,
and ditches. Non-crop and non-vegetation species can comprise compositions displayed
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as points, such as a big tree or a water well, with ecosystem services often related to their
duration of existence in the farmland landscape.
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5.2. Ecosystem Services of the Farmland Landscape

The spatial heterogeneity of the farmland landscape affects ecological processes and
ecosystem services, thereby producing a vast variety of ecosystem services [8] (Figure 4).
The ecosystem services comprise supporting, regulating, provisioning, and cultural ser-
vices, which can be quantitatively compared through units of currency and energy [75,76].
The supporting and the regulating services emphasize processes closely affecting the envi-
ronmental outputs of the ecosystems, whereas the provisioning and the cultural services
emphasize results, i.e., products and benefits that people obtain from the ecosystems [77].
For instance, an abundance of biodiversity is embedded in high compositional and configu-
rational heterogeneity, which results in a greater abundance of supporting, regulating, and
cultural services [78]. It should be mentioned that low-value services could limit the ecosys-
tem services of the whole ecosystem, which are driven by high-value services [79]. For
instance, the demand for high crop yields may result in the recognition and valuation of pro-
visioning services and a reduction in the value of the other services [80]. Although intensive
agricultural systems composed of monocultures are highly dependent on supporting and
regulating services, which minimize or even close the yield gaps, they typically reduce the
soil services provided by organic matter and the farmland landscape’s heterogeneity due
to a reduced vegetation heterogeneity and increased human interference [78,79]. Residue
retention and the diversification of cropping systems and rotations, on the other hand, are
known to result in the maintenance of or an improvement in soil services [79,81,82]. In
addition, previous studies show that complex landscapes increase the ecosystem diversity,
increase the richness and density of both flora and fauna, and improve the biological
control of pests and diseases through protecting natural and resource-rich habitats and
direct rotation with diverse crops [83]. Moreover, complex heterogeneity enhances the
farmland ecosystem’s resilience to disturbances [52]. Therefore, complexity is a desirable
property of a farmland landscape. In contrast, large fields cropped with monocultures
or ‘simple’ crop rotations without non-crops generally reduce diversity [84,85] and crop
yields (e.g., [82,86]) due to the increased incidence of pests and diseases and the reduced
soil fertility and resource use efficiency [82,86].
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6. Current Status of and Prospects for Research on Farmland Landscape Heterogeneity
6.1. Problems and Proposed Solutions in Current Farmland Landscape Research

Farmland landscape research has been conducted for the past several decades, espe-
cially regarding the relationships between diversities of vegetation and pests and natural
enemies at the landscape scale [74,87]. However, challenges remain at both the field scale
and the landscape scale (Table 1). The cropping system, such as long-term continuous
monocropping, is a common problem in farmland landscapes. Diversification through
rotation, inter-, and strip cropping is a well-established method by which to challenge and
potentially alleviate issues arising from monocropping, though a locally suitable cropping
system needs to be verified [88]. External chemical inputs, soil and land deterioration and
pollution, and a lack of biodiversity can be seen at both the field scale and the landscape
scale. These “threats” can move during the crop growing season or be allocated anywhere
on the farmland, which makes it possible for them to have an influence from the field
to the landscape scale. Diversified measures can be executed to settle these problems,
from tillage measures, cropping systems, and material and human input regulation to
landscape compositions and configuration arrangements. In fact, a poor-quality farmland
landscape is a mismatch among landscape compositions and their ecosystem services.
Sustainable intensification has also attracted attention regarding the balancing of envi-
ronmental sustainability and agricultural production [33,89]. Redesigning the farmland
landscape is an important tool for improving the farmland landscape and achieving sus-
tainable intensification, which considers resource use efficiency and the complementarity
of technological and agronomic measures [78,90]. In order to optimally redesign farmland
landscapes by selecting suitable compositions and configurations to balance provisioning
services and the environmental burden, there is a need for better ecological assessment of
spatial heterogeneity [41] and agronomic measures. However, farmland landscapes differ
in their functions and limitations between regions due to differences in the microclimate,
topography, resources, and farming practices. Considering that crop adaptability and food
requirements are also different, the scientific redesign of different farmland landscapes
is required. Therefore, the interactions between the composition and the configuration
of the farmland landscape, the ecological effects of different cropping systems, especially
diversified cropping systems, and farming measures need to be further researched.
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Table 1. Problems and proposed solutions in current farmland landscape research listed from the perspective of ecosystem
services of natural and semi-natural resources, chemical inputs, and crop, non-crop, and non-vegetation compositions.

Problems Unit (Field or Landscape) Proposed Solutions Possibility to Cross-Scale a References

Single cropping, long-term
monocropping Field Rotation; intercropping; strip

cropping + [24,88]

A large input of chemical
fertilizer and pesticide,

Low resource use
efficiency

Field
Landscape

Reduce or replace chemical
fertilizers and pesticides;

conservation irrigation; good
agricultural practices; integrated pest
management; semi-natural habitats

+++ [45,61]

Soil deterioration, land
degradation

Field
Landscape

Conservation tillage; cereal–legume
rotation; use of organic fertilizers

and green manure; land restoration;
buffer zone

+++ [33,46]

Soil erosion, non-point
pollution

Field
Landscape

Conservation tillage; ecological
interception and buffer zone;

reduction of chemical fertilizers and
pesticides

++ [42,76]

Poor-quality farmland
landscape Landscape

Integrated landscape management;
land-use planning; semi-natural

habitat protection
+ [59,72]

Lack of biodiversity Field
Landscape

Diversified cropping (agro-forestry,
diversified cultivars, crops, and
cropping systems); protection of

important biological habitats around
the farmland; ecological restoration;

semi-natural habitats

+++ [40,43]

Mismatch among
ecosystem services of the

farmland landscape,
mismatch in crop and

non-crop compositions

Landscape Redesign of the crop planting system;
redesign of the farmland landscape + [30,78,90]

a The number of + symbols (from 1 to 3) denotes few to many.

6.2. Impacts of Field Management

Field management influences the ecosystem services within the farmland landscape
and current research mostly focuses on the effects on crop yield and supporting/regulating
services, whereas integrative impacts on ecosystem services and compositions are neither
clearly defined nor sufficiently researched. The use of high-quality seeds and improved
cultivation and farming techniques has become the key factor in high crop yields, whereas
no tillage increases the soil organic carbon, which in turn positively affects biological and
weed control [91] and crop yields [92]. Deep subsoiling, i.e., ploughing deeper into the
subsoil, can loosen and aerate the root zone and support root development and water and
nutrient uptake and retention, which also increase crop yields. Adopting suitable irrigation
methods and moderate (e.g., deficit) irrigation has the potential to maintain crop yields
and improve water use efficiency. Water-saving irrigation can improve the sustainability
of regional water resources given no change in a cultivated area [93]. Compared with no
addition, the application of fertilizers has increased food production for the past several
decades by at least 30% [94]. However, the global greenhouse gas emissions due to the
production, transport, and application of fertilizers account for about 2.5% of the total
greenhouse gas emissions [95]. In the highly populated and fast-developing countries, such
as China and India, agricultural emissions of nitrogen and phosphorus account for more
than half of their total emissions [96]. Agricultural mechanization can be used to carry
out precise land preparation, sowing, fertilizer and pesticide application, irrigation, and
harvesting operations, which can improve the resource use efficiency of water, fertilizers,
and medicines, promote crop growth, increase crop yield, and enhance the sustainability
of agricultural resources and the environment [97].
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6.3. Farmland Landscape Research Methods

Farmland landscape research is interdisciplinary and agronomy, ecology, and geogra-
phy are some of its main disciplines. Though the research methods utilized for studying
farmland landscapes are diverse, they can roughly be divided to field trials, spatio-temporal
analyses, and literature reviews. In the context of farmland, field experiments require a
considerable area for test fields. Pywell et al. [22], in their study on crop yield and pollina-
tor response to non-agricultural compositions, utilized about 900 ha of experimental area.
Field experimental studies, therefore, select suitable farmland landscapes and combine
sampling and research methods to complete relevant ecological and agronomic experi-
ments [43,98,99]. Due to the geographical characteristics of farmland landscapes in terms
of size and heterogeneity, analyses of spatio-temporal patterns and changes are of particu-
lar interest, and these can be conducted by remote sensing and geographic information
systems [64,99]. Quantitative studies mostly focus on investigating crop yields and animal
and plant diversity in farmland landscapes [37,100,101]. In addition, farmland landscapes
have unique ecological and social attributes [102] and biodiversity-based land management
practices need to be developed and adopted through the cooperation of all stakeholders
and decision-makers [103]. Therefore, researchers need to adopt suitable methods based on
the research scale and the specific objective, with a particular focus on spatially orientated
analyses in the farmland landscape.

6.4. Spatio-Temporal Analyses and Scaling Issues

The circulation of matter and energy requires space-time carriers defined at a certain
scale, which remains challenging in landscape—and even more so in farmland landscape—
research. The time scale largely depends on the problem because of the growth period of
vegetation and changes in farming systems, as well as their response time and sensitivity. In
general, the longer the time scale, the larger the space required for research [88]. In addition,
the spatial scale is related to the problem it represents and for farmland landscape research
it varies from 0.05 km to 6 km [99,104,105]. When the problem consists of a specific measure,
such as the sowing amount or time, the no-tillage practice, or the irrigation amount and
method, the scale is generally the field as the fundamental unit for evaluating the target
performance. However, the comparison of new crop varieties, cropping systems, and
patterns requires a larger spatial scale and farm-scale research is common when studying
environmental and public policy effects. When discussing land sharing and land sparing,
landscape scales are needed for sound analysis and decision-making [99,104,105]. The
impact of non-agricultural ratios on the types and numbers of natural enemies and pests
also varies with scale. It is worth noting that farmland landscapes and the ecological
processes they support are inherently complex systems, in that they have large numbers
of heterogeneous components that interact in multiple ways (Figure 4), and exhibit scale
dependence, nonlinear dynamics, and emergent properties. The emergent properties
of farmland landscapes encompass a broad range of processes, such as pest and disease
control and biogeochemical cycling, which influence biodiversity and human environments
and operate at scales that are relevant to human societies. An appropriate scale should be
therefore carefully selected based on the specific scientific problem. Multi-scale and scaling
analyses will contribute to our understanding of farmland landscape heterogeneity and
ecosystem service trade-offs and support policy planning and decision-making.

7. Conclusions

This review proposed a comprehensive research framework for farmland landscape
heterogeneity and ecosystem services. Farmland landscape composition comprises three
elements: crop composition (the main crop and the service crop), non-crop composition,
and non-vegetation composition. The main crop, usually displayed as large patches with a
high large distribution ratio, plays a critical role in provisioning services for food and fiber,
while the service crop is important to regulating services. Non-crop and non-vegetation
compositions often appear as strips on field margins, with non-crop compositions mainly



Sustainability 2021, 13, 12463 14 of 17

focusing on supporting and regulating services and non-vegetation compositions pro-
viding support for farming operations. Both service crops and non-crops significantly
regulate the farmland landscape as a whole in coping with negative environmental im-
pacts. There are numerous issues that remain to be resolved in several respects and on
different scales, such as the interactions between the composition and the configuration of
the farmland landscape, the ecological impact and ecosystem service trade-offs of spatial
heterogeneity, and strategies for the adoption of cropping systems and agronomic measures
at the landscape scale, which are essential to the evaluation, improvement, and redesign of
farmland landscapes.
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