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Abstract: A generic water system consists of a series of works that allow the collection, conveyance,
storage and finally the distribution of water in quantities and qualities such as to satisfy the needs
of end users. In places characterized by high altitude differences between the intake works and
inhabited centres, the potential energy of the water is very high. This energy is attributable to high
pressures, which could compromise the functionality of the pipelines; it is therefore necessary to
dissipate part of this energy. A common alternative to dissipation is the possibility of exploiting this
energy by inserting a hydraulic turbine. The present study aims to evaluate the results obtained from
a stochastic approach for the solution of the multi-objective optimization problem of PATs (Pumps As
Turbines) in water systems. To this end, the Bayesian Monte Carlo optimisation method was chosen
for the optimization of three objective functions relating to pressure, energy produced and plant costs.
The case study chosen is the Net 3 literature network available in the EPANET software manual. The
same problem was addressed using the NSGA-III (Nondominated Sorting Genetic Algorithm) to
allow comparison of the results, since the latter is more commonly used. The two methods have
different peculiarities and therefore perform better in different contexts.

Keywords: pump as turbine; energy recovery; water distribution system; Bayesian Monte Carlo method

1. Introduction

In the last decades, awareness of the scarcity of energy sources and the impact of
anthropogenic activities on the environment has increased. Water systems involve a
complex infrastructure that constantly faces the challenge of providing a high quality but
economically sustainable service. In recent decades, efforts have been made to this end, as
interest in adopting a sustainable perspective is growing in this field. However, due to the
changing elevation of the land, energy consumption, mainly in the supply phases, assumes
a critical role among the cost items. In fact, it is estimated that only 30–60% of the energy
used is utilized for supply to end users; the remaining portion, 60–40%, is lost due to head
losses [1].

In the literature, there are numerous studies that propose analyses and solutions to
improve energy efficiency [2–4] and the environmental impact in terms of CO2 produced [5–7].

Moazeni et al., 2021 [8], proposed solutions for reducing the energy needs and con-
sumption of water systems, one of which consists of energy recovery through the inclusion
of PATs. To this end, two optimization models were used: the first aims to optimize the
number and position of the PATs, and the other aims to optimize the water demand by
minimizing the electrical and water loads. Creaco et al., 2020 [9], proposed a bi-objective
optimization for the installation of PATs to find optimal solutions between installation costs
and generated hydropower by means of a genetic algorithm and an inner optimization
sub-algorithm that provides for the regulation of PAT settings. Water losses are another
sore point for water distribution systems (WDS), and a common solution is to use PRVs
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(Pressure Reducing Valves) to manage and minimize pressures. However, the dissipation
generated by the valves can also be used to generate hydroelectric power. Giugni et al.,
2014 [10], proposed a study in which the insertion of PATs was foreseen to exploit the excess
pressures and produce energy; to this end, it used an algorithm, with two distinct objective
functions, for optimal positioning in order to, in one case, minimize losses while maintain-
ing the PRVs and, in the other, to maximize energy production by replacing them with the
PATs, comparing the results. Tricarico et al., 2018 [11], proposed an optimization-based
methodology for minimizing the surplus pressure at network nodes and the operational
pumping costs and maximizing the income generated through energy recovery.

Mitrovic et al., 2021 [12], presented a methodology using the classical hydraulic
regulation scheme with the Nedler–Mead simplex direct search algorithm to search for the
optimal solution with regard to the available centrifugal PATs on the market.

Other authors [13,14] provided for the inclusion of PATs instead of PRVs, also in-
tegrating a cost-benefit analysis, in which the installation and management costs of the
turbine were compared with the economic savings due to the production of energy and the
reduction of water losses.

In order to creating a sustainable water system, capable of producing and recovering
hydroelectric energy and at the same time helping to reduce greenhouse gas emissions,
this study presents a new optimization model to strategically position PATs (Pumps As
Turbines) to obtain the best yields and therefore the greatest gains from hydroelectric
power generation; it also includes an economic evaluation. The multi-objective problem
has the purpose of optimizing three functions: the first relates to the management of
pressures in the pipeline, the second relates to the energy production of the installed
turbines and the third relates to the system costs incurred. As discussed above, previous
studies in the literature have employed only genetic algorithms for the solution of the PAT
position optimization problem. This study aims to investigate the applicability of stochastic
methods, specifically, the Bayesian Monte Carlo simulation method, and evaluate their
performance. Subsequently, a genetic algorithm, NSGA-III, was used to compare the results
and evaluate the performance of both approaches in the different scenarios proposed.

The model was applied to a synthetic network of literature, namely Network 3, one of
the water distribution networks present in the EPANET open-source software manual [15].

This study is an important tool for those who intend to approach this topic for the first
time in an effort to understand which approach is more efficient for individual case studies.

2. Materials and Methods
2.1. Case Study: Network 3

Network 3 is one of the water distribution networks present in the EPANET freeware
package. The original version of the net is made up of 117 tubes of different diameters and
92 junctions, 2 reservoirs, and 3 storage tanks, through 2 pumping stations subject to a flow
rate of 24 h. Furthermore, the units of measurement refer to the US Unit System.

In the present case, the SI Unit System and a modified version of the network were
used, where eight network nodes are configured as 4-way junctions. This modification was
implemented for the first time by Romero-Gomez et al. (2008) [16,17] to study the mixing
phenomena within the water network, introducing special joints such as two crossings,
two double tees, one joint of type YU and three joints of type YN [18]. To ensure that only
pipes of the same size entered and exited the special joints, the mesh was provided with
extra knots around each joint, along with a short length of added pipe.

Furthermore, in this new configuration, the two pumping stations were eliminated
by elevating the two reservoirs (putting the water level 20 m higher than the original), to
be able to evaluate the optimization of PATs. Figure 1 shows the scheme of the network
implemented within the standard EPANET version.
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Figure 1. Layout of case study: Network 3.

2.2. Method

Numerous types of micro-turbines able to be used in water supply networks have
been presented in the technical literature, each with advantages and disadvantages, not
only for plant engineering but also for economic and management aspects [19,20].

The use of PATs that use the engine as an electric current generator can be advanta-
geous for various reasons, both from an economic point of view, as the market offers lower
prices for pumps than hydraulic turbines, and from a plant management point of view,
since the pumps have simpler mechanics and require less maintenance. The use of this
system in the simulation results in a lower cost to be incurred, with the possibility of ob-
taining a greater profit; on the other hand, the determination of the PAT yield curves is very
onerous, with results that may not provide the advantages discussed above. Furthermore,
despite the PAT adapting to plant requirements, the use of these turbo machines often does
not guarantee the health conditions of the water flowing in the pipeline, since the outlet
into the atmosphere, leaving the turbine, can lead to an increased risk of contamination.

However, the considerable economic convenience of PATs in the production of hydro-
electric energy has made them highly applicable.

The PATs can be inserted both along the inlets that carry water from the sources to the
inhabited centres to cope with topographical differences in height, as well as within the
water networks, replacing the regulation and pressure reduction valves. In the first case, the
head-flow couple is rather constant over time, because the flow circulating in the external
aqueducts is constant. In the second case, however, the variability of hydraulic conditions
is much more extensive; furthermore, due to the link between flow rate and pressure drops,
the curve describing the head available for energy reconversion as a function of the flow
rate is monotonous and decreasing.

In the present study, the turbines were positioned both inside the water distribution
network and externally in the supply system. The following sections present the pro-
posed optimization model, a description of the case study, the results obtained, and the
conclusions drawn.
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2.3. Optimization Problem
2.3.1. Bayesian Monte Carlo Method

The optimization problem was solved using the Bayesian Monte Carlo (BMC) optimi-
sation method, which is based on probabilistic procedures and allows solving problems
that present analytical difficulties that are not otherwise difficult to overcome [21].

Conceptually, the method is a stochastic modification of the classical unsupervised
Monte Carlo random sampling. The BMC is based on the possibility of performing a
sampling of an assigned probability distribution (prior probability), F(X), which is the
representation of the initial beliefs of the operator with respect to the maximisation or
minimisation of objective functions. Instead of using a unique sample of events drawn at
random in the prior distribution, the total number of simulations is divided into stages
based on a well-determined iterative process in which posterior distributions (after the
completion of the stage) are updated from prior ones based on Bayes’ theorem likelihood
estimation; the posterior distribution is then adopted. In a multi-objective optimisation,
the likelihood estimation is based on the extended domination (EI) rule, by which the
posterior distribution is updated based on the ability of individuals of each stage to update
the Pareto front [21].

The BMC method returns reliable answers in the study of complex and computation-
ally demanding systems, although the solution obtained is never exact in a statistical sense,
as it is subject to uncertainty, which decreases as the size of the statistical sample increases.

In the present case, the BMC method was used to solve the optimization problem for
the positioning of up to eight PATs within the literature network, namely Network 3.

The BMC simulation was performed on a total of 10,000 function evaluations (divided
in 10 stages of 1000 evaluations), optimizing three objective functions concerning the
total management and operating costs of the water network (TC), the management of the
pressures in the pipeline and the power produced by the turbines (PWI) and therefore the
gains from total energy production (TE) [22]. Starting from a Gaussian prior distribution,
at each stage, posterior distribution was mediated from the prior one by means of Bayes’
law and estimating likelihood as the EI criterion.

It is important to note that the decision variables are not binary but positive con-
strained real numbers, as PAT power has been optimized, making the initial hypothesis
that each pipe can, in principle, be used for energy production. Furthermore, from a
hydraulic point of view, PATs are not substituted for pipes, so the network maintains the
same hydraulic behaviour and performance, except for the introduction of local hydraulic
energy losses due to the presence of the PAT, which is introduced at the pipe middle point.

2.3.2. NSGA-III

In order to be able to evaluate the performance of the previously presented method,
the optimization problem was subsequently solved using the genetic algorithm NSGA-
III [23]. The latter differs from the genetic algorithm NSGA-II with respect to the selection
operator, in that diversity among members of the population is ensured by the provision
and adaptive updating of a number of well-known reference points [24].

The algorithm was applied to both the above networks, optimizing the three objective
functions as explained in the following section.

This was done by running 100 generations, each having a population of 100 individuals
and a 20% crossover and mutation rate (so in the end having the maximum number of
function evaluations of the BMC method). In addition, a condition was set such that if the
target function for each generation is less than 0.1%, the simulation is aborted.
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2.3.3. Objective Function

The objective function TC is a function to be minimized and is calculated as reported
in Equation (1), where Nt corresponds to the number of installed turbines, CKt is the cost of
the single j-th turbine, and CKinv is the cost of the k-th inverter.

TC = min
Nt

∑
k=1

CKt + CKinv (1)

The latter can be determined as in Equation (1) and Equation (2), in which, respectively,
the effective power of the turbine PkW is multiplied by the cost factor of the turbine Kc
and the useful hydraulic load exploited by the turbines H0, and by the cost factor of the
inverter Kinv. According to Leyland, 2014 [25], for Banki turbines and in the presence of
small plants, with energy production below 100 kW, the cost factor is equal to 3 × 106,
while that of the inverter is equal to 1.8 × 105.

CKt = Kc·
(

PkW
1000

)0.7
·H−0.3

0 (2)

CKinv = Kinv·
(

PkW
1000

)0.6
(3)

The objective function PWI (pressure weighted indicator), to be maximized, concerns
the management of the pressures in the network; in particular, the difference between the
pressure at the i-th node and the minimum allowed in the pipeline must be as low as possi-
ble in order to guarantee a regime of almost constant pressure capable of guaranteeing the
highest possible load to the turbines and ensuring the users continuous water availability
with adequate pressure. For the calculation of this function, an indicator parameter of the
pressures Pr is introduced, representative of the pressure value recorded on each i-th node
of the network in each single time interval, normalized by the value of the basic demand
on each i-th node of network BDi in Equation (4).

PWI = max
T

∑
t=1

n

∑
i=1

Pr
t
i (4)

The pressure penalty indicator Pr can be determined as in Equation (5), where Pi,t is the
pressure of the i-th node at the considered time t, subtracted from the minimum sufficient
quantity P0 = 200 kPa. This parameter can assume values between 0 and 1 (as shown in
Figure 2), which can be determined by means of the relations of Equation (6), Equation (7)
and Equation (8). The latter represents the optimal value of the pressure indicator parameter
that occurs at a minimum pressure in the pipeline of 200 kPa, a minimum value sufficient to
guarantee water supply to the users.

Pr =
∑T

t=1 ∑n
i=1 Pt

i ·BDi

∑n
i=1 BDi

(5)

Pr = 0 se 0 < Pi,t < 5 (6)

Pr = 0 se Pi,t = 100 (7)

P r = 1 se Pi,t = 20 (8)
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Figure 2. Penalty curve for the variable Pr.

Considering that each simulation is made by 24 timesteps and the network is provided
with 59 internal nodes (in which the base demand assumes a value other than zero), the
maximum theoretical value of the indicator is equal to 1416.

The objective function TE to be maximized, relating to the power produced by the
turbines Equation (9) is calculated for all the time intervals of the simulation T, considering
the number of installed turbines Nt, the power produced by the single j-th turbine (kW/h)
Jj, the tariff of sale of the energy of the j-th turbine (€/kW/h) cj and the operating time t f
equal to 1 h.

TE = max
T

∑
t=1

Nt

∑
j=1

Jt
j ·ct

j ·t f (9)

The power produced by the individual turbines was calculated as the product of
the specific weight of the water γ at 20◦, equal to 998.2 (kg/m3), the delivered flow rate
(m3/s) Q, the head losses/useful head of the turbine (m) ∆H, turbine efficiency ηt and
gravity acceleration g (m/s2) in Equation (10).

J = γ·Q·∆H·ηt·g (10)

3. Results and Discussion

In this section, the results from the experiments described above are collected and
processed. The case with three PATs in the network was considered, as it was the best com-
promise between PAT implementation costs and generated energy. The BMC simulation
was performed on a total of 10,000 function evaluations, being able to provide results that
were arranged on a Pareto front so as to be able to relate the different objective functions to
each other.

The presence of two sources that feed both the three storage tanks and some of the
users directly, the simultaneous operation of the two pumping stations, which involves a
changing trend of the pressures in the network, and a water demand that is not constant in
some nodes, makes the hydraulic behaviour of the case study particularly articulated.

The results of the BMC simulation were processed within the Pareto fronts represen-
tative of the tenth stage of the BMC approach (Figure 3). For reference, the Pareto front
after the third and the sixth stage was drawn from the objective pressure-energy functions.
The enhancement in the non-domination criterion is sensibly constant from one stage to
the next, thus showing the potential of such a method when a small number of function
evaluations are possible due to computational costs.
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Figure 3. Pareto front between pressure parameter (PWI) and produced daily energy (TE) using BMC.

Figure 4 shows a similar graph for the GA optimisation after 30, 50 and 100 gener-
ations (to compare the methods with the same number of function evaluations). Initial
improvement of the method with respect to the EI criterion is significantly better with GA
with respect to the Bayesian approach, but after 10,000 evaluations, the two methods have
approximately similar Pareto fronts, with very small differences.

Figure 4. Pareto front between pressure parameter (PWI) and produced daily energy (TE) using
NSGA-III.

In the same way, by relating the objective pressure-cost functions, the results deter-
mine a scattered Pareto front (Figure 5). In this comparison, NSGA-III provides a much
more continuous investigation of the Pareto front, and this is in line with the principal
peculiarities of the method (Figure 6). Once again, the two methods are characterised by
similar results after 10,000 evaluations.
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Figure 5. Pareto front between pressure parameter (PWI) and PAT installation cost (TC) using BMC.

Figure 6. Pareto front between pressure parameter (PWI) and PAT installation cost (TC) using
NSGA-III.

Finally, the graphics in the Figures 7 and 8 show the trend of PAT cost in relation to the
energy production of the turbines installed on the network. The cost of installation and the
generated energy growing in tandem on the Pareto front, and this is physically reasonable.
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Figure 7. Pareto front between produced daily energy (TE) and PAT installation cost (TC) using BMC.

Figure 8. Pareto front between produced daily energy (TE) and PAT installation cost (TC) using
NSGA-III.

Contrary to genetic algorithms that exploit the potential of genetic evolution, the main
feature of BMC simulation, to solve the optimization problem, is that the objective function
evaluations are independent of each other, and their selection is based solely on prior belief
of a good performance (provided that belief is updated at each stage). In this case, the best
solutions are collected that optimize the individual functions analysed. The first solution is
in reference to the minimisation of the system costs to be sustained; the second solution
relates to maximizing the index of pressures in the network (the greater the sum of the
pressure indices, the lower the pressures present in the network, with consequently less
energy waste); the third solution relates to the highest energy production from turbines.
Table 1 shows the results, and Figure 9 shows the respective positions of the PATs in the
water network.
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Table 1. Optimal positioning results of the PATs for the objective functions: TC, PWI and TE.

Objective
Functions Id’s Pipes

Cost of
Turbine and
Inverter [€]

Pressure
Indicator

Energy
Produced

[MWh]

TC 330 263 257 280 42 0.0164
PWI 329 101 133 411,000 937 3.48
TE 329 233 137 1,040,000 386 21.10

Figure 9. PAT location, BMC simulation results—Net 3 network.

A further processing of the data obtained from the simulation concerns energy production
and the related plant cost, comparing the relative position of the turbines (Table 2).

Table 2. Comparison of maximum energies produced.

Energy Produced
[MWh] Id’s Pipes Cost of Turbine

and Inverter [€]

21.1 329 233 137 1,040,000
19.19 233 137 135 858,000
19.19 161 233 145 1,000,000
18.9 245 233 329 1,050,000
17.5 180 169 233 791,000
16.1 199 233 115 756,000
15.4 317 233 217 732,000
15.0 315 219 233 750,000

From the results obtained, we can see that as the energy produced decreases, the
related plant costs depend not only on energy production but also on the arrangement of
the turbines. In fact, pipelines affect the expenditure to be incurred, and in some cases,
even though the production is lower, the related costs are much higher. Furthermore, it can
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be noted that some pipelines allow greater energy production by configuring the hydraulic
system of the network similar to a hydroelectric plant, i.e., with a more stable management
of the pressures in the pipeline (see the case of pipeline number 233, always present with
higher production values). In the case in question, the second solution proposed in the
table is more efficient in terms of energy costs; this undoubtedly represents one of the
privileges of using optimization methods: the analysis of the results in fact provides a
solution to the decision-making problem that considers the cost-benefit concept and that
is important in the creation of a work. The simulations have in fact recorded a maximum
energy production of about 4.6 MWh, proof of the fact that energy recovery from water
networks can guarantee good profit margins by the managing body.

4. Conclusions

This study was carried out to determine the optimal position of micro turbines to be
installed within a city water network by carrying out a cost-benefit analysis in order to
make the system more sustainable from an energy point of view. To this end, a new multi-
objective turbine optimization approach was formulated using the Bayesian Monte Carlo
random simulation method, a stochastic modification of the classical unsupervised Monte
Carlo random sampling. The aim was also to evaluate whether a stochastic approach is
well suited for solving this type of optimization problem, rather than genetic algorithms,
as have already been used in other studies.

The multi-objective problem was characterized by the optimization of three functions
relating to the management of pressures in the pipeline, the energy production of the
installed turbines and the related system cost to be incurred.

The data collected by the BMC simulation highlighted an optimization of the objective
functions in a random manner, obtaining excellent results every time, only for a single
function. The simulation in fact returns the optimal positions of the hydraulic turbines;
however, the optimization of a function corresponds to an uninteresting value of the other
objective functions. The general use of genetic algorithms does not have these difficulties;
however, the genetic algorithm shows difficulties in the stretches in which the pressures
are not constant. This limit is overcome by the stochastic approach, which can therefore
be considered more suitable for internal water distribution networks; on the contrary,
the NSGA-III is suitable for external aqueducts in which there are no sudden changes
in pressure.

The results obtained showed that the energy recovery process in the water networks is
strongly characterized by the arrangement of the turbines; with the same energy, the costs
to be incurred in the construction of the system take on very different values as determined
by the location of the turbines at different points.

The possible developments of the research are, above all, the hydraulic complexity
of the water networks, which, due to the high variability of flow rates required by the
users, as well as to the presence of several pumping stations or storage tanks and the
presence of any water leaks on the net, bring greater complications the more the network
becomes articulated.
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