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Abstract: The agricultural potential of Bangladesh’s coastal region has been threatened by the impact
of climate change. Pulse crops with high nutritional value and low production costs such as green
gram constitute an important component of a healthy and accessible diet for the country. In order
to optimize the production of this important staple, this research aims to promote climate-smart
agriculture by optimizing the identification of the appropriate land. The objective of this research is
to investigate, estimate, and identify the suitable land areas for green gram production based on the
topography, climate, and soil characteristics in the coastal region of Bangladesh. The methodology of
the study included a Geographic Information System (GIS) and the Multicriteria Decision-Making
approach: the Analytical Hierarchy Process (AHP). Datasets were collected and prepared using
Landsat 8 imagery, the Center for Hydrometeorology and Remote Sensing (CHRS) data portal and
the Bangladesh Agricultural Research Council. All the datasets were processed into raster images
and then reclassified into four classes: Highly Suitable (S1), Moderately Suitable (S2), Marginally
Suitable (S3), and Not Suitable. Then, the AHP results were applied to produce a final green gram
suitability map with four classes of suitability. The results of the study found that 12% of the coastal
area (344,619.5 ha) is highly suitable for green gram production, while the majority of the land area
(82.3% of the area) shows moderately suitable (S2) land. The sensitivity analysis results show that
3.3%, 63.4%, 28.0%, and 1.2% of the study area are S1, S2, S3, and NS, respectively. It is also found that
the highly suitable land area belongs mostly to the southeastern part of the country. The result of this
study can be utilized by policymakers to adopt a proper green gram production strategy, providing
special agricultural incentive policies in the highly suitable area as a provision for the increased food
production of the country.

Keywords: Bangladesh’s coastal region; green gram land suitability; sustainable agriculture;
Geographic Information System (GIS); Analytical Hierarchy Process (AHP)

1. Introduction

Bangladesh, due to its geographical location and social circumstances, is one of the
world’s most disaster-prone countries [1–4]. Various natural disasters, such as intense
rainfall, cyclones, flooding, thunderstorms, tornadoes, storm surges, salinity intrusion,
and others, have already occurred in this country, and the intensity of these disasters
has been rising in coastal Bangladesh [5]. Coastal areas are more vulnerable to disasters
than other parts of the world [6]. These hazards may lead to a variety of socioeconomic
consequences in coastal areas, including loss of property and coastal habitats, reduced
agricultural productivity, loss of tourism, transportation, recreation and industry, and
harbor activities [7,8]. Non-climate stressors, such as urbanization, population migration,
land-use change, pollution, and gender problems, have also been strong drivers of changes
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in coastal agriculture around the world. These will, in turn, have an effect on the long-term
viability of coastal food security [9–11].

Green gram (Vigna radiata) is one of the most popular pulse crops, grown on more than
six million hectares of land across the globe—representing around 8.5 percent of the global
pulse cultivated area. The green gram is extensively cultivated in many Asian countries,
primarily India, Bangladesh, China, Pakistan, and some Southeast Asian countries, as well
as in dry regions of southern Europe and warmer regions of the USA and Canada, owing
to its characteristics—such as the short duration crop (around 70 days), low-input crop,
and drought tolerance [12,13]. Green gram serves as a rich source of protein, containing
14.6–33.0 g/100 g protein and 5.9–7.6 mg/100 g iron [12]. Green gram is a popular food for
low-income people, especially those who cannot afford animal protein, as its production
cost is low. Vegetarians also consume it as a good protein in their diet [13]. Green gram,
a plant-based protein, contributes substantially to reducing the effects of climate change,
as plant protein generates considerably less greenhouse gas than animal protein. Plant
protein production is also less expensive in terms of land and water demand than animal
protein [14]. So, the cultivation of green grams in the coastal area would be part of the
climate change adaptation process through the improvement of soil health and environment
and, at the same time, ensuring food security.

Green gram cultivation is dominant in some coastal districts of Bangladesh compared
to other parts of country. During the period of 2016–17 to 2019–20, the average annual
production of green gram was 56,785 MT from the coastal area of Bangladesh, while
the country’s total production was 52,220 MT [15]. This figure implies that farmers of
the coastal region are traditionally growing green gram over the years. However, the
amount of production cannot meet the country’s growing demand. In the year 2017,
Bangladesh spent 143.2 thousand USD on importing 322 thousand MTs of green gram
(mung bean) from abroad [16]. Bangladesh also exports green gram to some extent. In
2019, the figure for export was the highest; the export value was US $1.82 million, with
a volume of 1.04 million MTs [16]. The government of Bangladesh has been trying to
extend the area of green gram production since 2014, especially in the disaster-affected
areas, providing various production inputs, incentives, and subsidies to farmers to enhance
the yield [15]. There is little scientific research to identify the best suitable area for green
gram production. Rather, the government’s subsidies and farmers’ cultivation are based
on traditional knowledge. Accordingly, the maximum outcome has failed to provide the
highest possible input. Along with the significance of the rise in soil salinity, soil health,
which is the prime determining factor of crop cultivation in the coastal areas, has been
deteriorating over the years. As a consequence, agricultural crop production, particularly
rice cultivation, is sharply decreasing. So, there is a potential scope to investigate whether
green gram can be produced. The identification and delineation of suitable areas for
growing green gram have become critical, so that the government can give more focus
and make more appropriate subsidy policies to boost green gram production, improve
the environment, and ultimately reduce its import dependence by increasing domestic
production.

To ensure the security of national food, recent land-use technology such as GIS and
remote sensing has not been widely used in Bangladesh’s agriculture, particularly in the
coastal region. Accordingly, individual crop cultivation, with its potentiality in Bangladesh,
requires an extensive land suitability analysis. There are very few GIS and remote sensing-
based land suitability studies performed in Bangladesh, and those that exist are mostly for
rice production for a specific district. No land suitability studies have been found for green
gram production for the whole coastal area. Due to an increase in the spatial and spectral
resolution of the sensors, satellite remote sensing has advantages, allowing the discovery
and documentation of new archaeological features and sites all over the world [17]. The
benefits of remote sensing mapping include a greater area coverage, a low cost, and
comparatively high productivity [18,19]. High-resolution imagery (Landsat-8, Sentinel-2,
Gaofeng-1) has become the primary source of crop area data in recent years [20,21].
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Land assessment map analysis techniques have been achieved using geographical
information systems (GIS) and remote sensing as a result of advancements in information
and communication technology [22]. In addition, the Analytical Hierarchy Process (AHP),
which has the advantage of incorporating expert views to prioritize the criteria according
to weight in consistent judgments with GIS, are used to consider the influencing criteria for
increasing green gram production. The AHP method, based on remote sensing and GIS,
is extensively used in spatial decision-making processes, such as land suitability analysis
for cassava [23]; crop insurance premiums based on land suitability [24]; investigating
drought hazard using microwave and infrared datasets [25]; mapping of flood hazard
areas [26]; site suitability for aquaculture [27]; and site selection for industrial, landfill, and
biodigester [28,29].

Land suitability assessment is highly needed for productive planning and long-term
land use in climate-vulnerable countries. It is crucial because it provides information on the
potentials and limitations of land for a specific land use type in terms of crop performance.
Land suitability analysis, according to Halder [30], is a method of land assessment that
evaluates the level of appropriateness of land for a specific use. Cropland suitability
analysis is a crucial step in ensuring that the available land resources are used to their full
potential in order to practice sustainable agricultural production [30,31]. GIS is one of the
most important methods for mapping and analyzing land-use suitability. Several criteria
are required for land assessment, including various soil properties, land use land cover
(LULC), slope, elevation, rainfall, and temperature. Different criteria, such as geology and
biophysical components (i.e., geology, soil characteristics, relief, atmospheric conditions,
and vegetation), as well as economic and socio-cultural conditions, are considered in a
multicriteria assessment of land suitability [32]. The primary goal of land assessment is to
determine the best land use for each specified land unit while also promoting environmental
resource conservation for future use [33]. Many researchers have attempted to develop a
standard framework for the most appropriate and efficient use of agricultural land. The
Food and Agriculture Organization (FAO) [34] developed a framework for land evaluation,
dividing the land into four classes, namely: highly suitable (S1), moderately suitable (S2),
marginally suitable (S3), and not suitable (S4) (NS).

The Analytical Hierarchy Process (AHP) method, which was developed in the 1980s
and introduced by Saaty in the mid-1970s, is one of the best methods for performing land
suitability analysis [35,36]. AHP has been used in a variety of fields around the world,
including government, enterprise, industry, healthcare, and education [37]. Because of
its ability to integrate a large amount of heterogeneous data, GIS-based AHP has become
popular in research, and obtaining the necessary weights for analysis can be relatively
simple, even for a large number of criteria [31].

The primary purpose of this study is to investigate and determine the suitable land
area with four suitability classes: highly, moderately, marginally, and not suitable, through
GIS and considering expert opinions for green gram cultivation in the coastal region of
Bangladesh. This suitability analysis could help the government make an effective subsidy
program for crop production to enhance food security. This study could be a model for
searching the appropriate site or land area to cultivate specific agricultural crops. Overall,
it will facilitate the policymaker and agricultural extensionist in their land-use planning,
to maximize the land use and achieve a sustainable agriculture in the southern area of
Bangladesh.

2. Materials and Methods
2.1. Study Area

The research is carried out in the coastal area, the southern part of Bangladesh, com-
posed of 18 districts, viz. Bagerhat, Barguna, Barishal, Bhola, Chattagram, Cox’s bazar,
Feni, Gopalganj, Jessore, Jhalkathi, Khulna, Lakshamipur, Madaripur, Narail, Noakhali,
Patuakhali, Pirojpur, and Satkhira. The whole study area is located between 89◦93′ E and
21◦23′ N, and the surface area is 47,150 km2 (Figure 1). Though the people of the coastal
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areas are mostly dependent on agriculture, the cropland quality is already degraded and
continuously degraded because of the occurrence of natural disasters and climate change
impact. Coastal Bangladesh is a hotspot for hydrometeorological disasters, where cyclones,
tidal waves, drought, floods, waterlogging, saltwater intrusion, and land subsidence are
common phenomena. This has a direct impact on livelihoods, since agriculture employs
more than 60% of Bangladesh’s population [38], and it is also a major source of income for
the 40 million people who live along the coast [39].

Figure 1. Study area—Coastal region of Bangladesh.

2.2. Multicriteria Evaluation of the Land Suitability Analysis

The assessment of land suitability for a specific use is known as land suitability
analysis [40] (Food and Agriculture Organization [FAO] [41]). A land suitability assessment
examines various criteria, such as the climatic, geographical, soil, vegetation, and other
characteristics of lands, to determine suitable lands for specific uses [40,41]. One of the
most critical aspects of this assessment is the definition of parameters that influence land
suitability [42]. Land suitability for agricultural uses can be assessed using a variety of
parameters that take into account a variety of factors, such as data availability, farming
methods, the precision of evaluation, the crop type, and the environmental characteristics
of the study region.

For evaluating the land suitability of pulse crop (green gram), eleven criteria (Table 1)
are considered which belong mostly to topography (slope and elevation), climate (rainfall,
land surface temperature), land use land cover (LULC), and soil characteristics (topsoil
texture, soil drainage, soil salinity, soil pH, soil depth, and inundation land type) based
on a relevant literature review [42–46] and the opinions of experts like agriculturists,
agronomists, and government personnel from the agriculture ministry.
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Table 1. Some studies on land suitability evaluation, describing the methods and the criteria considered.

Author Year Methods Crop Criteria

[42] Akıncı, Ozalp, and
Turgut 2013 GIS-based AHP All crop

Elevation slope, aspect, land use
capability class and subclass,

various soil groups, soil erosion,
soil depth, OSP,

[47] Mishra, Deep, and
Choudhary 2015 GIS-based AHP Organic farming Slope, drainage, geology, soil,

LULC, road

[48] Bozdağ 2016 GIS-based AHP General

Land use, soil type, rainfall,
elevation, aspect, slope, sodium
hazard, salinity hazard, chloride,

water table depth

[43] Mugo, Kariuki,
Musembi 2016 GIS-based AHP Green Gram CEC, soil depth, soil texture, soil

pH, soil drainage and slope

[49] Karimi et al. 2018 GIS and Multicriteria
Analysis

Organic Agriculture of
Wheat

Temperature, rainfall, soil texture,
soil depth, drainage, soil pH,

salinity, sodicity, organi matter,
CEC, flood frequency, erosion,

slope

[45] Habibie et al. 2021

Remote sensing and
GIS-based

multi-criteria decision
support system

Maize
Distance from road and rivers,

slope, LULC, elevation, soil type,
rainfall, NDVI, LST

[44] Kumar et al. 2019 Remote sensing and
GIS General LULC, DEM, soil texture, lithology,

geomorphology, water level

[46] Tashayo et al. 2020 GIS-AHP Maize Temperature, elevation, slope, soil
pH, EC, CCE, ESP, and soil texture.

Note: EC: Electrical Conductivity; CEC: Cation Exchange Capacity; NDVI: Normalized Difference Vegetation Index; DEM: Digital Elevation
Model; CCE: Calcium Carbonate Equivalent; OSP: Ontology of Soil Properties.

2.2.1. Topography Data

The topography of the study area refers to the slope and elevation properties of the
land of the coastal area. The slope and elevation were calculated using the original Shuttle
Radar Topography Mission (SRTM) and digital elevation models (DEM), which were
downloaded from the USGS earth explorer in the ArcGIS environment. The topographical
maps were produced and corrected the projection using the Universal Transverse Mercator
(UTM) projection and the WGS 84 datum (WGS 84 46N) in the ArcGIS environment. The
slope was determined by calculating the maximum rate of change between each cell and
its neighbors. In the output raster, each cell had a slope value. A lower slope value means
that the terrain is flatter, while a higher slope value indicates that the terrain is steeper. Flat
fields had a smooth surface, which was better for crop cultivation because it made water
distribution more even and fair. From Figure 2a,b, it is observed that the slope of the study
area ranges from zero to 77.44%, and the altitude ranges from zero to 255 m.
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Figure 2. (a) Slope map; (b) Elevation map.

2.2.2. Rainfall

The rainfall data are collected from PERSIANN-CCS, of the (CHRS) data portal. The
PERSIANN-Cloud Classification System (PERSIANN-CCS) is a real-time global high-
resolution (0.04◦ × 0.04◦ or 4 km × 4 km;) satellite precipitation product developed by the
Center for Hydrometeorology and Remote Sensing (CHRS) at the University of California,
Irvine (UCI). The PERSIANN-CCS system enables the categorization of cloud-patch fea-
tures based on the cloud height, areal extent, and variability of the texture estimated from
satellite imagery. Rainfall raster data were downloaded for the year 2020 for the whole
country, followed by an extraction by mask in ArcGIS to get the data for the study area
for further reclassification. Before reclassification, the raster has been resampled to get the
desired cell size, which is compatible with the cell size of other criteria.

2.2.3. Land Surface Temperature (LST)

Land surface temperature (LST) is an important factor that directly affects the growth
and development of the plant. In this study, the mean land surface temperature map is
produced through a machine learning algorithm in the Google Earth Engine (GEE) platform
for the years 2018–2020. A Landsat 8 Surface Reflectance Tier 1 dataset is used, which is
provided by the United States Geological Survey (USGS). The atmospherically corrected
surface reflectance from the Landsat 8 OLI/TIRS sensors is included in this dataset. Five
visible and near-infrared (VNIR) bands, two short-wave infrared (SWIR) bands, and
two thermal infrared (TIR) bands processed to orthorectified brightness temperature are
included in these images. The process to produce LST is shown in Figure 3.

Figure 3. Flow-chart of the Land Surface Temperature (LST) map development.
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The generated LST map is exported to Google Drive and brought to the ArcGIS
environment. The image of the study area is extracted by “extract by mask” and then
classified into a different category. The annual mean rainfall ranged from 1069 to 2360 mm
(Figure 4a), the minimum land surface temperature (LST) is 23.21 ◦C, and the maximum
mean LST is 31.88 ◦C (Figure 4b).

Figure 4. (a) Rainfall map; (b) Land Surface Temperature (LST) map.

2.2.4. Soil Characteristics

The base map for soil characteristics such as topsoil texture, soil salinity, soil pH, soil
depth, soil drainage, and inundation land type are collected from the Bangladesh Country
Almanac (BCA) as vector data and imported to ArcGIS. The study area is extracted using
the extract by mask function. These data are georeferenced and projected to WGS 1984
UTM 46N through the projected coordinate system in ArcGIS. Next, these vector data are
converted to raster data through the polygon to raster function in ArcGIS 10.7, followed by
reclassification, made into various classes, according to the FAO suitability class guidelines
(Table 2). They illustrated the various suitability class for each parameter.

Table 2. Structure of the FAO Land Suitability Classification.

Symbol Suitability Level Description

S1 Highly Suitable Land having no significant limitations or only minor
limitations

S2 Moderately Suitable

Land having limitations which in aggregate are
moderately severe/land that is clearly suitable, but

which has limitations either in productivity or
increasing the inputs needed to sustain the productivity

compared with those needed on S1 land

S3 Marginally Suitable Land having limitations which in aggregate are severe

NS Not Suitable Land having severe limitations
Source: Guidelines for land-use planning [50].

2.2.5. Land Use Land Cover

This study also includes the preparation of Land Use Land Cover classifications. This
was also done in the Google Earth engine platform; an analysis based on the machine
learning algorithm, using the Landsat 8 dataset that is described as Landsat 8 Collection 1
Tier 1 calibrated top-of-atmosphere (TOA) reflectance with a cloud cover below 1%. The
process started by loading the Region of Interest (ROI) and collecting the Landsat 8 dataset
for each ROI. Next, all images were merged using the mosaic function, followed by clipping
the mosaic data by the study area boundary. Then, training data were collected by collecting
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the sample points across the entire study area. Sample points or features are assembled
with a property, storing the known class label and properties that store numeric values for
the predictors. A smile cart classifier was used which is trained with training data followed
by the classification of the image or feature. The accuracy assessment was done using the
Confusion Matrix function, and a 99.3% accuracy was estimated. Finally, the produced
image was exported. This land use land classification is a supervised classification. Then,
this map was imported to the ArcGIS environment, which was followed by the resampling
of raster data to make the cell size compatible with other data. A reclassification assigning
the score was done to use in AHP. Finally, the raster data were changed to a projected
coordinate system with UTM WGS 84, and the area was calculated for each class. The flow
chart of the process is shown as Figure 5. In the map, five Land Use Land Cover classes,
viz. forest, water, agricultural land, bare/fallow land, and settlement, were produced
(Figure 6).

Figure 5. Flow-chart of the Land Use Land Cover (LULC) map development.

Figure 6. Land Use Land Cover (LULC).
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2.3. Reclassification of All Parameters

All the parameters described above were reclassified using the reclassify function in
ArcGIS into four classes, namely, highly suitable (S1), moderately suitable (S2), marginally suit-
able (S3), and not suitable (NS), according to the FAO suitability guideline [50] (Tables 2 and 3).
Finally score was assigned to each class of each parameter. The reclassified criteria illustrate
the areal and spatial distribution of the various suitability levels of the criteria. The priority
levels among the criteria were determined with the help of the AHP analysis, and a weight
was assigned to each criterion. This was followed by the deployment of a weight overlay
in ArcGIS and the development of a final suitability map. The entire process was carried
out in a model builder, which is shown in Appendix A. The area in hectares was calculated
for each individual class of each criterion and for each class of the final suitability map.

Table 3. Parameters used, data range, and suitability class.

Sl No. Parameters Highly Suitable (S1) Moderately Suitable (S2) Marginally Suitable (S3) Not Suitable (NS)

1 Slope (%) 0–3% 3–9% 9–22% >22%
2 Elevation (m) <50 51–100 100–200 >200

3 Temperature
(OC) 26–30 25–26 23.2–25 >30

4 Precipitation
(mm) 1069–1500 1500–1600 1600–1800 1800–2360

5 Topsoil
Texture Loam/Silt/silt Loam Silty Clay/Silty clay Loam

& clay Predominantly clay Muck/Peat/Sand

6 Soil pH 5.5–7.3 7.3–8.4 7.3–8.4/4.5–5.5 <4.5 & >8.4

7 Land Type Highland/Medium
Highland Medium low land Lowland Very Lowland

8 Soil Depth (m) >1.22 0.9–1.22 0.25–0.9 <0.25

9 Soil Salinity
(mmhos/cm) <2 2–4 4–8 8–15

10 Soil Drainage Well Drained Moderately Drained Poorly Drained Very Poorly
Drained

11 Land Use
Land Cover

Agricultural
Cropland Fallow/Bare land Forest Vegetation Water/Urban

2.4. Preference of the Criteria/Parameters in the Decision-Making Process

The preference of parameters can be described by the weights, assigning the weight
(value) to each criterion. The objective of weighting is to represent the relative importance
of each criterion to others on the growth and development of plants and crop yield.
Based on the review of literature and opinions from experts, especially agriculturists and
agronomists, critical requirements for pulse (green gram) production are identified and the
relative importance of each criterion to others is determined. This process is referred to as
Multicriteria Decision Approach.

The process of the Multicriteria Decision Approach contains several phases. At first,
various factors and constraints for crop production were identified [51]. Next, a pairwise
comparison matrix was constructed using the abovesaid factors. Among the various
approaches in the development of weight, the Analytical Hierarchy Process (AHP), a
pairwise comparison matrix in the context of a decision-making process, was used in this
study. The comparison determines the relative importance of two criteria associated in
determining the suitability of the stated objective [51].

2.5. Analytical Hierarchy Process (AHP)

The Analytic Hierarchy Process (AHP), which was developed by Saaty [52], was
applied to resolve highly complex decision-making problems which involve multiple
scenarios, criteria, and factors [53]. In terms of both the qualitative and quantitative aspects
of decision-making, the AHP is one of the most powerful and flexible decision-making
processes, allowing people to set priorities and make the best decision [54].
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The AHP is a commonly used protocol that is widely recognized as the most reli-
able multicriteria decision-making technique [55]. The method was applied to a series
of parameters in order to create a hierarchical structure by assigning a weight to each
parameter in the entire decision-making process [56]. As a result, a number of decision-
making approaches attempt to determine the relative value, or weight, of the alternatives
in terms of each parameter in each decision-making problem. According to Saaty [57], the
AHP establishes a structural foundation for quantifying the robust comparison of design
factors in a pairwise technique, thereby decreasing the complexity of the decision-making
process. The priority of the variables (elevation, slope, rainfall, land surface temperature,
inundation land type, soil pH, soil drainage, topsoil textures, soil salinity, soil depth, and
LULC) was determined using weights, and the suitability of various land uses for pulse
production was determined using weights. For the weighted overlay applications using
GIS, the resulting AHP weights were used to calculate the priority of each factor. The pa-
rameters/criteria of the decision model were arranged into a hierarchy for land suitability
in the first stage of the analysis. The criteria were then scored using pairwise comparisons
and relative importance scoring scales in the second stage (Table 4). A fundamental 9-point
scale measurement is used in AHP to express individual preferences or judgments [57],
creating a matrix of pairwise comparisons (Table 5). These pairwise comparisons simplify
the decision-making process by allowing independent analyses of each factor’s impact [58].

Table 4. The comparison scale in AHP [56].

Degree of Importance Definition Explanation

1 i and j are equally important.
Two acts are equally

important in achieving the
goal.

3 i has lower importance than j.
One activity has a modest

advantage over another based
on experience and judgment.

5 Substantial importance of i
over j

One activity has a
considerable advantage over
another based on experience

and judgment.

7 Remarkable importance of i
over j

In practice, an action is greatly
preferred, and its domination

is evident.

9 The absolute importance of i
over j

The evidence that favors one
action over another is of the

greatest possible quality.

2,4,6,8
The two neighboring

Judgments have intermediate
values.

When there is a necessity for
compromise

Above-Nonzero Reciprocals

When compared to activity j,
if activity i has one of the
above nonzero numbers

assigned to it, then j has the
reciprocal value.

The comparative results (for each pair) are expressed as a number ranging from
1 (equal) to 9 (extremely different), while a higher value means that the chosen criteria are
more important compared to other factors. A score of 9 means that the row factor is more
important in comparison with the column factor. A rating of 1/9, on the other hand, means
that the importance of the row factor is less than that of the column factor [59]. A value of 1
is given when the column and row elements are equally important. When comparing soil
salinity and slope parameters, for example, a score of 1 means they were equally significant
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in assessing appropriateness, while a score of 9 suggests that soil salinity is more significant
than slope. The diagonal and reciprocal scores were placed in the lower left triangle of a
pairwise comparison matrix, which included all of the scores. When the row factor was
found to be less significant than the column factor, reciprocal values (1/3, 1/5, 1/7, and
1/9) were used (Table 5).

Table 5. Pairwise comparison matrix.

Criteria Soil
Salinity

Soil
Drainage

Soil
pH

Soil
Texture

Soil
Depth

Inundation
Type Rainfall LST LULC Elevation Slope

Soil salinity 1.00 3.00 4.00 4.00 5.00 6.00 7.00 8.00 8.00 9.00 9.00
Soil

Drainage 1/3 1.00 2.00 3.00 4.00 5.00 5.00 7.00 8.00 9.00 9.00

Soil pH 1/4 1/2 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 8.00
Soil Texture 1/4 1/3 1/2 1.00 2.00 3.00 5.00 6.00 6.00 6.00 7.00
Soil Depth 1/5 1/4 1/3 1/2 1.00 3.00 4.00 5.00 5.00 5.00 6.00
Inundation

type 1/6 1/5 1/4 1/3 1/3 1.00 2.00 3.00 3.00 4.00 5.00

Rainfall 1/7 1/5 1/5 1/5 1/4 1/2 1.00 2.00 2.00 3.00 4.00
LST 1/4 1/7 1/6 1/6 1/5 1/3 1/2 1.00 2.00 3.00 3.00

LULC 1/8 1/8 1/7 1/6 1/5 1/3 1/2 1/2 1.00 2.00 3.00
Elevation 1/9 1/9 1/8 1/6 1/5 1/4 1/3 1/3 1/2 1.00 2.00

Slope 1/9 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/3 1/2 1.00

Third, we calculated the matrix and double-checked the consistency of the pairwise
comparison factors. The AHP also included measurements for calculating the normalized
values of each factor, as well as the normalized principal eigenvalue and priority vectors.
The pairwise matrix was computed and can be expressed as follows:

C11 C12 C1n
C21 C22 · · C2n
· · · · ·
· · · · ·

Cn1 Cn2 · · Cnn

 (1)

Next, The pairwise matrix’s sum for each column was calculated as follows:

Cij =
n

∑
i=1

Cij (2)

To create a normalized pairwise matrix, each element of the matrix is divided by its
column total as follows:

Xij =
Cij

∑n
i=1 Cij

=


X11 X12 X1n
X21 X22 · · X2n
· · · · ·
· · · · ·

Xn1 Xn2 · · Xnn

 (3)

Finally, the weighted matrix of priority factors is calculated by dividing the column
sum of the normalized matrix by the number of factors (n), as follows:

Wij =
∑n

j=1 Xij

n
=


W11
W12
·
·

W1n

 (4)
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Consistency:
It is vital to double-check the consistency of judgments after they have been entered.

The following example best illustrates the concept of consistency: If an orange is twice as
good as a lemon, and a lemon is twice as good as a guava, how much would we prefer an
orange with respect to a guava? The answer is 4, which is mathematically correct. Similarly,
if we give the first criterion a value of 2 over the second and the second criterion a value
of 3 with respect to the third in the pairwise comparison matrix, the value of preference
for the first criterion with respect to the third should be 2 × 3 = 6. If the decision-maker
assigned a value of 4, 5, or 7, however, there would be some inconsistency in the matrix of
judgments. In AHP analysis, some inconsistency is expected and accepted [60].

Some errors in the final matrix of judgments are unavoidable because the quantitative
values are derived from individual subjective choices. It’s a matter of deciding how
much inconsistency is acceptable. In this regard, AHP derives a consistency ratio (CR)
by comparing the consistency index (CI) of the matrices in issue (the ones containing our
judgments) to the consistency index of a random-like matrix (RI). A random matrix is
one in which the judgments are input at random, and as a result, it is likely to be highly
inconsistent. To be specific, Random Index (RI) is the mean of CI of 500 randomly filled
in matrices [60]. Table 6 shows the calculated RI value for matrices of various sizes, as
calculated by Saaty [61].

Table 6. Random index (RI) values for different numbers of elements matrix [58].

N 1 2 3 4 5 6 7 8 9 10 11

Random Consistency
Index (RI) 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51

The consistency ratio in AHP is denoted by the letters CR, where CR = CI/RI. Accord-
ing to Saaty [61], a consistency ratio (CR) of 0.10 or below is sufficient to continue the AHP
analysis. If the consistency ratio is more than 0.10, it is required to review the judgments in
order to identify and address the source of the inconsistency.

The initial consistency vectors were calculated by multiplying the pairwise matrix by
the weights vector in the following way:

C11 C12 C1n
C21 C22 · · C2n
· · · · ·
· · · · ·

Cn1 Cn2 · · Cnn

×


W11
W12
·
·

W1n

=


C11W11 + C12W11 + C13W11
C21W12 + C22W12 + C23W12

·
·

Cn1W1n + Cn2W1n + CnnW1n

=


V11
V12
·
·

V1n

 (5)

The principal eigenvector (λmax) was computed as follows:

λmax =
n

∑
i=1

CVij (6)

Now, consistency index (CI) can be calculated as follows:

CI =
λmax − n

n− 1
(7)

where CI denotes the consistency index, n indicates the number of factors used for the
comparison in the matrix, and λmax is the highest or principal eigenvalue of the matrix.
If the consistency index does not meet a certain threshold, the comparison results are
re-examined.

The consistency judgment must be checked by CR for the appropriate value of n
to ensure the consistency of the pairwise comparison matrix. The CR coefficients are
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computed using Saaty’s methodology. CR coefficients of less than 0.1 indicate the pairwise
comparison matrix’s overall consistency [60,62–64].

CR =
CI
RI

(8)

where RI indicates the average of the consistency index calculated as a result of the ma-
trix [62]. Table 6 shows the RI values for various values of n.

More consistency is indicated by a lower CR ratio. If CR is greater than 0.10, inconsis-
tencies can be seen in the matrix’s weight values. In this case, the AHP may not produce
useful findings unless the judgments are re-examined, and changes are necessary to reduce
the inconsistency to less than 0.10. [57,63,65].

2.6. Weighted Overlay Analysis for Land Suitability

The reclassified all raster data which were classified based on their suitability level
were then put in the weighted overlay process. Once the weight of each criterion was
determined through the AHP process, the weight was employed in the weight overlay
process in the spatial analyst tool in ArcGIS. Finally, a Green gram suitability map was
produced (Figure 7). All the reclassified raster data were projected in 1984 UTM Zone 46
N to achieve the same geographic extent. The calculation of the area in hectares and the
percentage for each class was done for all suitability classes of the final suitability map and
all reclassified maps.

Figure 7. Conceptual framework of the land suitability analysis in ArcGIS.
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2.7. Sensitivity Analysis

The weights assigned to the various parameters would have a significant impact on
overall goals. A “what-if” strategy can be used to see how the final results might have
altered if the parameter weights were different. Sensitivity analysis is the term for this
procedure. Sensitivity analysis helps us figure out how solid our initial decision was and
what factors affected it (i.e., what factors influenced the original outcomes). This is a vital
step in the process, and no final decision can be taken without conducting a sensitivity
study [61]. In this research, equal weights were assigned to each parameter in the weighted
overlay process, and, accordingly, a suitability map was generated. This was done to check
to what extent the areal and spatial distribution of each suitability class varied if the weight
of the criteria were changed.

3. Result
3.1. Reclassification

The result of reclassification of the eleven criteria considered for green gram produc-
tion are described by the four classes of suitability for each parameter. The determined
proportional, areal (Table 7), and spatial distribution (Figure 8a–k) of the classified criteria
are discussed below.

Table 7. Areal and proportional distribution of the criteria considered for pulse crop suitability in the coastal region of
Bangladesh.

Parameters Suitability Class Sub Criteria
Area

Ha %

Soil Texture

S1 Loam, silt loam 2,665,248.5 79.5
S2 Silty clay, silty clay Loam and clay 40,852.2 1.2
S3 Predominantly clay 619,924.8 18.5
NS Muck, peat, and sand 28,282.2 0.84

Soil Salinity
(MMHOS/cm)

S1 <2 2,272,581.7 67.7
S2 2–4 466,943.4 13.9
S3 4–8 573,216.3 17.1
NS 8–15 41,566.4 1.2

Soil Drainage

S1 Well drained 276,823.6 8.3
S2 Moderately drained 505,938.7 15.1
S3 Poorly drained 2,419,992.5 72.1
NS Very poorly drained 151,553.1 4.5

Soil pH

S1 5.5–7.3 1,669,797.7 49.8
S2 7.3–8.4 291,821.8 8.7
S3 7.3–8.4/4.5–5.5/<4.5 1,357,978.3 40.5
NS >8.5 & <4.5 3,4710.1 1.03

Soil Depth (m)

S1 >1.22 2,027,754.3 60.5
S2 0.90–1.22 1,285,129.9 38.3
S3 0.25–0.090 33,853.04 1.0
NS <0.25 7570.5 0.22

Inundation Land Type

S1 Highland/Medium highland 2,572,863.6 80.5
S2 Medium lowland 469,013.8 14.7
S3 Lowland 127,821.9 3.9
NS Very lowland 28,135.1 0.9

Rainfall (mm)

S1 1069–1500 1,632,552.6 45.2
S2 1500–1600 364,185.9 10.1
S3 1600–1800 715,803.8 19.8
NS 1800–2360 899,467.7 24.9

Land Surface
Temperature (LST) (◦C)

S1 26–30 3,049,495.2 85.3
S2 25–26 451,089.3 12.6
S3 23.2–25 64,849.4 1.8
NS 30–31.8 8856.1 0.25
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Table 7. Cont.

Parameters Suitability Class Sub Criteria
Area

Ha %

Land Use Land Cover

S1 Agricultural land 1,103,260.9 28.4
S2 Fallow/Bare land 759,741.7 19.6
S3 Forest vegetation 1,362,364.4 35.1
NS Water/Urban 652,900.8 16.8

Slope (%)

S1 00–10 3,723,847.6 96.1
S2 10–20 117,838.7 3.04
S3 20–30 23,567.7 0.6
NS 30–77.4 9998.4 0.3

Elevation (m)

S1 00–50 3,821,975.1 98.5
S2 50–100 41,279.2 1.1
S3 100–200 11,426.8 0.3
NS 200–255 571.4 0.1

Figure 8. Cont.
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Figure 8. Spatial distribution of reclassified criteria (a) Soil Salinity; (b) Soil Drainage; (c) Topsoil
Texture; (d) Soil Depth; (e) Soil pH; (f) Inundation Land Type; (g) Elevation; (h) Slope; (i) Land
Surface Temperature (LST); (j) Precipitation; (k) Land Use Land Cover (LULC).

The reclassification result for the soil salinity criteria indicates that 67.8 percent of the
study area is found to have no saline soil, which is highly suitable for agricultural crop
production, including mung bean, while only 1.2% of the land area is not suitable. As
much as 13.9% and 17.1% of the coastal area have a slightly saline and a moderately saline
soil, respectively. From Figure 8a, it is found that the salt concentration is very high in the
southwest coastal site.

In terms of soil drainage, Table 7 shows that soil drainage conditions are unfortunately
very poor in the majority of the area. More than 72% of the area has a poorly drained soil,
whereas only 8.3% of the area is found to have a well-drained soil, which is indicated as a
highly suitable area. Only the eastern part of the study area showed a well-drained soil,
while the western area showed a very poorly drained soil (Figure 8b).

The majority of the coastal area (79.5%) soil is in the loam, silt, and silt loam category,
considering the highly suitable area, whilst 18.5% of the area is predominantly clay soil,
which is marginally suitable for plant growth. Only 1.2% of the area belongs to the silty
clay loam, and the silty clay class ranked second in terms of good textured soil. Few areas
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with muck, peat, and sandy soil were found. It is observed that 60.5% of the land area has
a deep soil (highly suitable), while 38.3% of the land is considered to be moderately deep.
Around half of the land contains a slightly acidic to slightly alkaline soil, with a pH ranging
from 5.5 to 7.3, which is regarded as highly suitable, while 40% of the soil is moderately
suitable soil—slight to moderately to highly acidic or alkaline. The results of the land
inundation parameter indicate that around 80% of the land area is highly suitable—high
land to medium high land—and the remaining area is found to be medium low land to
low land—moderately to marginally suitable.

For topographical criteria such as slope and elevation, it is very fortunate that more
than 96% of the land area is highly suitable; only a few areas belong to the moderately,
marginal, or not suitable area. In terms of climatic factors, the results of the Land Sur-
face Temperature (LST) reclassification show that the majority of the area (85.3%) has
an annual mean temperature of 26–30 degrees Celsius, and is thus highly suitable for
green gram cultivation, while 12.6% of the area is moderately suitable, with an annual
mean LST of 25–26 degrees Celsius (Table 7, Figure 8i). From Figure 8j, it is observed that
the annual mean rainfall is higher (>1800 mm) near the seashore, which is considered
a marginally and not suitable area. As much as 45.2% of the area is found to be highly
suitable (1069–1500 mm rainfall) for crop cultivation (Table 7).

Land Use Land Cover determines the particular land area that is occupied by a
particular component, such as vegetation, crop, buildings, and so on. Most vegetation
areas are highly suitable for any kind of crop production, while urban areas are not suitable.
The land use land cover classification shows that around 28% of the total land area is
considered agricultural land (highly suitable), and 19.6% of the land is moderately suitable
(fallow/bare land). Forests and built-up areas (not suitable areas) cover 35.1% and 16.8%
of the land area, respectively (Table 7).

3.2. AHP

In the AHP analysis, we calculated the weight of the 11 criteria to determine the
relative importance (priority) of the criteria, which influences the final decision process of
green gram suitability. Accordingly, the criteria were also ranked based on the estimated
weight. From the AHP result, it is found that soil salinity has the highest contribution
(29%), while slope, elevation, and LULC have the lowest contribution (2%) to the final
decision process. From Table 8, it is observed that the criteria are ranked according to the
weight. Soil salinity ranked first, soil drainage ranked second, soil pH ranked third, soil
texture ranked fourth, soil depth ranked fifth, and inundation land type, rainfall, and LST
ranked sixth, seventh, and eighth, respectively. LULC, elevation, and slope have the same
rank (ninth position). Our judgments and preferences determine the priority of the factors
rather than being assigned arbitrarily. These priorities are both mathematically correct and
intuitively interpretable as measurement values produced from a ratio scale.

Table 8. Results of the AHP analysis of the land suitability of green gram production.

Parameters Priority Rank

Soil salinity 0.29 1
Soil drainage 0.19 2

Soil pH 0.14 3
Soil texture 0.11 4
Soil depth 0.09 5

Inundation type 0.05 6
Rainfall 0.04 7

Land Surface Temperature (LST) 0.03 8
Land Use Land Cover (LULC) 0.02 9

Elevation 0.02 9
Slope 0.02 9

Maximum Eigen value (λmax) = 11.09, n = 11, Consistency Index (CI) = (λmax − n)/(n − 1) = 0.009, Random
Index (RI) = 1.51, Consistency Ratio (CR) = CI/RI = 0.006.
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3.3. Final Green Gram Suitability Map

The final green gram suitability map was produced through the weighted overlay
process, and the weights of the criteria were utilized. In the statistical analysis of the final
land suitability classification, it is found that the majority of the land area, 82.3% of the
coastal region (2,282,800.5 ha), belongs to the moderately suitable land for pulse crop (green
gram) production, while only 12.4% of the total study area with the 344,619.5-ha area is
determined as highly suitable land for green gram crop production. More than 5% of the
total area (144,246.0 ha) is estimated as marginally suitable, and a small part of the area
(less than 1%) is considered as not suitable land (Table 9). In terms of spatial distribution, it
is observed that highly suitable lands are confined mostly to the easternmost part of the
country, while the largest portion of marginally suitable lands is in the southwestern region
(Figure 9a). From the studies, it can be inferred that the land is less suitable when closer to
the sea, the Bay of Bengal, which is caused by the cumulative effect of climate change. On
the other hand, the lands that are far from the coast are more suitable for agriculture.

Table 9. Area and percentage of green gram suitability.

Land Suitability
Classification

Land Suitability with AHP Land Suitability with Equal Weight

Area (ha) Percentage Area (%) Area (ha) Percentage Area (%)

Highly Suitable (S1) 344,619.5 12.4 91,546.2 3.3
Moderately Suitable (S2) 2,282,800.5 82.3 1,869,628.5 67.4
Marginally Suitable (S3) 144,246.0 5.2 778,642.9 28.1

Not Suitable (S4) 2285.1 0.1 34,133.5 1.2
Total 2,773,951 100 2,773,951 100

Figure 9. Spatial distribution of results: (a) Final green gram suitability map; (b) Green gram suitability map (sensitivity
analysis).

3.4. Sensitivity Analysis

The sensitivity analysis, which is carried out using equal weights for all criteria,
produced a significantly different result in suitability at a different level. It is estimated
that 3.3% of the land (91,546.2 ha) is highly suitable, while the majority of land—67.4%
of the area, with 1,869,628.5 hectares—is found to be moderately suitable for green gram
cultivation. In addition, 778,642.9 hectares of land (28.1%) belong to the marginally suitable
category, and 1.2% of the land area is not in the suitable class (Table 9 and Figure 9b).
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4. Discussion

This study examined the suitable land for pulse (green gram) production in coastal
Bangladesh, and this section will describe the suitable land area with some important
criteria based on the study results.

The suitability level of each reclassified criteria significantly affects in the final green
gram suitability. Soil salinity, soil drainage, soil pH, and topsoil texture are important
criteria among them. In terms of soil salinity, it is found that the salt concentration is very
high in the southwestern coastal site. The land area, which is very close to the coast, is
highly affected by soil salinity. This is due to the fact that natural disasters enhance this
salinity intrusion. The salt concentration in the soil might impair the nutrient uptake by the
plant and eventually deter the growth and development of the plant. Salinity is expected
to reduce crop production in up to 20% of irrigated lands around the world, and this loss
will rise to about 50% of arable land by the mid-twentieth century [66]. Several studies
have recently shown that soil salinity stress reduces the physiological attributes of crops
like mung bean (Vigna radiata L.) [67]. Hence, an increase in soil salinity implies a decrease
in the suitability for crop production.

Soil drainage conditions directly affect the growth and development of crop plants.
Agricultural soils need good drainage conditions to increase agricultural crop production
by maintaining the water sources [68]. This plays a key role in aeration in the root system,
affecting crop growth. The majority of the study area is not well-drained soil, and is thus
highly prone to water stagnation, which inhibits green gram cultivation.

Soil texture is a physical property and a significant factor in crop development and
field management [69]. The coastal area of Bangladesh contains predominantly loam, silt,
and silt loam soil, which is a very favorable soil condition for any kind of plant production,
including green gram. Few areas in the eastern part contain muck and peat soil, and green
gram cannot be produced in that kind of soil.

Soil depth also has a significant effect on green gram cultivation. Root penetration
may be physically limited by any discontinuities in the soil profile, from sand or gravel
layers to bedrock. When using irrigation, it can also cause issues. To grow and increase
physical fertility, soil macro- and mesobiota need sufficient soil [70]. Most of the coastal
area is found to contain well-depth soils.

In the case of soil pH, alkaline soil is found at almost every corner of the study area,
which is not a favorable condition for green gram production. The middle part of the
study area, including the Barishal region, contains predominantly alkaline soils, with a
pH value greater than 7. Soil pH is one of the most important factors affecting the plants’
absorption of trace elements, with a higher soil pH resulting in higher adsorption (and
thus lower availability) [71–74]. High land (HL), medium high land (MHL), medium low
land (MLL), low land (LL), and very low land (VLL) are the five inundation landforms
in Bangladesh [75]. The majority of the study area is covered with high land to medium
high land. Low land and very low land are highly vulnerable to floods, which leads to
significant crop losses.

As regards the topography, the slope is considered as the most important parameter
for land suitability studies for agricultural crops in all areas. Usually, slope contributes
indirectly to crop cultivation. When it comes to mechanization, slope, an integral feature
of landform, plays a significant role. The only land with a slope of less than 8 degrees
should be used, according to Navas and Machin [76], to prevent soil erosion and other
problems associated with the use of machinery. Green gram is highly suitable at a slope
of 0–10 percent, moderately suitable at 11–20 percent, slightly suitable at 21–35 percent,
and not suitable at slopes above that percentage, according to Grealish et al. [77], in an
Australian analysis on the soils and land suitability of agricultural growth areas.

Generally, higher elevations are less suitable for mung bean production, and vice
versa. Green gram grows best at the height of 0–1600 m above the sea level [78], with a
maximum elevation of 2000 m [78,79]. Higher annual mean rainfall is found in the seashore
line, while a comparatively lower rainfall, considered a favorable condition, is observed
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mostly in areas distant from the coastline. A suitable land surface temperature is observed
in almost all parts of the study area. Mung bean (green gram) is a warm-season crop,
which can be cultivated in temperatures between 20 and 40 degrees Celsius [80]. However,
seed germination and plant growth are best at temperatures between 28 and 300 degrees
Celsius [80–82].

From the final green gram suitability map, it is found that only 12 percent of the
land area is highly suitable for green gram production. This is due to the fact that a
significant land area is affected by soil salinity, and the majority of the area contains a
poorly drained soil. These two parameters have a remarkable impact on the decision-
making process. According to the AHP analysis (weighted overlay process in ArcGIS), the
weight of their was 29% and 19%, respectively. From the spatial distribution point of view,
it is found that the highly suitable area belongs mostly to the eastern part of the country.
This spatial distribution of highly suitable land also coincides with the spatial distribution
of the “agricultural crop land” class in the land use land cover map, where agricultural
cropland is found above all in the eastern part of the country. Additionally, from the above
discussion, it can be concluded that the eastern part of the study area is highly suitable in
terms of all criteria considered, when compared to other parts of the area. The impact of
the weights of the criteria can be measured by the sensitivity analysis and consequently
provide a validation of the GIS-based multicriteria decision-making model. In sensitivity
analysis, when the weight is changed for the criteria, the final suitability results also change.
The areas with different levels of suitability are significantly altered when equal weights
are assigned to each parameter.

5. Conclusions

In order to ensure the food security of the coastal region of Bangladesh, a land
evaluation system is required to find out the potential land area for the cultivation of
a specific crop. This study was carried out to find out the best potential land for pulse
(green gram) crop cultivation in the coastal region of Bangladesh. The study used GIS
and remote sensing with multicriteria analysis while considering 11 parameters associated
with topography, climate, and soil. The study identified soil salinity as a major problem or
constraint for pulse production, with the highest importance (30%). Another important
parameter is soil drainage, with a weight of 19%, causing a decrease of the area belonging
to the highly suitable class. In the final assessment, it is found that only 8.36% of the study
area is highly suitable (S1) land, while the largest area, representing 74% of the land, is
moderately suitable (S2). Along with a higher weight value, a poor soil drainage condition
covering more than 73% of the land results in less land area in the highly suitable (S1) class
in the final suitability map. Additionally, it is observed that the highly suitable (S1) land
area belongs mostly to the southeastern part of the country.

The results of this study can be of great importance for policymakers of the agriculture
ministry of Bangladesh, as they will help them formulate and implement the necessary
policies to optimize pulse production. The government should prioritize the southern
part—Chittagong, Cox’s Bazar, and Noakhali districts, for example—to enhance green
gram cultivation by providing incentives such as seed, fertilizer, etc., to the farmers, and
avoid the peripheral coastal area. In addition, the government, donor agencies, and NGOs
need to implement strategies to reduce soil salinity and improve soil drainage to improve
pulse production. This study can be used as a model for land evaluation in many other
agricultural crops in the country and abroad.
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