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Abstract: Heavy metal contamination affects lives with concomitant environmental pollution, and
seaweed has emerged as a remedy with the ability to save the ecosystem, due to its eco-friendliness,
affordability, availability, and effective metal ion removal rate. Heavy metals are intrinsic toxicants
that are known to induce damage to multiple organs, especially when subjected to excess exposure.
With respect to these growing concerns, this review presents the preferred sorption material among
the many natural sorption materials. The use of seaweeds to treat contaminated solutions has
demonstrated outstanding results when compared to other materials. The sorption of metal ions
using dead seaweed biomass offers a comparative advantage over other natural sorption materials.
This article summarizes the impact of heavy metals on the environment, and why dead seaweed
biomass is regarded as the leading remediation material among the available materials. This article
also showcases the biosorption mechanism of dead seaweed biomass and its effectiveness as a useful,
cheap, and affordable bioremediation material.

Keywords: heavy metals; seaweed; biosorption; aqueous solution; remediation

1. Introduction

The severity of heavy metal pollution cannot be over-emphasized, as it has become
a universal issue in recent years. The effects of heavy metals in the environment are
harmful due to their high toxicity. Their release into the environment occurs as a result of
various natural and anthropogenic activities. Unfortunately, most of these heavy metals,
whether generated from human activities or nature, constantly undermine the existence
and health of environmental resources. The toxicity, persistence, and non-biodegradable
nature of these metal ions make them a threat to the environment [1,2]. These heavy metals
are known to cause multiple and complicated health problems such as brain and lung
damage, cancer, nausea, and vomiting [3,4]. Seaweed, also known as marine algae, serves
as one of the major leading biosorption materials for the treatment of heavy metals [5].
Seaweed produces a variety of compounds such as xanthophylls, chlorophyll, carotenoids,
vitamins, fatty acids, amino acids as well as antioxidants (such as halogenated compounds,
alkaloids, and polyphenols), and polysaccharides (such as agar, alginate, carrageenan,
proteoglycans, galactosyl glycerol, laminarin, rhamnan sulfate, and fucoidan) [6]. The
presence of alginate in the seaweed makes it an effective eluted material for metal ion
removal. Alginate, as well as fucoidan, has a high sorption capacity, which can mainly
be attributed to polysaccharides found in the cell walls. The carboxylic and sulfonic acid
functional groups are more active in the ion exchange process, and polysaccharides are
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responsible for these functional groups [5,7]. On the whole, seaweed has proven to be one
of the most outstanding and important biosorption materials for the remediation of metal
ions. Its low cost, availability, and eco-friendliness, coupled with its high metal ion uptake
capability, make it an ideal biosorption material compared to other sorption materials [6,8].
In this review, dead seaweed biomass is of particular interest, and because of the scant
knowledge regarding its usefulness and biosorption mechanism, we seek to throw light
on the importance of dead seaweed biomass as a sorption material and to summarize its
biosorption mechanism. This review also pinpoints the toxic effects of heavy metals on
environmental resources, as well as comparing dead seaweed biomass with other natural
sorption materials in terms of heavy metal removal.

2. Heavy Metal Contamination in Water

Water is a universal solvent needed by all living organisms and is also good at dis-
solving both organic and inorganic compounds. Water resources are critically affected
by heavy metal contamination, and this has seriously altered the aquatic ecosystem [9].
On a large scale, aquatic ecosystems are contaminated by heavy metals from industrial
effluent, domestic sewage, and agricultural runoff [10]. Most rivers, streams, and lakes
are polluted through erosion and leaching, while atmospheric deposition, metal corrosion,
sediment resuspension, and metal evaporation are some of the ways the environment
gets polluted [11,12]. The non-biodegradable character of heavy metals and their persis-
tence in the environment have led to bioaccumulation through the food chain, leading
to complicated health issues and environmental pollution [13]. The term heavy metals
refer to metals and metalloids whose mass is over 5 g/cubic centimeters (g/cm3) and are
naturally occurring elements commonly found on earth [14]. They can be regarded as trace
elements due to their trace concentrations in the environment. The set of environmen-
tal matrices for metal ion concentrations range from zero (0) ppb to ten (10) ppb [15,16].
Anthropogenic and natural activities such as mining, fossil fuel combustion, agriculture,
volcanic eruptions, earthquakes, weathering of rocks, and industrial activity are the main
causes of environmental contamination [17]. Direct contact with these heavy metals either
through inhalation or ingestion poses serious health threats such as teratogenesis, cancer,
and internal disorders [18]. Cadmium (Cd), Chromium (Cr), Lead (Pb), Mercury (Hg),
and Arsenic (As) were identified by Tchounwou and team [16] as the most toxic heavy
metals, and have been placed under the category “priority metals”, which means they are
metals of public concern, due to their toxic nature. These aforementioned metal ions are
innately toxic and are capable of inducing damage to multiple organs even at minimal
exposure levels. Reactive oxygen species (ROS) together with oxidative stress (OS) play
key roles in the carcinogenic and toxic nature of these metal ions [16]. Zinc (Zn), Copper
(Cu), Molybdenum (Mo), and several other metals have also been considered essential
elements because they assist in biochemical reactions, although excess exposure above the
required threshold can impair human health [19]. Against this background, international
institutions like the United States Environmental Protection Agency (USEPA), the World
Health Organization (WHO), the European Union (EU), etc. have set acceptable thresholds
referred to as Maximum Contaminant Levels (MCLs). Table 1 shows the internationally
accepted thresholds of metal ion concentrations in drinking water.
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Table 1. Accepted thresholds of toxic metal ions in drinking water.

Drinking Water Acceptable Standards in (mg L−1)

Metals WHO [20] USEPA [21] EU Standard [22] MEE-China [23] DWI-UK [24]

Nickel (Ni) 0.07 - 0.020 0.000 0.02

Lead (Pb) 0.01 0.015 0.005 0.010 0.01

Zinc (Zn) - 5.0 - 0.05 -

Copper (Cu) 2.0 1.0 2.000 1.000 2.0

Cadmium (Cd) 0.003 0.005 0.005 0.005 0.005

Mercury (Hg) 0.006 0.002 0.001 0.00005 0.001

Arsenic (As) 0.01 0.010 0.01 0.050 0.01

Chromium (Cr) 0.05 0.100 0.025 0.050 0.05

Antimony 0.02 - 0.01 - 0.005

Bromate 0.01 - 0.01 - 0.01

Uranium 0.03 0.03 0.03 - -

The contamination of water bodies normally happens through leaching, erosion, wind,
and other environmental means, thereby leading to negative health implications and risk
to the ecosystem. Heavy metal pollution leaves a negative blueprint on the environment
and people’s lives. As shown in Figures 1 and 2, natural and anthropogenic sources
are the known sources for heavy metal contamination. The natural sources for these
toxic metals include volcanic eruptions, forest fires, biogenic sources, and the weathering
of rock [25], while industrial estates, automobile exhaust, the spraying of insecticide,
agricultural activities, transportation, and mining are the main anthropogenic sources of
heavy metals pollution [26].
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Figure 1. Categories of heavy metal sources.

As seen in Figure 3 below, topsoil and underground water are normally polluted
by industrial activities, agricultural activities, weathering, volcanic eruptions, and other
biogenic activities. The water bodies become contaminated as the topsoil is washed into
them by either erosion, leaching, or landfill leakage. In turn, flora and fauna are affected as
the polluted water bodies are consumed and accumulated into their systems, tissues, and
organs. Human beings, on the receiving end, are exposed to multiple risks of biochemical
disorder or organ failures following the ingestion of contaminated plants and animals.
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3. Structure and Classification of Seaweed

Seaweed does not have roots, but rather has holdfasts that anchor the seaweed to the
bottom of the sea or ocean. These root-like holdfasts are composed of many finger-like
components known as Haptera and are supported by a stalk or stem called a Stipe. The
structure of the stem or stipe can be hard, filled with gas, soft or flexible, short, or long,
and in some cases, they may be completely absent depending on the type of seaweed [27].
These stipes or stem-like structures are either filled with gas or empty. These are referred
to as pneumatocysts, while the entire body of the seaweed is referred to as the thallus.
Seaweed has leaves called blades, which assist in photosynthesis, although some seaweed
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species have only a single leaf, while others have many leaves. Figure 4 below shows the
physical structure of seaweed.
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Seaweed is divided into three (3) main groups based on color characterization, namely:
Brown (Phaeophyceae), Red (Rhodophyceae), and Green (Chlorophyceae) seaweeds [28].
Brown algae (Phaeophyta) have various physical appearances either in crust or filament
form. Brown algae are multicellular and contain chlorophyll, which aids in photosynthesis,
with fucoxanthin being the dominant pigment. Physically, brown algae can range from
a large size (Kelp) of about 60 m long to as small as 60 cm [29]. Red algae (Rhodophyta)
have chlorophyll in which phycocyanin and phycoerythrin are the dominant pigments
responsible for red coloration. Red seaweeds are normally not actually red, but brownish-
red or purple. Physically, red algae are smaller than brown algae in length [30]. Green
seaweeds (chlorophyte) have chlorophyll, but with no dominant pigment justifying their
green coloration; therefore, green seaweed is generally green. It is smaller in size than both
red and brown seaweeds [5,31].

We further characterized seaweeds based on both their physical and chemical compo-
sitions as shown in Table 2. The alginate and the intercellular substance of the brown algae
have high divalent cation uptakes. The cell walls of brown seaweeds are composed of
cellulose, alginic acid, and polysaccharides, with alginates and sulfate being the dominant
active groups [7]. The cell wall of red algae contains cellulose, but their biosorption capabil-
ities can largely be attributed to sulfated polysaccharides made up of galactans. Similarly,
the cell wall of the green algae contains cellulose with hydroxyl-proline glucosides; xylans
and mannans are the main functional groups during biosorption [32,33].
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Table 2. Characteristics of Seaweed.

Common Name
(Phylum) Body Form Size Pigments Colour

Composition Cell Walls

Brown algae
(Phaeophyta) Multicellular 60 cm–60 m

Chlorophyll,
Fucoxanthin, and

several other
xanthophylls

Golden-brown,
Greenish-brown

Cellulose, Alginate,
Fucoidan

Red algae
(Rhodophyta) Multicellular 50 cm–2 m

Chlorophyll,
Phycocyanin,

Phycoerythrin, and
several xanthophylls

Brownish red,
Purple

Cellulose, Xylans,
Galactans

Green algae
(Chlorophyta)

Unicellular,
Colonial,

Filamentous,
Multicellular

1–1000 µm a and b Chlorophyll and
several xanthophylls Green

Cellulose Hydroxyl
–proline glucosides

β- xylans,
β-mannans

3.1. Seaweed: Metal Ion Biosorption Material

The treatment of contaminated solutions has been a burden to engineers and scientists
over the years. Recently, seaweed has been proven to be more effective than other natural
sorption materials. Some of the other natural sorption materials that have been used to
elute metal ions are discussed in the next subsection. Remediation of aqueous solution
from metal ions is of serious concern to environmentalists, considering the threat it poses
to the purity of the natural environment [34]. The non-biodegradability, carcinogenicity,
and toxicity of heavy metals make them harmful, and treatment of these heavy metals
is essential [35]. Sorption has been proven to be a sustainable and effective method for
treating heavy metals in aqueous solutions using natural biomass [36]. Based on these
outstanding results, seaweed has emerged as the leading material, with a high rate of
metal ion removal. The biosorption method is one of the simplest, cheapest, and most
eco-friendly methods, and requires little or no nutrient addition. The effectiveness and
efficiency of treatments for heavy metals are directly related to the type of sorbent used [37].
In short, the remediation of heavy metals using seaweed offers a more reliable, cheaper, and
more effective means of heavy metal removal from aqueous solutions than the previous
methods. Various mechanisms of seaweed biomass (electrostatic interaction, ion exchange,
and complex formation) have been used in the biosorption process of heavy metals, and
ion exchange has been widely used and is considered the most important among the list of
mechanisms [38,39]. The cell walls of the algae possess polysaccharides and protein, which
serve as binding sites for metal ion uptake [40]. There are several factors responsible for
the sorption capability of a seaweed cell surface; among these factors are accessibility of
binding groups for metal ions, the affinity constants of the metal with the functional group,
the chemical state of these sites, the number of functional groups in the algae matrix, and
the coordination number of the metal ion to be sorbed [41]. The metal biosorption ability of
seaweed varies because of the heterogeneity of their respective cell wall composition. For
example, as seen in Table 3, brown, green, and red algae have high affinities for lead (Pb),
copper (Cu), and cobalt (Co), respectively [7]. Physical or chemical treatment can enhance
heavy metal uptake by seaweed, and the cell wall surface is modified, thereby providing
additional binding sites for biosorption [7,42]. The physical treatment includes freezing,
crushing, heating, and drying, as these increase the surface area on which biosorption can
be achieved [42]. The most common seaweed pretreatments are glutaraldehyde, calcium-
chloride (CaCl2), formaldehyde, sodium hydroxide (NaOH), and hydrogen-chloride (HCl).
Pretreatment with calcium-chloride (CaCl2) enhances calcium binding with alginate, which
plays a pivotal role in ion exchange [43]. The crosslinking bond between hydroxyl and
amino group is strengthened by formaldehyde and glutaraldehyde [44]. The electrostatic
interactions of metal ion cations are increased by sodium hydroxide (NaOH), while at
the same time providing optimal conditions for ion exchange, while hydrogen-chloride
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(HCl) dissolves the polysaccharides of the cell wall and also replaces light metal ions with
a proton, thereby increasing the biosorption binding sites [7]. It is in this regard that we
aim to showcase the comparative advantages of seaweed over other sorption materials in
the removal of heavy metals.

Table 3. Different algae species for heavy metal removal.

Species of Algae Metal Ions qmax (mmol/g) pH References

Green Algae

Ulva lactuca

Pb(II)

0.61 4.5 [45]
Cladophora glomerata 0.35 4.5 [45]

Ulva sp. 1.46 5.0 [33]
Codium vermilara 0.30 5.0 [46]
Spirogyra insignis 0.24 5.0 [46]
Spirogyra neglecta 0.56 5.0 [47]

Caulerpa lentillifera 0.13 5.0 [48]
Spirogyra sp. 0.43 5.0 [49]

Cladophora sp. 0.22 5.0 [49]

Ulva sp.

Cu(II)

0.75 5.0 [33]
Codium vermilara 0.26 5.0 [46]
Spirogyra insignis 0.30 4.0 [46]
Spirogyra neglecta 1.80 4.5 [47]

Ulva fasciata 1.14 5.5 [50]
Caulerpa lentillifera 0.08 5.0 [48]

Cladophora sp 0.23 5.0 [49]
Spirogyra sp 0.53 5.0 [51]

Ulva sp.

Cd(II)

0.58 5.5 [33]
Chaetomorpha linum 0.48 5.0 [52]

Codium vermilara 0.19 6.0 [46]
Spirogyra insignis 0.20 6.0 [46]

Ulva lactuca 0.25 5.0 [53]
Oedogonium sp. 0.79 5.0 [54]

Caulerpa lentillifera 0.04 5.0 [48]
Spirogyra sp. 0.006 a - [55]

Ulva sp.

Zn(II)

0.54 5.5 [33]
Codium vermilara 0.36 6 [46]
Spirogyra insignis 0.32 6 [46]

Caulerpa lentillifera 0.04 5 [48]
Spirogyra s 0.02 a - [55]

Ulva sp.

Ni(II)

0.29 5.5 [33]
Codium vermilara 0.22 6.0 [46]
Spirogyra insignis 0.29 6.0 [46]

Ulva lactuca 1.14 4.5 [56]

Red Algae

Gracilaria corticata

Pb(II)

0.26 4.5 [45]
Gracilaria canaliculata 0.20 4.5 [45]
Polysiphonia violacea 0.49 4.5 [45]

Gracillaria sp. 0.45 5.0 [33]
Asparagopsis armata 0.30 4.0 [46]

Jania rubens 0.14 5.0 [57]
Pterocladia capillacea 0.16 5.0 [57]

Corallina mediterranea 0.31 5.0 [57]
Galaxaura oblongata 0.42 5.0 [57]
Asparagopsis armata 0.33 5.0 [46]

Chondrus crispus 0.63 4.0 [46]
Gelidium 0.51 5.3 [58]

Gracilaria changii 0.23 5.0 [52]
Gracilaria edulis 0.24 5.0 [52]
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Table 3. Cont.

Species of Algae Metal Ions qmax (mmol/g) pH References

Gracilaria Salicornia 0.16 5.0 [52]
Asparagopsis armata 0.28 6.0 [46]
Ceramium virgatum 0.35 5.0 [59]

Mastocarpus stellatus 0.59 6.0 [60]
Jania rubens 0.27 5.0 [57]

Corallina mediterranea 0.57 5.0 [57]
Hypnea valentiae 0.15 6.0 [61]

Palmaria palmate

Cr

0.57 (Cr(III)) 4.5 (Cr(III [62]
0.65 (Cr(VI)) 2 (Cr(VI))

Polysiphonia lanosa 0.65 (Cr(III)) 4.5(Cr(III)) [62]
0.88 (Cr(VI)) 2 (Cr(VI))

Jania rubens 0.54 (Cr(III)) 5.0 (Cr(III)) [57]
Pterocladia capillacea 0.66 (Cr(III)) 5.0 (Cr(III)) [57]

Corallina mediterranea 1.35 (Cr(III)) 5.0 (Cr(III)) [57]
Galaxaura oblongata 2.02 (Cr(III)) 5.0 (Cr(III)) [57]

Jania rubens

Co(II)

0.55 5.0 [57]
Pterocladia capillacea 0.89 5.0 [57]

Corallina mediterranea 1.29 5.0 [57]
Galaxaura oblongata 1.25 5.0 [57]

Brown Algae

Ascophyllum nodosum

Pb(II)

1.31 3.5 [63]
Fucus vesiculosus 1.11 3.5 [63]
Sargassum vulgare 1.10 3.5 [63]
Sargassum hystrix 1.37 4.5 [45]
Sargassum natans 1.14 4.5 [45]

Padina pavonia 1.04 4.5 [45]
Sargassum sp. 1.16 5.0 [33]

Padina sp. 1.25 5.0 [33]
Fucus vesiculosus 1.02 5.0 [38]

Fucus spiralis 0.98 3.0 [46]
Ascophyllum nodosu 0.86 3.0 [46]

Padina sp.

Cu(II)

1.14 5.0 [33]
Sargassum vulgarie 0.93 4.5 [64]
Sargassum fluitans 0.80 4.5 [64]

Sargassum filipendula 0.89 4.5 [64]
Fucus vesiculosus 1.66 5.0 [38]

Fucus spiralis 1.10 4.0 [46]
Ascophyllum nodosum 0.91 4.0 [46]
Sargassum filipendula 1.32 4.5 [65]

Fucus serratus 1.60 5.5 [66]
Sargassum sp. 1.13 5.5 [50]

Sargassum sp.

Cd(II)

0.76 5.5 [33]
Padina sp 0.75 5.5 [33]

Sargassum siliquosum 0.73 5.0 [52]
Sargassum baccularia 0.74 5.0 [52]
Padina tetrastomatica 0.53 5.0 [52]
Sargassum vulgarie 0.79 4.5 [64]
Sargassum fluitans 0.71 4.5 [64]

Sargassum muticum 0.68 4.5 [64]
Fucus vesiculosus 0.96 6.0 [38]

Fucus spiralis 1.02 6.0 [46]
Ascophyllum nodosum 0.78 6.0 [46]
Sargassum filipendula 1.17 5.0 [67]

Bifurcaria bifurcate 0.65 4.5 [68]
Saccorhiza polyschides 0.84 4.5 [68]
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Table 3. Cont.

Species of Algae Metal Ions qmax (mmol/g) pH References

Ascophyllum nodosum 0.70 4.5 [68]
Laminaria ochroleuca 0.56 4.5 [68]

Pelvetia caniculata 0.66 4.5 [68]
Macrocystis pyrifera 0.89 3.0 [69]

Sargassum sp.

Zn(II)

0.50 5.5 [33]
Padina sp. 0.81 5.5 [33]

Fucus spiralis 0.81 6.0 [46]
Ascophyllum nodosum 0.64 6.0 [46]
Sargassum filipendula 0.71 5.0 [67]
Macrocystis pyrifera 0.91 4.0 [69]

Sargassum fluitans

Ni(II)

0.75 3.5 [63]
Ascophyllum nodosum 0.69 3.5 [63]

Sargassum natans 0.41 3.5 [63]
Fucus vesiculosus 0.39 3.5 [63]
Sargassum vulgare 0.09 3.5 [63]

Sargassum sp 0.61 5.5 [33]
Padina sp. 0.63 5.5 [33]

Cystoseria indica 0.85 6.0 [70]
Nizmuddinia zanardini 0.94 6.0 [70]

Sargassum
glaucescensand 0.94 6.0 [70]

Padina australis 0.46 6.0 [70]
Fucus spiralis 0.85 6.0 [46]

Ascophyllum nodosum 0.73 6.0 [46]
Sargassum filipendula 1.07 4.5 [65]

Fucus vesiculosus

Cr

1.21 (Cr(III)) 4.5 (Cr(III)) [62]
0.82 (Cr(VI)) 2 (Cr(VI))

Fucus spiralis 1.17 (Cr(III)) 4.5 (Cr(III)) [62]
0.68 (Cr(VI)) 2 (Cr(VI))

Sargassum sp. 0.60 (Cr(VI)) 2 (Cr(VI)) [71]
Sargassum muticum 3.77 (Cr(VI)) 2 (Cr(VI)) [72]

a = Not maximum biosorption value.

Table 3 shows the different species of algae used in the removal of heavy metals.
The numbers for metal ion uptake qmax (mmol/g) for the different species are in the
range (0–4), especially the brown alga species (Sargassum muticum), while all uptake occurs
between pH values of (2–6), and pH influences the dissociation of heavy metals from the
solution using different alga species [48,73]. The pH impacts metal ion uptake, which is a
result of the influence of the “functional group on the biomass’ cell wall and the metal ions
solution” [33]. The polysaccharides present in the cell wall of seaweeds are the most highly
metal-binding sites [64].

3.2. Various Natural Materials Used for Sorption

In recent years, engineers and scientists have directed much effort towards identifying
the most suitable biosorption materials. Among many materials, seaweed has been revealed
to be the most suitable and effective natural material. Table 4 shows some of the various
other materials that have been used for the removal of metal ions.
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Table 4. Various natural materials used for the removal of metal ions.

Materials Used Heavy Metals References

Polymers Fe and Cr [74]

Sawdust and tree barks Hg, Pb, and Zn [75]

Electronic waste along with
galvanic wastes Cu, Ni, Mn, Pb, Sn [76]

charcoal: Cr(III) [77]

Clay Cr(III) [78]

Fungi Cr, Fe [79]

Dead biomass Cr [80]

Peat moss Cr, Fe [81]

Peanut shells, Rice husk,
Straw, and walnut cover Cr, Cu, Ni [82]

Cocoa shell Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn [83]

Coconut husk Cr, As [82]

Caol and fly ashes Cr, Cu, Ni [84]

Banana pith and peels Ni, Pb [85]

Cassava fiber Pb, Co [86]

Chicken feathers Al, As [87]

Sheep manure wastes Ca, Cd [88]

Sunflower Co, Cr [89]

Rice byproducts Cu, Fe [90]

Orange peels Cu, Fe, Hg [91]

Palm kernel fiber Fe, Hg [82]

Grape stalks Cr, Fe, Hg [92]

As highlighted in Table 4, the use of different biomass (living or dead) for the removal
of heavy metals has been studied over the years, and microalgae have stood out among
the others. For non-living organisms, the cell surface involves different functional groups
like amini, hydroxyl, sulfhydryl, phosphate, sulfate, and carboxyl groups [93]. Sawdust
and tree barks are rich in tannin/lignin, and have been studied by Fiset and team [94],
as they proved effective in metal adsorption. The tannin is an active species during
the metal adsorption (ion exchange) process because of the polyhydroxy polyphenol
groups [95]. Lignin, which is extracted from black liquor and is also a waste product of
the paper industry, has been considered for the removal of metals (Hg, Pb, and Zn) [96].
Alcohols, acids, aldehydes, ketones, phenol, hydroxides, and ethers are all polar functional
groups of lignin that have varying metal-binding capabilities [97]. Phytoremediation or
phytofiltration of metal-contaminated effluents have been tested and proven successful.
Some examples of aquatic plants with such ability are Ceratophyllum demersum, Lemna
minor, and Myriophyllum spicatum [98]. Cellular components such as amide, imine, imidazol
moieties, carboxyl, hydroxyl, sulfate, sulfhydryl, phosphate of these plants have high metal-
binding properties, as reported by Gardea and team [99]. Chitin and chitosan have also been
used to treat metal ions in wastewater. Chitin, which is the second-most abundant natural
biopolymer after cellulose, is commonly found in the exoskeletons of crustaceans and
shellfish, while Chitosan is produced by alkaline N-deacetylation of chitin [100]. Similarly,
peat moss has been studied based on heavy metal decontamination of wastewater. It is a
complex material with both lignin and cellulose as its main constituents, which contain
polar functional groups [101]. Plenty of other agricultural waste, such as rice residues, fruit



Sustainability 2021, 13, 12311 11 of 17

and vegetable peels, tea/coffee residues, and coconut husks, have also been used for metal
ion retention. Most of the materials have polyhydroxy, polyphenol, carboxylic, and amino
groups, which play key roles in the metal adsorption process [83]. Animal bones, clay,
human hair, and teeth have all been used to treat metal ions, but have not been effective or
efficient when compared with seaweed [102]. In conclusion, the above-discussed natural
sorption materials have not been effective either in terms of metal ions removal rate or
socio-economic benefit when compared to seaweed.

4. Sorption Mechanism of Seaweed

Seaweed is characterized by both physical, biological, and chemical attributes, such
as alginate, carrageenan, and photosynthesis features. It can also grow in extreme con-
ditions, in the presence of heavy metals, salinity, and harsh temperatures. Owing to the
aforementioned qualities, in addition to its high binding affinity, seaweed is considered
a good bioremediation material for treating toxic metal ions in aqueous solutions [103].
Seaweed also has a “hormesis phenomenon feature”, which refers to the toxic contam-
ination of algae stimulating further algae growth [104]. Similarly, some cyanobacteria
tend to grow in wastewater that is highly polluted with toxic heavy metals; examples of
cyanobacteria include; spirogyra, oscillatoria, anabaena, and phormidium [105]. Seaweeds
have both antioxidant enzymes and non-enzymatic antioxidants. Antioxidant enzymes
include catalase, superoxide dismutase (SOD), ascorbate peroxidase, and reductase, while
non-enzymatic antioxidants include glutathione (GHS), cysteine, proline, carotenoids, and
ascorbic acid (ASC) [106]. During the sorption process, heavy metals in the seaweed ignite
the phytochelatins (PCs) through biosynthesis. These phytochelatins are proteins and thiol-
rich peptides that can minimize toxic metal ions through interaction [107]. Superoxide
dismutase (SOD) performs a defensive role against the superoxide anion, which is exerted
by breaking the superoxide anion into hydrogen peroxide and oxygen molecules. The
catalase degrades hydrogen peroxide to oxygen and water molecules, while cysteine is
the precursor for metallothioneins, phytochelatins (PCs), glutathione (GSH), and other
sulfur-related compounds. [108]. The reduction of free radicals and reactive oxygen species
(ROS) is performed by both glutathione (GSH) and ascorbic acid (ASC), which are endoge-
nous antioxidants that are synthesized by seaweed [109]. Additionally, seaweed produces
a high level of ascorbic acid (ASC) as “hydrophilic redox buffer”, which protects cytosol
against the threat of oxidation. Similarly, the seaweed is protected by glutathione (GSH) by
enabling phytochelatins (PCs), scavenging free radicals, and ascorbic acid (ASC) synthesis
alongside the restoration of substrate for other antioxidants [106,107]. The chemistry in-
volved in the interaction between the biomass (seaweed) and the metal ions is shown in
Figures 5 and 6, respectively.

As shown in Figure 5, the removal mechanism of heavy metals is performed in two
folds. These two folds include biosorption, which is the “rapid extracellular passive
adsorption”, and the latter is bioaccumulation, which is the “slow intracellular positive
diffusion and accumulation”. Seaweeds’ cell walls are made up of cellulose and alginate
(polysaccharides) and lipids, while the organic protein offers amino, phosphate, hydroxyl,
thiol-rich, and carboxyl (functional groups), which all possess good ability to bind metal
ions [105]. Additionally, the cell wall is composed of laminarin, deprotonated sulphate,
and monomeric alcohols capable of attracting both cationic and anionic species of metal
ions [110]. Adsorption on the surface of seaweed occurs rapidly when compared to inside
the seaweed. On the surface, adsorption takes place through ion exchange with the cell wall
and covalent bonding with the ionized cell wall, resulting in “seaweed exopolysaccharides”.
Conversely, adsorption is slow inside, and phytochelatins, GSH, and metal transporter
play a leading role in the binding of metal ions. This accumulation of metal ions inside is
carried across the cell membrane to the cytoplasm before diffusion [110,111].

According to Figure 6, the biochemical constituent of seaweed is responsible for
the sequestration of metal ions, which are composed of alginate and fucoidan in the
cell wall. The cell wall of microalgae is made up of a fibrillary skeleton (cellulose) and
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an amorphous embedded matrix (alginate) [5]. The cell wall of brown algae contain
sulfated polysaccharides, while in red algae, galactans are found, and green algae, hydroxyl-
proline [46].
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5. Conclusions

The usage of seaweed as a sorption material has attracted the attention of many
researchers in recent times. Seaweed’s relevance is not only restricted to the treatment of
heavy metals; it is a precious food that is prominent in basic balanced diets. Considering
the current state of heavy metal pollution in our environment, seaweed has been proven to
be an excellent, cheap, effective, abundantly available, eco-friendly, and efficient material
for remediating the environment when compared to other natural sorption materials. This
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multi-faceted and multi-dimensional seaweed has the potential to heal the world from
various environmental menaces. It is evidence that seaweed could be economically prudent
both for industrial and environmental uses. As seaweeds are among the most fascinating
and resourceful species, more exploration is needed to reap the benefits of these unique
species. For sorption purposes, seaweed has been proven to be a good biosorption material
with high metal ion uptake (qmax (mmol/g)) within the range (0–4). The brown alga
(Sargassum muticum) stands out efficiently at a pH value of 2 when compared to other
natural sorption materials. The main biochemical interaction between the algae and the
metal ions depends on the cell wall, with polysaccharides, lipids, and other organic proteins
being the components that play the main roles during the sorption process. In conclusion,
the sorption of metal ions using seaweed, especially brown algae, presents a solution that
is more reliable, cheaper, and possesses more effective sorption ability than other natural
sorption materials previously studied.
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