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Abstract: The increase in income among Chinese residents has been accompanied by dramatic
changes in dietary structure, promoting a growth in carbon emissions. Therefore, in the context of
building a beautiful countryside, it is of great significance to study the carbon emissions of rural
residents’ food consumption to realize the goal of low-carbon food consumption. In this paper,
the calculation of food consumption carbon emissions of Chinese rural residents is based on the
carbon conversion coefficient method, and the spatial heterogeneity of influencing factors is analyzed
with the aid of the ESDA-GWR model. The results indicate that the per capita food consumption
carbon emissions of rural residents have increased by 1.68% annually, reaching 336.73 kg CO2-eq
in 2020, which is 1.32 times that of 2002. Carbon emissions generated from rural residents’ food
consumption have significant spatial agglomeration characteristics, showing the spatial distribution
characteristics of a north–south confrontation, with a central area collapse. The influencing factors of
food consumption carbon emissions have significant spatial heterogeneity, among which, as the main
force to restrain the growth of food consumption carbon emissions, the price factor has a regression
coefficient between −0.1 and −0.3, and its influence has weakened from northwest to southeast
in 2020. The education–social factor is the main driving force for the growth of food consumption
carbon emissions, with a regression coefficient between 0.58 and 0.99, and its influence has increased
from east to west. In the future, formulating food consumption optimization policies should be based
on the actual situation of food consumption carbon emissions in various regions to promote the
realization of low-carbon food consumption.

Keywords: food consumption carbon emissions; spatial–temporal heterogeneity; geographically
weighted regression; food low-carbon consumption

1. Introduction

In 2006, China became the largest emitter of carbon dioxide in the world [1,2]. In
order to achieve the United Nations Sustainable Development Goals (SDGs) and reduce
the adverse effects of carbon emissions, the Chinese government made promises to reduce
carbon emissions at the 75th United Nations General Assembly, commit to achieving
the peak of carbon emissions in 2030, and strive to achieve the strategic development
goal of carbon neutrality in 2060. China is currently making many efforts to achieve
this goal [3]. As economic development enters a new normal, China’s production and
consumption structure has undergone major changes [4–6]. Consumption carbon emissions
have been increasing and mainly come from the household sector [7,8]. Among them,
food consumption is not only a significant part of household consumption, but also an
important source of greenhouse gases [9]. Previous studies have shown that 19–29%
of human-made greenhouse gas emissions stem from food consumption [10,11]. This
problem is more prominent in China because China has the burden of feeding its 1.4 billion
people [12]. As the world’s largest food producer and consumer, China’s food carbon
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emissions are higher than any country in the world [13]. Unreasonable dietary consumption
creates huge pressure on the ecological environment [14]. Reducing carbon emissions
due to the structural evolution of food consumption has become an important issue
for Chinese scholars in the context of building a beautiful countryside and high-quality
agricultural development [15–17].

The research on food consumption carbon emissions is divided into two components;
the first is the calculation of food consumption carbon emissions and the second is the
analysis of influencing factors. Previous studies have shown that the calculation of food
consumption carbon emissions is mainly divided into a production perspective and a
consumption perspective [13,18], among which major scholars conduct research based on
the production perspective, and relatively few researchers examine the consumption per-
spective [19]. It is worth noting that the calculation of food consumption carbon emissions
from the consumption perspective can be divided into direct carbon emissions and indirect
carbon emissions. Food consumption direct carbon emissions refers to the carbon emis-
sions from the consumption of food itself [19,20]. Using the carbon conversion coefficient
method for calculation, Cao et al. (2020) found that the average annual increase in per
capita food consumption carbon emissions was 1.68% in China [21]. Studies of indirect
food consumption carbon emissions focus on the carbon emissions of the entire food chain
(food processing, production, transportation, and storage stages) from the perspective of
food life cycles [12,22,23]. This calculation is mainly based on the life cycle method and the
input–output method. For example, based on the input–output method, Feng et al. (2020)
found that, compared to 1992, China’s per capita food consumption carbon emissions were
reduced by 21% in 2007 [9]. Yang et al. (2019) found that Chinese residents’ food con-
sumption carbon emissions were 683.38 g CO2-eq per day per capita based on the life cycle
method, noting that optimizing dietary structure can reduce carbon emissions by 40% [24].
However, a comprehensive study on food consumption carbon emissions in China has not
yet been completed [12], especially from a rural residents’ perspective. Current research
mainly focuses on the national level or only involves urban residents [4,7,9,22,23], ignoring
rural residents’ food consumption carbon emissions. However, even if China’s population
reaches a peak of 1.45 billion by 2030, 30% of the population will still live in rural areas,
which is about 4.35 billion people; currently, this population’s meat consumption is almost
the same as that of urban residents, about 77 kg per capita per year [25]. Additionally, the
carbon emissions for per unit meat consumption are much higher than those of plant-based
foods [26]. Therefore, it is necessary to conduct an in-depth analysis of rural residents’
food consumption carbon emissions, especially in the context of the country’s vigorous
promotion of building a beautiful countryside and high-quality agricultural development.

Reducing the impact of carbon emissions on the ecological environment is an impor-
tant part of achieving the 13th Sustainable Development Goal. D’Adamo et al. (2021) found
that the application of bioenergy technology to food production is vital to human society
and the key to achieving a low-carbon society [27]. Vacchi et al. (2021) expounded the
importance of technological progress for sustainable development, defined the concept
of technological sustainability, and developed a technological sustainability assessment
framework based on the organization and production perspective of the manufacturing
industry [28]. Mies et al. (2021) hold that most of the current research on sustainability
focuses on economic and ecological sustainability, ignoring the study of social sustainability
dimensions, which is not conducive to the circular development of the entire economy, and
used causal loop modelling to explore the cross relationship between social sustainabil-
ity and economic and ecological sustainability [29]. The above-mentioned scholars have
explained in detail the different dimensions of sustainable development. For us, finding
the reasons for changes in food consumption carbon emissions is the key to reducing
food consumption carbon emissions in order to achieve the Sustainable Development
Goals [12]. At present, structural decomposition analysis (SDA) and index decomposi-
tion analysis (IDA) are often used to analyze the influencing factors of food consumption
carbon emissions [8,30]. They analyze the impact of technological advancement, dietary
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structure evolution, energy intake, population scale, residents’ income, and urbanization
on residents’ food consumption carbon emissions, with technological progress being the
main factor restraining the increase in carbon emissions from food consumption; however,
the evolution of dietary structure has become the main reason for the increase in carbon
emissions from food consumption in recent years [8,9,20,30,31]. Previous studies have laid
a solid foundation for the development of this article. However, the above research can
only reveal the regional average value of the various factors on food consumption carbon
emissions. There has heretofore been an inability to reveal the heterogeneity of various fac-
tors in different regions, as China is vast and the dietary structure of residents in different
regions is quite different [21]. Therefore, it is important to conduct a detailed analysis of
the regional heterogeneity of each factor in order to provide a theoretical reference for the
formulation of low-carbon food consumption policies in different regions.

Under such circumstances, the main aim of this work is to analyze the spatiotemporal
evolution trends in carbon emissions generated from rural residents’ food consumption,
and analyze the spatial heterogeneity of its influencing factors, so as to provide a reference
for the formulation of differentiated low-carbon food consumption policies. The specific
objectives consist of two parts. The first is to calculate the carbon emissions from rural
residents’ food consumption in 31 provinces from 2002 to 2020, based on the carbon
conversion coefficient method, and further analyze the emissions’ spatial distribution
characteristics. The second approach is to select the influencing factors of food consumption
carbon emissions on the basis of previous studies and study the spatial heterogeneity of
each factor based on the geographically weighted regression model (GWR). Although
several articles have studied the carbon emissions of Chinese residents’ food consumption,
the marginal contribution of this article lies in the following: (1) filling the research gap
regarding the carbon emissions generated by rural residents’ food consumption (previous
studies have often used the whole country as the research object or only analyzed urban
residents [4,7,9,23], ignoring the huge food consumer group of rural residents); (2) rather
than obtaining an average value of influencing factors based on a decomposition model,
studying the spatial heterogeneity of each factor based on a geographically weighted
regression model (GWR); and (3) adopting more recent data published by the National
Bureau of Statistics of China (until 2020). These contributions can provide a valuable
theoretical basis for policymakers to formulate differentiated food low-carbon consumption
policies, thereby achieving sustainable food consumption goals.

The remaining content of this article is arranged as follows. Section 2 is model
construction and data sources. Section 3 lists the research results from two aspects: One
is the study of the temporal and spatial distributions of carbon emissions from food
consumption among rural residents, and the other an analysis of the spatial heterogeneity
of the influencing factors of carbon emissions from food consumption. Discussions and
conclusions are found in Sections 4 and 5, respectively.

2. Model Specification and Data Source
2.1. Calculation Method of Per Capita Food Consumption Carbon Emissions

In order to accurately measure rural residents’ per capita food consumption carbon
emissions in China, based on previous studies [32], the carbon conversion coefficient
method was used. The specific formula is as follows:

TCj =
j

∑
i=1

Cij =
j

∑
i=1

FCij × ri (1)

where TCj is the per capita food consumption carbon emissions of rural residents in the j
area; Cij refers to the carbon emissions of the i food consumption of residents in the j area;
FCij refers to the i food consumption of the residents in the j area; ri is the carbon emission
coefficient of the i food; i is the type of food consumption, with a value of 12; and j is the
number of provinces (cities, districts), with a value of 31. The carbon emission factor of
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various types of food comes from Tilman (2014) [26]. Since the unit of the carbon emission
coefficient in the literature is g/kcal (1 kcal = 4186 J), the energy conversion rate of various
foods needs to be used for correction [21]. The carbon emission coefficients of various
foods are shown in Table 1.

Table 1. Carbon emission coefficients of various types of foods (kg CO2-eq/kg).

Food Type Grain Vegetable Vegetable Oil Sugar Fruit Pork

Coefficient 0.27 0.40 1.48 0.08 0.07 7.64

Food Type Beef Lamb Poultry Egg Milk Aquatic Products

Coefficient 12.04 18.86 1.71 0.78 0.36 1.94

2.2. Exploratory Spatial Data Analysis

The core content of the exploratory spatial data analysis (ESDA) method is spatial
autocorrelation detection, which mainly includes global spatial autocorrelation and local
spatial autocorrelation [33].

Global spatial autocorrelation is the description of the spatial characteristics of the
attribute value of a variable under the same spatial unit to determine whether there is an
agglomeration effect in space. The formula is:

I =
n

n
∑

i=1

n
∑

i=1
wij (xi − x)

(
xj − x

)
n
∑

i=1

n
∑

j=1
wij

n
∑

i=1
(xi − x)2

(2)

where I is the global Moran’s index; the value range is [–1, 1]; I greater than zero means a
spatial positive correlation; I less than zero means a spatial negative correlation; I equal to
zero means a random distribution with no spatial correlation; n equal to 31 refers to the
number of spatial units in the study area; wij represents the spatial weight matrix; if i and j
are adjacent, then wij is equal to 1, otherwise, it is 0; xi and xj are the observed values of
regions i and j; and x is the mean value.

Local spatial autocorrelation makes up for the lack of global spatial autocorrelation,
which is mainly used to reveal the spatial heterogeneity between a certain area and the
surrounding area. The commonly used methods are the Local Moran’s I index and the
Getis–Ord G∗

i index. In order to better reflect the degree of clustering of high and low
values in a local area, this study uses the Getis–Ord G∗

i index to measure the cold and hot
agglomeration areas of rural residents’ per capita food consumption carbon emissions. The
formula is:

G∗
i =

n

∑
j=1

Wij × xj/
n

∑
j=1

xj (3)

Z (G∗
i ) =

Gi − E(Gi)√
Var(Gi)

(4)

where E (Gi) and Var (Gi) are the expected value and variance of Gi. A significant positive
value of Z (G∗

i ) indicates that the value around the i area is relatively high, i.e., high-value
space clusters are hot spots, and vice versa, whereas low-value space clusters are cold spots.

2.3. Geographically Weighted Regression

Different from the traditional regression model (OLS), the geographically weighted
regression (GWR) model incorporates spatial location information in the regression equa-
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tion, which can be used to reflect the non-stationarity of parameters at different spatial
locations [34]. Its model structure is

yi = β0(ui, vi) + ∑
k

βk(ui, vi)xik + εi (5)

where yi refers to the value of the explained variable at the geographic location (ui, vi),
β0 (ui, vi) represents the constant value at the geographic location (ui, vi), (ui, vi) refers
to the geographic center coordinates of the sample space unit, βk (ui, vi) is the value of
the function βk (u, vi) in the space position of the i sample, and εi represents the spatial
random residual.

2.4. Data Sources

In this paper, the types of rural residents’ food consumption include 12 categories,
namely, grains, vegetables, vegetable oil, sugar, fruit, pork, beef, lamb, poultry, eggs, milk,
aquatic products, etc. The data mainly come from the China Statistical Yearbook, China
Rural Statistical Yearbook, and China Rural Household Survey Yearbook. The per capita
disposable income, per capita GDP, food consumption expenditure, consumer price index,
food retail price index, and Engel coefficient are all from the China Statistical Yearbook.
Among them, per capita disposable income, per capita GDP, and food consumption expen-
diture are deflated based on the CPI index in 2002. The dietary structure uses the ratio of
animal-based food consumption to plant-based food consumption as a proxy variable. The
per capita education level is calculated based on a method by Chen (2004) [35].

3. Results and Discussion
3.1. Temporal Evolution Characteristics of Rural Residents’ Per Capita Food Consumption
Carbon Emissions

The per capita food consumption and carbon emissions of rural residents in China are
calculated based on the carbon conversion coefficient method and Formula (1) (Figure 1).
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Figure 1. Per capita food consumption (a) and carbon emissions among rural residents (b) from 2002 to 2020.

It can be seen from Figure 1a that during the study period, per capita food consump-
tion decreased by 17.16%, from 409.00 kg in 2002 to 338.80 kg in 2020. Per capita plant-food
consumption still accounted for 83.14% in 2020, and although it decreased by 1.61% annu-
ally, it was still the main type of food consumption. Per capita consumption of animal-based
food maintained a higher growth rate at about 4.32%, however, the amount of consumption
was still small. Since the carbon emissions in producing animal food are higher than those
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of plant-based food [21,26], the transformation of the food consumption structure of rural
residents has promoted continuous changes in food consumption carbon emissions.

According to Figure 1b, per capita food consumption carbon emissions of rural resi-
dents increased by 1.68% annually, reaching 336.73 kg CO2-eq by 2020, which is 1.32 times
that of 2002. The per capita carbon emissions of animal-based food were always higher
than those of plant-based food. Specifically, per capita carbon emissions from plant-based
foods decreased to 91.06 kg CO2-eq in 2020 at an average annual growth rate of 1.5%.
Among them, per capita carbon emissions of grains and vegetables were reduced by 2.80%
and 1.05%, respectively, at an average annual growth rate. The average annual growth rate
of per capita carbon emissions of vegetable oil, sugar, and melons and fruits increased by
3.35%, 0.47%, and 4.10%, respectively. The average annual per capita carbon emissions
of animal-based foods increased by 3.60%, from 135.44 kg CO2-eq in 2002 to 245.67 kg
CO2-eq in 2020. Among them, the per capita carbon emissions of dairy foods showed the
fastest growth rate, with an average annual growth rate of 11.68%, followed by poultry
at 6.44%, beef at 5.95%, aquatic products at 4.08%, mutton at 3.67%, pork at 3.54%, and
eggs at 3.40%. Pork, as the main source of animal-based food for residents, had a far lower
emission growth rate than milk. The main reason for this is that rural residents paid more
attention to health problems and increased their intake of low-fat and high-protein foods
with improvements in income and education level.

To summarize, plant-based food is still the main source of food among rural residents,
but rapid changes in dietary structure have led to a continuous increase in per capita carbon
emissions. Animal-based food is the main food type that promotes an increase in per capita
carbon emissions.

3.2. Spatial Distribution Characteristics of Rural Residents’ Per Capita Food Consumption
Carbon Emissions

In the context of a continuous increase in rural residents’ per capita food consumption
carbon emissions, we used ArcGIS 10.8 software to divide the rural residents’ per capita
food consumption carbon emissions in each province into four levels from low to high; this
was conducive to spatial analysis and expression. In order to save space, only beginning
and ending years are reported (Figure 2).

Per capita food consumption carbon emissions of rural residents showed significant
regional differences within the research span. As a whole, the research presented the
distribution characteristics of a north–south confrontation, with a central area collapse.
Higher carbon emission provinces for per capita food consumption dropped from 10 in
2002 to 7 in 2020, namely, Inner Mongolia, Qinghai, Sichuan, Chongqing, Guangdong,
Fujian, and Shanghai, among which Guangdong, Fujian, and Shanghai are located in the
eastern coastal zone of China and are relatively developed. The improvements in their
respective economic levels are accompanied by a higher intake of animal-based foods [36].
Per capita food consumption carbon emissions will continue to stay at a relatively high
level as the economy develops because the carbon emission coefficient of animal-based
food is relatively high. In addition, Inner Mongolia, Qinghai, Sichuan, and Chongqing
are not only areas in which ethnic minorities live in concentrated communities in China,
but they are also the areas in which animal-based food is consumed more regularly. In the
study interval, the average per capita consumption of animal-based food was higher than
the national level. Therefore, the per capita carbon emissions of food consumption in the
above seven provinces are always in high-value areas. Low-carbon-emission provinces
in terms of per capita food consumption rose from five in 2002 to six in 2020, namely,
Hebei, Henan, Shandong, Shanxi, Shaanxi, and Gansu. These regions are distributed
in the central region of China. The level of economic development is not only inferior
to Guangdong, Fujian, and Shanghai but also lacks economic support for animal-based
food consumption. Compared with Inner Mongolia, Qinghai, Sichuan, and Chongqing,
these regions are more affected by traditional Chinese vegetarian culture; they consume
more plant-based foods and fewer animal-based foods, leading to the per capita food
consumption carbon emissions being at a relatively low level in these areas. As a result,



Sustainability 2021, 13, 12419 7 of 17

per capita food consumption carbon emissions of rural residents in China show the spatial
distribution characteristics of a north–south confrontation, with a central area collapse.
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3.3. Spatial Autocorrelation Analysis of Rural Residents’ Per Capita Food Consumption Carbon
Emissions in China

In order to analyze the spatial correlation of rural residents’ per capita food con-
sumption carbon emissions in 31 provinces from 2002 to 2020, we used Formula (2) and
the spatial autocorrelation statistical tool from the ArcGIS 10.8 software to calculate the
Global Moran’s I Index (Table 2). The Global Moran’s I index shows that per capita food
consumption carbon emisions from 2002 to 2020 were all positive, and they all passed
the test at a significance level of 10%, except for in 2003. These values indicate that the
rural residents’ per capita food consumption carbon emissions in 31 provinces have strong
spatial agglomeration characteristics, i.e., one province’s per capita food consumption
carbon emissions are positively affected by neighboring regions.

In order to better reflect the degree of high and low clustering values in a local area,
the Gi* index was calculated by ArcGIS 10.8 software according to Formulas (3) and (4).
Additionally, it was divided into four grades from low to high based on the natural break
point analysis method (Jenks), among which a high GiZScore represents hot spots with
high carbon emissions, and vice versa for cold spots. Only 2002 and 2020 were selected for
visual expression for the purpose of saving space (Figure 3). We found that the hot spots
were mainly distributed in southern China from 2002 to 2020, indicating that the coupling
degree between residents’ food consumption and ecological environment was low and
urgently needed to be improved in this region. The cold spots were mostly concentrated in
the northern region, where the coupling degree between residents’ food consumption and
the ecological environment was relatively high, but the number was relatively small. From
the perspective of development trends, the number of hot spots in 2020 decreased by three
compared to 2002. There was also a trend towards the eastern coast, reflecting that low-
carbon food consumption in eastern coastal areas is in a bottleneck period. This produces
two issues: The endogenous power of low-carbon food consumption is insufficient, and it
is difficult to receive exogenous radiation from the advanced northern regions. External
policies are needed to prevent the hotspot from spreading to the area. The number of
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cold spots increased from five in 2002 to six in 2020, and were mainly concentrated in
the northern region. The increase in this number is conducive to the positive spatial
spillover effect of low-carbon regions. During the study period, five provinces, including
Inner Mongolia, Hebei, Shanxi, Henan, and Shandong, continued to stay in low-value
areas and showed obvious agglomeration effects, indicating that the coupling degree of
rural residents’ food consumption and ecological environment in these five provinces was
relatively high and could be used as a national level benchmark in cities to promote the
realization of low-carbon food consumption in other provinces.

Table 2. Spatial autocorrelation results of rural residents’ per capita food consumption carbon
emissions in China from 2002 to 2020.

Year Moran’s I Value Z-Value p-Value

2002 0.266 2.717 0.007
2003 0.261 2.681 0.007
2004 0.241 2.497 0.013
2005 0.114 1.398 0.162
2006 0.159 1.755 0.079
2007 0.259 3.014 0.003
2008 0.290 2.934 0.003
2009 0.228 2.374 0.018
2010 0.175 1.893 0.058
2011 0.155 1.709 0.088
2012 0.221 2.374 0.018
2013 0.245 2.613 0.009
2014 0.227 2.422 0.015
2015 0.278 2.860 0.004
2016 0.307 3.266 0.001
2017 0.273 2.942 0.003
2018 0.219 2.429 0.015
2019 0.194 2.073 0.038
2020 0.170 1.855 0.064Sustainability 2021, 13, x FOR PEER REVIEW 9 of 18 
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3.4. Effective Factor Analysis of Rural Residents’ Per Capita Food Consumption Carbon Emissions
in China
3.4.1. Selection of Influencing Factors

Per capita food consumption carbon emissions are affected by multiple factors. Schol-
ars generally believe that per capita disposable income, food consumption expenditure,
the Engel coefficient, and other factors all have an effect on emissions [20,23,32]. Based
on the research purpose and the availability of the data, nine indicators, including per
capita disposable income and per capita GDP, were selected as the influencing factors of
per capita food consumption carbon emissions. The principal component analysis method
was used to process the original data for the purpose of eliminating the multicollinearity
between variables. We found that the KMO values in 2002 and 2020 were 0.62 and 0.65,
respectively, both greater than 0.60. The Bartlett sphere test values were 235.37 and 216.30,
respectively, and the sig values were both 0.00. The cumulative variance contribution
rates were 85.60% and 83.28%, respectively, indicating that the rotated factor retained more
original information and met the analysis requirements. Four principal components were
extracted based on the principle that the characteristic root was greater than 1, and these
were named the economic–preference factor, the education–social factor, the material factor,
and the price factor (Table 3). The economic–preference factor represents the economic
foundation and dietary preferences of rural residents. The education–social factor refers to
the diversification of residents’ cultural level and consumption choices. The material factor
reflects food availability and the suitability of the local commodity market. The price factor
represent the sensitivity of residents to food prices.

Table 3. Driving factors and variable explanation.

Driving Factors Variable System Variable Interpretation

Economic–preference
factor

Per capita disposable income Reflects the income level of rural residents
Per capita GDP Reflects the level of economic development in rural areas

Food consumption expenditure Characterizes the cash input of rural residents in
food consumption

Dietary structure Represents the food consumption preferences of
rural residents

Education–social factor
Per capita average years of education Reflects the cultural quality of rural residents

Engel coefficient Reflects the diversity of consumption choices of
rural residents

Material factor
Consumer price index (last year = 100) Characterizes price fluctuations in rural commodity markets

Food consumption Refers to the amount of food consumed by rural residents
Price factor Food retail price index (last year = 100) Reflects the selling price of food in rural areas

Finally, we took the per capita food consumption carbon emissions as an independent
variable, and the economic–preference factor (first principal component), the education–
social factor (second principal component), the material factor (third principal component),
and the price factor (fourth principal component) as dependent variables to construct a
geographically weighted regression model.

3.4.2. Spatial Differentiation of Effective Factors

Through the analysis in Section 3.3, we can see that the rural residents’ per capita
food consumption carbon emissions in China had spatial autocorrelation characteristics.
We ran the geographically weighted regression model (GWR), selected the core type as
adaptive, set the bandwidth as AICc, and carried out local spatial autoregressive analysis
(Table 4). We concluded that the standardized residual ranges of the local regression models
in each province in 2002 and 2020 were [−3.01,2.41] and [−2.29,2.35], respectively, both
of which are lower than 2.5. Further global autocorrelation analysis was performed to
obtain Moran’s I = 0.017, Z = 0.470, and P = 0.639 in 2002, and Moran’s I = −0.168,
Z = −1.235, and P = 0.217 in 2020. These values show that the standardized residuals were
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distributed completely randomly in space, that is, the GWR model better revealed the
spatial distribution characteristics of the driving factors of per capita food consumption
carbon emissions.

Table 4. Regression results of the GWR model.

Parameters 2002 Year 2020 Year

Neighbors 29 29
Residual squares 17,872.616 41,339.173
Effective number 10.930 11.154

Sigam 29.841 45.640
AICc 315.677 342.530

R square 0.833 0.802
Adjusted R square 0.750 0.700

The results in Table 4 indicate that this article considers the GWR model to be rea-
sonable to a certain degree. Therefore, the GWR model was used to analyze the spatial
heterogeneity of the influencing factors of rural residents’ per capita food consumption
carbon emissions. The main contents are as follows.

Economic–Preference Factors Impact Analysis

We combined Formula (5) to run the GWR model to calculate the regression coeffi-
cients of each driving factor, and divided it into four levels from low to high according
to the natural break point analysis method (Jenks). Then, 2002 and 2020 were selected
for visualization for the purpose of revealing the spatial heterogeneity of independent
variables on dependent variables (Figures 4 and 5). The results show that there was a
positive correlation between the economic–preference factor and per capita food consump-
tion carbon emissions in 2020, and the regression coefficient was higher in the west and
lower in the south. Among them, Xinjiang, Tibet, and Qinghai were high-value agglom-
eration areas. According to the global development trend in food consumption, with
improvements in economic levels, the consumption of animal-based food by residents will
continue to increase [36], which will promote the increase in their food consumption carbon
emissions [21]. During the study period, economic strength and residents’ income and
expenditure levels in these areas were significantly improved, resulting in the influence of
the economic–preference factor on the region being far greater than in other provinces.

The areas with low regression coefficients were mainly concentrated in the south
area of the Huaihe River and Qinling Mountains, indicating that the rural residents’ food
consumption in this area has a relatively small impact on the environment. The envi-
ronmental Kuznets curve showed that the regional environmental quality will show an
“inverted U-shaped” development trend with improvements in economic level. In 2020,
the growth rate of per capita GDP and per capita disposable income among rural residents
in low-value areas was not only higher than that of other regions, but also higher than
that of first-tier cities such as Beijing and Shanghai; however, their per capita food con-
sumption carbon emissions also increased, indicating that it is still at the left end of the
environmental Kuznets curve and the inflection point has not yet appeared. In summary,
the economic–preference factor has a significant role in promoting the growth of per capita
food consumption carbon emissions, and the impact is higher in the west and lower in
the south.
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Education–Social Factor Impact Analysis

The education–social factor showed a positive correlation with per capita food con-
sumption carbon emissions, and the regression coefficients decreased from west to east.
High-value areas were concentrated in the western region, where the rural residents’ educa-
tion level continuously improved and the Engel coefficient continuously decreased. Some
studies have shown that the higher the level of rural residents’ education, the stronger
their awareness is of environmental protection [37]. At the same time, the diversification of
consumption choices also makes them pay more attention to the pursuit of spiritual life [38],
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which means that there should have been a negative correlation between the education–
social factor and carbon emissions of per capita food consumption. However, we found
a different conclusion. Although the number of years in education gradually increased,
it is still at the stage of a nine-year compulsory education. People with higher education
rather than compulsory education are the first to come into contact with pollution-free
food [39]; therefore, the level of education conferred in junior high school cannot inhibit
the growth of per capita food consumption carbon emissions. At the same time, although
the Engel coefficient of rural residents in the four provinces continuously decreased, the
expenditure on food consumption increased by 413.07% on average, which is higher than
the national average growth rate of 349.05%. Therefore, the education–social factor has a
role in promoting the growth of per capita food consumption carbon emissions, and its
influence decreases from west to east. 
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Figure 5. Spatial distribution of regression coefficients in 2002.
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Material Factor Impact Analysis

The regression coefficient of the material factor had both positive and negative factors,
decreasing from north to south and indicating the instability of its influence. The positive-
value regions were mainly distributed in northern regions such as Heilongjiang and Inner
Mongolia. The consumer price increase in these areas was weak, and has little impact on
food purchasing power, whereas high food consumption creates high carbon emissions.
The negative-value areas were mainly distributed in the southeastern provinces. After
long-term development, the rural commodity market has gradually improved in this area.
The increase in consumer prices reduces carbon emissions by curbing rural residents’ food
purchases. This is consistent with the existing research results of Wang et al. (2010) [38].

Price Factor Impact Analysis

The price factor showed a negative correlation with per capita food consumption
carbon emissions, and the regression coefficients decreased from northwest to southeast.
When other conditions remain the same, the quantity of goods demanded will decrease as
their prices rise according to the demand theorem. That said, food is a necessary product to
maintain the survival of residents and demand price elasticity is relatively weak. However,
the consumption of beef and mutton is high-end consumption, which is greatly affected
by its own price [40]. Compared with the northwest inland provinces, the southeastern
provinces, where the negative high values were concentrated, have seen a larger increase
in food retail prices in recent years. Although their residents’ income levels are relatively
high, the excessively high prices still restrict their purchase of food and further promote
a reduction in per capita food consumption carbon emissions. This is consistent with
previous research [41]. Areas with negative or low values were distributed in the inland
northwest, where the rural economic foundation is weak and income level is low. Rural
residents living in this area are more sensitive to price changes. With the increase in food
retail prices, the amount of food purchased by rural residents has been reduced to some
extent, indirectly promoting a reduction in their per capita food consumption carbon
emissions. Previous studies have also shown that an increase in food retail prices can help
reduce the carbon emissions of rural residents [42].

3.4.3. Spatial–Temporal Evolution of Influencing Factors

Through a comparison in Figures 4 and 5, we found that high-value regions of the
regression coefficient of the economic–preference factor were mainly distributed in Xin-
jiang, Tibet, and Qinghai from 2000 to 2020, indicating that the impact of this factor on
the per capita food consumption carbon emissions is relatively stable. In order to achieve
low-carbon food consumption, the dietary structure should be adjusted to reduce the
consumption of animal-based foods such as pork, beef, and lamb and increase the con-
sumption of low-fat and high-protein foods such as milk. It is necessary to reduce red meat
consumption for the purpose of climate action [43]. If a sustainable diet is adopted, e.g., eat-
ing fewer animal-based foods, carbon emissions can be reduced by up to 75% [9,44,45]. The
high-value area of the regression coefficient of the education–social factor increased, mainly
in the northwest region, but the regression coefficient changed from negative to positive,
indicating that the effect of this factor on the growth of per capita food consumption carbon
emissions changed from restraining to promoting. It is necessary to continue to increase
investment in education and increase the number of years of education of residents in the
future so as to stimulate the effect of education on environmental protection [37,46] and
reduce residents’ excessive food consumption habits [38,41]. The high-value area of the
regression coefficient of the material factor shifted from south to north. In order to reduce
the carbon emissions of food consumption, it is necessary to improve the operation system
of the rural market economy and rely on market forces to restrain residents’ unreasonable
food consumption and achieve the goal of low-carbon food consumption. Reducing unrea-
sonable food consumption can reduce greenhouse gas emissions in the UK and the EU by
3% and 10%, respectively [47]. Unreasonable food consumption is widespread in China,
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causing per capita carbon emissions to increase by 40 kg per year [18]. This is an alarming
figure considering China’s huge population. The high-value area of the price factor is
shifting from the northeast to the northwest and the quantity is declining. In the future, on
the basis of ensuring the stability of food retail prices, the price lever should restrain the
growth of per capita food consumption carbon emissions in the region. Through reasonable
price-control measures, it can significantly promote a reduction in residents’ food-related
carbon emissions [42,48].

4. Discussion

The main objective of our paper was to explore the spatial and temporal evolution
of rural residents’ food consumption carbon emissions and the spatial heterogeneity of
influencing factors from two perspectives: the calculation of carbon emissions generated
from food consumption and the analysis of spatial and temporal evolution characteris-
tics, such as the spatial heterogeneity of influencing factors of food consumption carbon
emissions. Our results confirm that the carbon emissions generated from rural residents’
food consumption is increasing, showing the distribution characteristics of a north–south
confrontation, with a central area collapse, and there is significant spatial heterogeneity in
the effect of each influencing factor. The research conclusions of this article are consistent
with previous studies on the carbon emissions generated from Chinese residents’ food
consumption. For instance, He et al. (2018) found that greenhouse gas emissions related
to food consumption showed an overall increasing trend [49]. Cao et al. (2020) pointed
out that the areas with higher carbon emissions are Inner Mongolia, Chongqing, Sichuan,
Xinjiang, and Tibet, all of which are located in the northern and southern regions of China.
The areas with lower carbon emissions are Shanxi, Henan, Hebei, and Gansu, mainly
located in central China [21]. As expected, the empirical results of this paper show that the
carbon emissions of rural residents’ food consumption increase by 1.68% annually. The
provinces with high carbon emissions are Inner Mongolia, Chongqing, Sichuan, Qinghai,
Guangdong, Fujian, and Shanghai, whereas Shanxi, Henan, Hebei, Gansu, Shaanxi, and
Shandong are provinces with low carbon emissions. Our research results are almost in
line with the results of the above-mentioned scholars. However, the conclusions of this
article on influencing factors are somewhat different from previous studies. For example,
previous studies found that there was a significant positive correlation between level of
education and the country’s green GDP [50]; people with a good education are more likely
to choose environmentally friendly consumption methods [51]. However, we found that
the increase in the level of rural residents’ education was accompanied by an increase
in carbon emissions from food consumption. The reason for the inconsistency of the re-
sults may be that residents’ low level of education cannot account for the positive role
of education in promoting environmental protection [37]. During the study period, the
average education level of rural residents stayed at the nine-year compulsory education
stage; however, people with higher education rather than compulsory education are the
first to come into contact with pollution-free food [39]. Moreover, improvements in educa-
tion level are accompanied by an increase in the consumption of clothing, transportation
and communication, food, culture, education, and entertainment, which in turn increase
carbon emissions [52].

The limitation of this article is that it only considers the main types of rural residents’
food consumption, and does not include the consumption of cakes, seasonings, or bever-
ages, etc., due to a lack of statistical data; however, this does not affect the generalization of
the conclusions. The contributions of this article provide a valuable theoretical basis for
policymakers to formulate differentiated low-carbon food consumption policies, thereby
achieving sustainable food consumption. Future research will attempt to conduct field
surveys in representative areas to obtain microdata on rural residents’ food consumption,
and to more accurately study the changing trends in carbon emissions from food consump-
tion so as to provide a more accurate reference for the formulation of low-carbon food
consumption policies.
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5. Conclusions

This paper analyzes rural residents’ per capita food consumption carbon emissions
in 31 provinces in China from 2002 to 2020, and explores the spatial heterogeneity of its
driving factors with the help of the ESDA-GWR model. The main conclusions are as
follows. First, per capita food consumption carbon emissions of rural residents increased
by 1.68% annually to 336.73 kg CO2-eq in 2020, of which animal-based food was the main
food type that promoted the growth of per capita carbon emissions. Although the high-
value areas of per capita carbon emissions are continuously decreasing, the low-value
areas are slowly increasing, which promotes the spatial distribution of rural residents’ per
capita food consumption carbon emissions to show a north–south confrontation, and a
collapse in the middle. Second, the rural residents’ per capita food consumption carbon
emissions show obvious spatial autocorrelation characteristics. The hot and cold spots
were mainly distributed in the southern and northern regions of China, and showed a
clear agglomeration effect from 2002 to 2020. Among them, the hot spot areas showed a
significant spatial evolution trend, converging to the southeast, and the cold spot areas
were relatively fixed. Third, there is significant spatial heterogeneity in the influencing
factors of carbon emissions from rural residents’ food consumption. The price factor plays
the most prominent role in curbing carbon emissions from food consumption, and its
role is weakened from northwest to southeast. The education–social factor is the main
power driving the growth of food consumption carbon emissions, and its role has been
continuously strengthened from east to west.

Based on the above research conclusions, the policy implications are as follows. First,
the dietary structure of rural residents needs to be further optimized [20]. In areas with high
carbon emissions from food consumption, such as Inner Mongolia, Qinghai, and Sichuan,
propaganda power should be increased to enhance residents’ attention to scientific diet,
reduce residents’ intake of meat food, and increase the consumption of dairy products.
China has a serious lack of dairy product intake [53]; compared with meat consumption,
the impact of increased consumption of dairy products on the environment is far lower
than that of meat food consumption [30], and it can also meet the human body’s demand
for nutrients. Second, we should further improve the education level of rural residents,
especially in Xinjiang, Tibet, Qinghai, etc., for the reason that a low level of education might
inhibit the promotion of environmental protection [37]; it is also not conducive to residents’
pursuit of a spiritual life [38,41]. In the future, investment in education in these areas
should be increased, not only to improve “hardware” such as educational infrastructure,
but also to increase investment in “software” such as teachers. More outstanding teachers
should be encouraged to participate in rural education.

Author Contributions: Conceptualization, H.C. and S.Q.; methodology, software, data curation, S.Q.
and H.W.; writing—original draft preparation, S.Q.; writing—review and editing, H.W.; supervision,
H.C. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Heilongjiang Province Ecological Civilization Construction
and the Green Development Think Tank Project (grant number 202010).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data in the paper come from the statistical yearbook compiled by
the National Bureau of Statistics of China (http://www.stats.gov.cn/, (accessed on 30 August 2021));
please refer to the second paragraph in Section 2.4 for details. In addition, interested readers can
obtain all the data from the corresponding author if required.

Acknowledgments: The authors are particularly grateful to Northeast Forestry University, Harbin,
China, for their technical support and extend thanks for the project support given by the fund
granting unit.

Conflicts of Interest: The authors declare no conflict of interest.

http://www.stats.gov.cn/


Sustainability 2021, 13, 12419 16 of 17

References
1. Liu, Z.; Guan, D.B.; Wei, W.; Davis, S.J.; Ciais, P.; Bai, J.; Peng, S.S.; Zhang, Q.; Hubacek, K.; Marland, G.; et al. Reduced carbon

emission estimates from fossil fuel combustion and cement production in China. Nature 2015, 524, 335–338. [CrossRef] [PubMed]
2. Thompson, R.L.; Patra, P.K.; Chevallier, F.; Maksyutov, S.; Law, R.M.; Ziehn, T.; Van Der Laan-Luijkx, I.T.; Peters, W.; Ganshin,

A.; Zhuravlev, R.; et al. Top–down assessment of the Asian carbon budget since the mid 1990s. Nat. Commun. 2016, 7, 10724.
[CrossRef] [PubMed]

3. Duan, H.B.; Zhou, S.; Jiang, K.J.; Bertram, C.; Harmsen, M.; Kriegler, E.; Vuuren, D.V.; Wang, S.Y.; Fujimori, S.; Tavoni, M.; et al.
Assessing China’s efforts to pursue the 1.5 ◦C warming limit. Science 2021, 372, 378–385. [CrossRef] [PubMed]

4. Mi, Z.; Meng, J.; Guan, D.; Shan, Y.; Song, M.; Wei, Y.M.; Liu, Z.; Hubacek, K. Chinese CO2 emission flows have reversed since the
global financial crisis. Nat. Commun. 2017, 8, 1712. [CrossRef] [PubMed]

5. Lemoine, F.; Unal, D. China’s Foreign Trade: A “New Normal”. China World Econ. 2017, 25, 1–21. [CrossRef]
6. Su, B.; Ang, B. Multiplicative structural decomposition analysis of aggregate embodied energy and emission intensities. Energy

Econ. 2017, 65, 137–147. [CrossRef]
7. Mi, Z.; Meng, J.; Guan, D.; Shan, Y.; Liu, Z.; Wang, Y.; Feng, K.; Wei, Y.-M. Pattern changes in determinants of Chinese emissions.

Environ. Res. Lett. 2017, 12, 074003. [CrossRef]
8. Liu, L.C.; Wu, G.; Wang, J.N.; Wei, Y.M. China’s carbon emissions from urban and rural households during 1992–2007. J. Clean.

Prod. 2011, 19, 1754–1762. [CrossRef]
9. Feng, W.; Cai, B.; Zhang, B. A Bite of China: Food consumption and carbon emission from 1992 to 2007. China Econ. Rev. 2020,

59, 100949. [CrossRef]
10. Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate Change and Food Systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222.

[CrossRef]
11. Notarnicola, B.; Tassielli, G.; Renzulli, P.A.; Castellani, V.; Sala, S. Environmental impacts of food consumption in Europe. J. Clean.

Prod. 2017, 140, 753–765. [CrossRef]
12. Xu, Y.; Geng, Y.; Gao, Z.; Xiao, S.; Zhang, C.; Zhuang, M. Accounting greenhouse gas emissions of food consumption between

urban and rural residents in China: A whole production perspective. Front. Energy 2021, 15, 1–18. [CrossRef]
13. Lin, J.; Hu, Y.; Cui, S.; Kang, J.; Xu, L. Carbon footprints of food production in China (1979–2009). J. Clean. Prod. 2015, 90, 97–103.
14. Guo, J.L.; Xin, R.H.; Qi, Y.L.; Wen, B.Z.; Jing, Z. A Study on the Relationship between Income Change and the Water Footprint of

Food Consumption in Urban China. Sustainability 2021, 13, 7076.
15. Hu, Y.; Su, M.; Wang, Y.; Cui, S.; Meng, F.; Yue, W.; Liu, Y.; Xu, C.; Yang, Z. Food production in China requires intensified measures

to be consistent with national and provincial environmental boundaries. Nat. Food 2020, 1, 572–582. [CrossRef]
16. Pang, J.; Li, X.; Li, X.; Chen, X.; Wang, H. Research on the Relationship between Prices of Agricultural Production Factors, Food

Consumption Prices, and Agricultural Carbon Emissions: Evidence from China’s Provincial Panel Data. Energies 2021, 14, 3136.
[CrossRef]

17. Long, Y.; Hu, R.; Yin, T.; Wang, P.; Liu, J.; Muhammad, T.; Chen, X.; Li, Y. Spatial-Temporal Footprints Assessment and Driving
Mechanism of China Household Diet Based on CHNS. Foods 2021, 10, 1858. [CrossRef]

18. Song, G.; Li, M.; Semakula, H.M.; Zhang, S. Food consumption and waste and the embedded carbon, water and ecological
footprints of households in China. Sci. Total Environ. 2015, 529, 191–197. [CrossRef]

19. He, P.H.; Li, Y.L.; Yang, S.L. Analysis of the temporal and spatial evolution characteristics of carbon emissions from food
con-sumption by Chinese urban residents. China Environ. Manag. 2021, 13, 112–120.

20. Li, N.Z.; Xiao, H.; Qin, G.P.; Qi, Y.; Xu, J.C.; Chen, J.Z. Research on the Driving Effect of Residents’ Food Consumption Carbon
Emissions from the Perspective of Urban-rural Differentiation: An Empirical Analysis of Jiangsu Province. Soft Sci. 2021,
35, 54–59.

21. Cao, Z.H.; Hao, J.M.; Xing, H.P. Analysis of the temporal and spatial evolution trend and driving mechanism of carbon emissions
from food consumption of Chinese residents. Prog. Geogr. Sci. 2020, 39, 91–99. [CrossRef]

22. Yan, W.; Xiao, K.W.; Fei, L. Food consumption carbon footprint of Beijing residents. Acta Ecol. Sin. 2012, 32, 1570–1577. [CrossRef]
23. Xiong, X.; Zhang, L.; Hao, Y.; Zhang, P.P.; Chang, Y.; Liu, G.Y. Urban dietary changes and linked carbon footprint in China: A case

study of Beijing. J. Environ. Manag. 2020, 255, 109877. [CrossRef]
24. Yang, X.; Zhang, Z.; Chen, H.; Zhao, R.; Xu, Z.; Xie, A.; Chen, Q. Assessing the Carbon Emission Driven by the Consumption of

Carbohydrate-Rich Foods: The Case of China. Sustainability. 2019, 11, 1875. [CrossRef]
25. Wang, L.X.; Liu, A.M.; Xin, L.J. Food Security Volume: Strategic Research on China’s Food Security and Cultivated Land Security Issues,

1st ed.; China Agriculture Press: Beijing, China, 2019; pp. 125–126.
26. Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [CrossRef]
27. D’Adamo, I.; Morone, P.; Huisingh, D. Bioenergy: A Sustainable Shift. Energies 2021, 14, 5661. [CrossRef]
28. Vacchi, M.; Siligardi, C.; Demaria, F.; Cedillo-González, E.I.; González-Sánchez, R.; Settembre-Blundo, D. Technological Sus-

tainability or Sustainable Technology? A Multidimensional Vision of Sustainability in Manufacturing. Sustainability 2021, 13, 9942.
[CrossRef]

29. Mies, A.; Gold, S. Mapping the social dimension of the circular economy. J. Clean. Prod. 2021, 321, 128960. [CrossRef]
30. He, P.; Cai, B.; Baiocchi, G.; Giovanni, B.; Zhu, L. Drivers of GHG emissions from dietary transition patterns in China: Supply

versus demand options. J. Ind. Ecol. 2020, 25, 707–719. [CrossRef]

http://doi.org/10.1038/nature14677
http://www.ncbi.nlm.nih.gov/pubmed/26289204
http://doi.org/10.1038/ncomms10724
http://www.ncbi.nlm.nih.gov/pubmed/26911442
http://doi.org/10.1126/science.aba8767
http://www.ncbi.nlm.nih.gov/pubmed/33888636
http://doi.org/10.1038/s41467-017-01820-w
http://www.ncbi.nlm.nih.gov/pubmed/29167467
http://doi.org/10.1111/cwe.12191
http://doi.org/10.1016/j.eneco.2017.05.002
http://doi.org/10.1088/1748-9326/aa69cf
http://doi.org/10.1016/j.jclepro.2011.06.011
http://doi.org/10.1016/j.chieco.2016.06.007
http://doi.org/10.1146/annurev-environ-020411-130608
http://doi.org/10.1016/j.jclepro.2016.06.080
http://doi.org/10.1007/s11708-021-0763-y
http://doi.org/10.1038/s43016-020-00143-2
http://doi.org/10.3390/en14113136
http://doi.org/10.3390/foods10081858
http://doi.org/10.1016/j.scitotenv.2015.05.068
http://doi.org/10.18306/dlkxjz.2020.01.009
http://doi.org/10.5846/stxb201101140074
http://doi.org/10.1016/j.jenvman.2019.109877
http://doi.org/10.3390/su11071875
http://doi.org/10.1038/nature13959
http://doi.org/10.3390/en14185661
http://doi.org/10.3390/su13179942
http://doi.org/10.1016/j.jclepro.2021.128960
http://doi.org/10.1111/jiec.13086


Sustainability 2021, 13, 12419 17 of 17

31. Cao, Y.; Chai, L.; Yan, X.; Liang, Y. Drivers of the Growing Water, Carbon and Ecological Footprints of the Chinese Diet from 1961
to 2017. Int. J. Environ. Res. Public Health 2020, 17, 1803. [CrossRef]

32. Zhi, J.; Gao, J.X. Comparative analysis of carbon emissions from food consumption of urban and rural residents in China. Prog.
Geogr. Sci. 2009, 28, 429–434.

33. Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An Introduction to Spatial Data Analysis. Geogr. Anal. 2006, 38, 5–22. [CrossRef]
34. Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically Weighted Regression: A Method for Exploring Spatial

Nonstationarity. Geogr. Anal. 1996, 28, 281–298. [CrossRef]
35. Chen, Z.; Lu, M.; Jin, Y. Regional Differences in China’s Human Capital and Educational Development: Estimation of Panel Data.

World Econ. 2004, 12, 25–31.
36. Rask, K.J.; Rask, N. Economic development and food production–consumption balance: A growing global challenge. Food Policy

2011, 36, 186–196. [CrossRef]
37. Yang, Z.Q. How does education affect agricultural green productivity: An empirical analysis based on different forms of

edu-cation in rural my country. China Soft Sci. 2019, 52–65. [CrossRef]
38. Wang, W.X.; Wu, K.Y.; Liu, X.W. Analysis of Changes and Differences in Food Carbon Consumption of Urban and Rural Residents:

Taking Anhui Province as an Example. Resour. Environ. Yangtze Basin 2010, 19, 1177–1184.
39. Zhang, X.Y.; Li, G.; Zhang, L. Chinese consumers’ concerns about food safety: Investigation and analysis of consumers in Tianjin.

China Rural. Obs. 2004, 25, 14–21.
40. Lu, Y.P.; Xiao, H.F. The characteristics and trend judgment of Chinese residents’ meat consumption—Based on the double

logarithmic linear expenditure model and the LA/AIDS model. J. China Agric. Univ. 2020, 25, 180–190.
41. Wu, K.Y.; Wang, W.X.; Zhu, Q. Dynamic Analysis on the Changing Trend of Food Carbon Consumption of Shanghai Residents.

China Popul. Resour. Environ. 2009, 19, 161–167.
42. Zhang, L.L.; Sun, B.F. Research on the Food Carbon Consumption Dynamics of Urban and Rural Residents in Emerging

Cit-ies—Taking Dongying City, Shandong as an Example. J. Anhui Agric. Sci. 2012, 40, 13089–13092.
43. Kim, B.F.; Santo, R.E.; Scatterday, A.P.; Fry, J.P.; Synk, C.M.; Cebron, S.R.; Mekonnen, M.M.; Hoekstra, A.Y.; De Pee, S.; Bloem,

M.W.; et al. Country-specific dietary shifts to mitigate climate and water crises. Glob. Environ. Chang. 2020, 62, 101926. [CrossRef]
44. Xu, X.; Lan, Y. A comparative study on carbon footprints between plant- and animal-based foods in China. J. Clean. Prod. 2016,

112, 2581–2592. [CrossRef]
45. Lacour, C.; Seconda, L.; Allès, B.; Hercberg, S.; Langevin, B.; Pointereau, P.; Lairon, D.; Baudry, J.; Kesse-Guyot, E. Environmental

Impacts of Plant-Based Diets: How Does Organic Food Consumption Contribute to Environmental Sustain-ability? Front. Nutr.
2018, 5, 1–13. [CrossRef] [PubMed]

46. Bao, G.H.; Liu, W.Q.; Cui, Y.S.; Liu, D.M.; Liu, X.F. Sustainable Development of Food Consumption of Rural Residents. Bus. Res.
2003, 81–83. [CrossRef]

47. Garnett, T. Where are the best opportunities for reducing greenhouse gas emissions in the food system (including the food chain)?
Food Policy 2011, 36, S23–S32. [CrossRef]

48. Yan, Z.C.; Sheng, H.; Wang, H.N.; Yu, Y.; Xu, L.L. Food C, N and P consumption dynamics of residents in Xiamen’s rapid
urbanization. Environ. Sci. Technol. 2012, 35, 479–486.

49. He, P.; Baiocchi, G.; Hubacek, K.; Feng, K.; Yu, Y. The environmental impacts of rapidly changing diets and their nutritional
quality in China. Nat. Sustain. 2018, 1, 122–127. [CrossRef]

50. Chen, R.; Ding, X.H.; Min, W.F. Research on the Contribution of Education to Green GDP. Educ. Res. 2019, 40, 133–141.
51. Li, Y.C.; Jiang, B.; Zhang, M.; Huang, Z.J.; Deng, Q.; Zhou, M.G.; Zhao, Z.P.; Wang, Y.F.; Wang, L.M. Vegetable and Fruit

Consumption among Chinese Adults and Associated Factors: A Nationally Representative Study of 170,847 Adults. Biomed.
Environ. Sci. 2017, 30, 863–874.

52. Xu, X.K.; Han, L.Y. How do consumption patterns affect household carbon emissions?—Micro-evidence from Chinese urban
households. Southeast Acad. 2017, 154–163. [CrossRef]

53. Singh, G.M.; Micha, R.; Khatibzadeh, S.; Shi, P.L.; Lim, S.; Andrews, K.G.; Engell, R.E.; Ezzati, M.; Mozaffarian, D. Global,
Regional, and National Consumption of Sugar-Sweetened Beverages, Fruit Juices, and Milk: A Systematic Assessment of
Beverage Intake in 187 Countries. PLoS ONE 2015, 10, 0124845.

http://doi.org/10.3390/ijerph17051803
http://doi.org/10.1111/j.0016-7363.2005.00671.x
http://doi.org/10.1111/j.1538-4632.1996.tb00936.x
http://doi.org/10.1016/j.foodpol.2010.11.015
http://doi.org/10.3969/j.issn.1002-9753.2019.08.005
http://doi.org/10.1016/j.gloenvcha.2019.05.010
http://doi.org/10.1016/j.jclepro.2015.10.059
http://doi.org/10.3389/fnut.2018.00008
http://www.ncbi.nlm.nih.gov/pubmed/29479530
http://doi.org/10.13902/j.cnki.syyj.2003.08.032
http://doi.org/10.1016/j.foodpol.2010.10.010
http://doi.org/10.1038/s41893-018-0035-y
http://doi.org/10.13658/j.cnki.sar.2017.03.019

	Introduction 
	Model Specification and Data Source 
	Calculation Method of Per Capita Food Consumption Carbon Emissions 
	Exploratory Spatial Data Analysis 
	Geographically Weighted Regression 
	Data Sources 

	Results and Discussion 
	Temporal Evolution Characteristics of Rural Residents’ Per Capita Food Consumption Carbon Emissions 
	Spatial Distribution Characteristics of Rural Residents’ Per Capita Food Consumption Carbon Emissions 
	Spatial Autocorrelation Analysis of Rural Residents’ Per Capita Food Consumption Carbon Emissions in China 
	Effective Factor Analysis of Rural Residents’ Per Capita Food Consumption Carbon Emissions in China 
	Selection of Influencing Factors 
	Spatial Differentiation of Effective Factors 
	Spatial–Temporal Evolution of Influencing Factors 


	Discussion 
	Conclusions 
	References

