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Abstract: As the global temperature continues to rise, people have become increasingly concerned
about global climate change. In order to help China to effectively develop a carbon peak target
completion plan, this paper proposes a carbon emission prediction model based on the improved
whale algorithm-optimized gradient boosting decision tree, which combines four optimization
methods and significantly improves the prediction accuracy. This paper uses historical data to verify
the superiority of the gradient boosting tree prediction model optimized by the improved whale
algorithm. In addition, this study also predicted the carbon emission values of China from 2020 to
2035 and compared them with the target values, concluding that China can accomplish the relevant
target values, which suggests that this research has practical implications for China’s future carbon
emission reduction policies.

Keywords: gradient lifting tree; whale optimization algorithm; carbon emissions; carbon peak

1. Introduction

As the world’s largest developing country, China is also the world’s largest carbon
emitter [1]. Since entering the 21st century, China’s carbon emissions have been growing
rapidly, and its share in the world is also on the rise. In 2021, the terms carbon peak and
carbon neutral were first written in the government’s work report and became hot topics
discussed by delegates. Xi Jinping, President of the People’s Republic of China, stressed
that the “14th Five-Year Plan” is a key period and a window period for a peak in carbon
emissions, and an important plan needs to be made for the next five years to reduce carbon
emissions, laying out a clear “construction plan” for the carbon emission peak in the 14th
Five-Year Plan. In order to smoothly reduce carbon emissions, the accurate prediction of
carbon emissions has become an important issue.

There are many kinds of prediction methods, such as the Bayes method [2–4], rule
induction method [5,6] and KNN (K nearest neighbor) algorithm [7–10]. At present, the
most widely used prediction methods are various algorithms in the field of artificial
intelligence (AI), which are widely used because of their high computing speed and high
computing precision.

Decision tree representation is one of the most widely used logic methods. It deduces
the classification rules of decision tree representation from a group of unordered and irreg-
ular cases. Tso et al. used decision trees to predict electrical energy consumption [11]; Peng
et al. used gradient driven regression trees to predict household energy consumption [12].
Decision tree analysis has been used to determine the influence factors of residents’ carbon
dioxide emissions under different travel modes [13]. One of the greatest advantages of the
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decision tree-based classification algorithm is that it does not require the user to possess
a large amount of background knowledge in the learning process; as long as the training
examples can be represented by attribute conclusion, the algorithm can be used to learn [14].
The gradient boosting decision tree algorithm (GBDT) used in this paper is one of them.

Gradient boosting, first proposed by Friedman in 2001, is a supervised learning
algorithm. When the GBDT algorithm and gradient boosting principle were proposed
by Friedman, researchers were interested in their strong prediction performance [15].
Compared with other prediction methods, GBDT has high prediction accuracy and low
consumption. It has been found that the stochastic gradient enhanced tree (GBDT) meets
or exceeds the predictive performance of the SVM and the RF, is the fastest algorithm
in predictive efficiency [16] and has much lower computational costs than those of other
algorithms [17]. Moreover, under the same input combination, the GBDT model is superior
to the M5Tree model and empirical model in prediction accuracy [18].

GBDT is being used for a variety of energy planning tasks. Fan and Lu used GBDT
to predict regional water evapotranspiration (ET0) [17] and pan evaporation (EP) [18];
David et al. used GBDT to predict solar irradiance [19]; Amar et al. used GBDT to predict
interfacial tension (IFT) in the crude oil/brine system [20]; Wang et al. used GBDT to
predict the medium-term load of the power grid [21]; Zheng, Wang and others used
GBDT to predict the short-term load of the power grid [22,23]. GBDT is also widely
used in urban planning [24–29], life sciences [30–37], financial forecasting [38–45], energy
forecasting and other fields. In urban planning work, some scholars used GBDT to predict
the cooling load of low-energy buildings [26] and building energy consumption [46].
Zhang et al. proposed a GBDT-based ice storage air-conditioning cooling load forecasting
model to predict air-conditioning cooling load [26]; Liu et al. used GBDT to predict Hong
Kong’s long-term monthly electricity demand under future climate and socioeconomic
changes [47]; Zhang et al. used a GBDT-based model to predict the relationship between
PM2.5 and CO2 emissions [48]; Gao et al. used GBDT to predict the carbon emissions of
urban car hailing [49].

Some scholars use a variety of improved methods to optimize the performance of
GBDT, forming a new method of analysis and prediction. The SPSO adaptive neural
network (Sann) prediction method was proposed by Gao et al. [50], and the combination
method of GBDT and DE (GBDT-DE) was proposed by Deng et al. [45]. Zhou et al.
developed a learning architecture for forecasting and trading stock indices by cascading
the logistic regression model to the gradient-enhanced decision tree model [42]; Zhou
et al. proposed a new model that combines the gradient-enhanced decision tree with
logistic regression [45]. These synthesis methods reflect the GBDT algorithm’s strong
compatibility and wide applicability. We found that few scholars have used the WOA
algorithm to optimize the GBDT algorithm. Therefore, in this paper, we chose to use
the whale algorithm to optimize GBDT, which provides a new possibility for the future
optimization of GBDT.

The whale optimization algorithm (WOA) is an algorithm that was proposed by
Mirjalili Seyedali in 2016, based on the behavior of whales rounding up their prey. The
algorithm is inspired by the bubble-net hunting strategy. Optimization results prove that
the WOA algorithm is very competitive compared to the state-of-the-art meta-heuristic
algorithms as well as the conventional methods [51]. Zhuang et al. [30] used it to predict
early water shortage; Wang et al. constructed a WOA-ELM model for the prediction
of carbon emissions in China [52]. Zhao et al. constructed a hybrid model based on
feature selection and the whale optimization algorithm (WOA) for the prediction of PM2.5
concentrations [53]. Zhao et al. proposed a WOA-LSSVM model for the prediction of
CO2 emissions [54]. Yan et al. used WOA to predict evaporation in arid and humid
regions of China [55]; Yang et al. optimized the algorithm based on improved ensemble
empirical modal decomposition and improved the whale optimization algorithm’s long-
and short-term memory to predict carbon prices [56].
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Many improved algorithms have been developed based on WOA. To overcome the
shortcomings of low convergence accuracy and convergence speed, Yan et al. used logistic
mapping to initialize population localization and improved the algorithm using inertial
weighting [57]. To address the problems of the WOA algorithm’s uneven population
distribution, slow convergence speed and the tendency to fall into local optima, He et al.
used Sobol sequences to initialize the population, a stochastic learning strategy to increase
population diversity and a Corsi variance boosting algorithm to jump out of local optima
to optimize the algorithm [58]. Similarly, Liu et al. introduced an optimal neighborhood
perturbation strategy to solve the phenomenon of the premature algorithm [59]. Lin
et al. used chaotic Tent mapping to determine the initial population position of a random
generation algorithm in order to make the population distribution more uniform and speed
up the convergence of the algorithm [60].

We found that various scholars use more than one optimization approach to optimize
the WOA algorithm. Based on this, this paper combines multiple optimization methods
to optimize the WOA algorithm in order to better improve the algorithm’s optimization
finding ability.

At present, the GBDT algorithm has not been widely used in carbon emission predic-
tion. Based on this, this paper establishes the improved whale algorithm-optimized GBDT
to predict China’s carbon emissions.

Some of the innovations of the current study are as follows:

(1) To improve the global search ability and local search ability, this paper uses four
methods: the compound chaotic map, nonlinear convergence factor, local domain
perturbation and reverse learning. In addition, this paper compares the optimization
performance of the algorithm and proves that the optimized whale algorithm has
strong optimization ability;

(2) Based on the impact of the policy, this paper evaluates China’s 2030 Carbon Peak
Target, provides a scientific basis for carbon reduction policy making and puts forward
relevant suggestions.

2. Materials and Methods
2.1. Standard Whale Optimization Algorithm

The specific steps of whale optimization algorithm (WOA) are discussed below.

2.1.1. Prey Encirclement Stage

Humpback whales can identify the location of prey and surround them, and WOA
assumes that the current optimal candidate solution is the target prey, while the other
search agents update their positions by “target prey”. The formula is as follows:

X(i+1) = X∗(i)− A · |C · X∗(i)− X(i)| (1)

A = 2a · ra − a (2)

C = 2 · rc (3)

where i is the current number of iterations; X∗(i) is the optimal candidate solution; X(i)
is the current position vector; || is the absolute value sign; is the element-by-element
multiplication; A and C are random vectors between [0, 1]; A is the convergence factor,
which decreases linearly from 2 to 0.

2.1.2. Bubble-Net Attack

Humpback whales spit bubbles to attack their prey, spiraling upwards to gradually
reduce the envelope to obtain food, divided into two main mechanisms of contracting
the envelope and spiraling to update the position to achieve mathematical visibility. The
mathematical model can be expressed as follows:
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(a) Contraction of the envelope: encirclement shrinkage of the prey by means of the
control parameter a of the coefficient variable A;

(b) Spiral position renewal: after encircling the prey, the whale captures it in a spiral
movement, which is mathematically modelled as follows:

X(t+1) = X∗(t) + Dp · eblcos(2πl) (4)

where Dp = |X∗(t)− X(t)| is the distance between the whale and its prey, b is the logarith-
mic spiral-shaped constant and l is a random number between [−1, 1].

Humpback whales attack their prey in bubble nets in a synchronous manner with
both constricted encirclement and spiral position updates. In the mathematical model, the
position information is updated using the same probability and can be expressed as

X(t+1) =
{

X(t)− A · |C · X∗(i)− X(i)| p < 0.5
X(t) + DP · eblcos(2πl) p ≥ 0.5

(5)

where p is a random number on [0, 1].

2.1.3. Searching for Prey

In addition to the bubble-net hunting strategy, humpback whales need to search for
prey randomly, and the process is mathematically modeled as follows:

X(t+1) = Xrand − A · |C · Xrand − X(t)| (6)

where Xrand represents a randomly selected position vector in the current population.

2.2. Modified Whale Optimization Algorithm
2.2.1. Composite Chaotic Mapping

The initial populations of most current intelligent optimization algorithms are ran-
domly generated in the search space, and the quality of the initialized populations has a
great impact on the efficiency of the optimization algorithm. WOA has the disadvantages
of reducing the diversity of individuals in the late iterations and easily falling into local
optima when solving problems. Chaotic operators can enhance the diversity of individuals
in a population by not repeatedly traversing all states within a certain range. This paper
uses Tent and Chebyshev mappings to form a composite chaotic mapping as a new search
method [61].

Tent mapping is defined as:

xn+1 = 1− 2|xn|,−1 < xn ≤ 1 (7)

Chebyshev mapping is defined as:

xn+1 = cos(k · arccosxn) (8)

When the order k ≥ 2, the interval of Chebyshev mapping is x ∈ [−1, 1], and the
non-linear factor that generates chaos is the square operation.

By embedding the standard Tent mapping into Chebyshev mapping and changing its
chaotic attractor, an improved composite chaotic mapping is obtained, whose equation is

xn+1 = (cos(k · (arccos(1− |2xn|)))) (9)

When the order k ≥ 2, the complex chaotic mapping interval is x ∈ [−1, 1]. The
non-linear factors that generate chaos are taken as absolute values and squared operations.
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2.2.2. Non-Linear Convergence Factor

In order to more effectively balance the global exploration and local exploitation
performance of the algorithm, a combined convergence factor strategy is proposed in this
paper.

This is specified as follows:

α∗ =

{
−0.5sin( π

4 α) + 1 α < 0.5
ln
(

20sin( π
4 α)
)
− 1 α ≥ 0.5

(10)

α∗ decreases nonlinearly in the [0, 2] range. The convergence factor changes more in
the first period for fast convergence and less in the later period for an improvement in the
local search efficiency.

2.2.3. Local Neighbourhood Perturbation

There are two modes of search in the whale algorithm, namely, search around optimal
individuals and search around random individuals, both of which make it difficult for the
whale algorithm to operate outside the local optimum. If it converges quickly, it is likely to
fall into a local optimum.

We set up a local perturbation optimization [62] to prevent the algorithm from falling
into a local optimum.

If the optimal particle in the perturbation group is better adapted than the existing
global optimal particle, then the best particle in the perturbation group is better than the
existing global best particle, then global best particle is assigned to the global best particle
and the global best particle is used to replace the worst particle, so as to retain the existing
global optimum while skipping the local optimum. The global optimal particle is assigned
to the global optimal particle, and the global optimal particle replaces the worst particle.

If no better particle appears, the local perturbation is considered, the local perturbation
fails and the existing particles are not changed.

2.2.4. Reverse Learning Strategy

In order to enhance the population diversity of individual whales in the search opti-
mization process, this paper introduces a backward learning mechanism in the iterative
search process of the whale algorithm. The backward learning mechanism is used to help
the algorithm escape the influence of the local optimum, which is conducive to the global
convergence of the algorithm.

Reverse learning is defined as follows:
Supposing Q = (x1, x2, x3, · · ·, xn) is a feasible solution in an N-dimensional search

space and satisfies x1, x2, x3, · · ·, xn ∈ R, xi ∈ [ai, bi], then its reverse solution is
Q∗ =

(
x∗1 , x∗2 , x∗3 , · · ·, x∗n

)
, which satisfies x∗i = ai + bi − xi, i = 1, 2, . . . , n .

Based on this, we can see, with respect to the definition of backward learning, that
there is only one corresponding backward solution for each solution in the search space. We
introduce a backward learning mechanism into the whale algorithm to achieve the goal of
maintaining population diversity while avoiding becoming trapped in local optimization.

2.3. Gradient Boosting Tree

GBDT was proposed by Friedman, and it mainly solves the optimization problem
of general loss functions. The core idea is to fit the residuals of the previous round of
base learners by the negative gradient of the loss function, so that the residual estimate
of each round gradually decreases. Thus, the output of each round of the base learner
gradually approximates the true value. Fitting in the negative gradient direction ensures
that the loss function decreases as quickly as possible in each round of training, accelerating
convergence to a local or global optimum solution.
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The corresponding equation is as follows:

F(x, w) =
N

∑
n=0

anhn(x, wn) =
N

∑
n=0

fn(x, wm) (11)

where x is the input sample, h is the categorical regression tree, w is the parameters of the
regression tree and a denotes the weights. Solving for the optimal model (16) is equivalent
to minimizing the loss function, which is:

F∗ = arg min
F

N

∑
n=0

L(yn, F(xn, w)) (12)

Overall, GBDT is a process of fitting the residuals and superimposing them on F.
In this process, the residuals become smaller and the loss (loss function) approaches the
minimum.

As GBDT is modelled with a large number of hyperparameters, the training model is
not guaranteed to be optimal. In this paper, MWOA is used to optimise the four parameters
of min_samples_split, min_samples_leaf, min_weight and max_depth in the GBDT model.

Explanations of these parameters are given below:
Min_samples_split specifies the minimum number of samples needed to split an

internal node (not a leaf node).
Min_samples_leaf specifies the minimum number of samples to be included in each

leaf node.
Min_weight_fraction_leaf specifies the minimum weight factor of the samples in a

leaf node.
Max_depth specifies the maximum depth of each regression estimate. The maximum

depth limits the number of nodes in the tree and this parameter is adjusted for the best
performance.

2.4. MWOA-Based GBDT Prediction Model

Data are collected, and dimensionless processing is performed on the data. The gray
correlation degree is applied to screen the influencing factors.

(1) Input data selection

Collect the data and do dimensionless processing on the data. Apply the gray correla-
tion degree to screen the influencing factors.

(2) GBDT prediction model based on MWOA

On the basis of considering the influencing factors of carbon emission prediction, the
MWOA-GBDT model is used to derive the energy consumption prediction results. The
specific steps are as follows:

Step 1: The parameters are set and calculated to initialize the algorithm population
based on Equation (9);

Step 2: The population fitness is calculated and ranked, and the current best position
is recorded;

Step 3: The parameters are updated. If p < 0.5, one can move to Step 4, and, conversely,
the searching individual attacks the prey in a spiral motion;

Step 4: If |A| ≤ 1, the whale swims toward the optimal individual. Conversely, the
whale swims toward the random individual;

Step 5: The magnitude of the fitness value between the current individual and the
candidate optimal solution is used to determine whether to replace the candidate solution;

Step 6: After solving the reverse solution of the updated optimal position, the solution
with the larger fitness value between them is selected as the final updated position;

Step 7: Partial disturbance is performed. The newly generated position is compared
with the current optimal position and the individual fitness is compared to decide whether
to replace the current optimal individual;
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Step 10: It is determined whether the end condition is reached. If it has not been
reached, one must return to Step 2 to continue the iteration.

Finally, the parameters obtained from the optimization in MWOA as previously
described are assigned to GBDT to complete the prediction.

The whole model is shown in Figure 1.
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3. Experimental Analysis
3.1. Confirmation of Input Values for the Prediction Model

There are many factors influencing carbon emissions, and we chose to select China’s
total GDP, residential consumption level, total import and export, industrial structure,
urbanization rate and total energy consumption from 1990 to 2019 as initial values based
on some past studies and experience (data from the World Bank, China Carbon Accounting
Database and BP Energy Statistical Yearbook).
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In order to determine the main influencing factors more accurately and exclude the
influence of secondary factors, we used gray correlation analysis to determine the final
influencing factors.

The analysis results of this paper are shown in the following table.
In Table 1, we selected influences with a correlation of 0.7 or higher as input values

for the prediction model.

Table 1. Grey correlations.

Impact Factor Grey Correlation

GDP (RMB 100 million) 0.70810
Resident consumption level (RMB) 0.70908

Total imports and exports (RMB billion) 0.71578
Industry structure (%) 0.73538

Energy consumption structure (%) 0.68754
Population (10,000 people) 0.65347

Urbanization rate (%) 0.75202
Total energy consumption (104 tce) 0.96839

Based on the above, we chose GDP, population consumption level, total import and
export, urbanization rate and total energy consumption from 1990 to 2019 as the data set
for this experiment.

3.2. MWOA-GBDT-Based Carbon Emission Forecasting in China

In this paper, the K-fold cross-validation method was used to prevent the overfitting
of the model on the test set. The data from 1990 to 2010 were divided into training and
validation sets, the verification set at a ratio of 4:1 and the remaining sample data from
2010 to 2019 were used as the test set. Each time, we used the five groups of sample data as
the training data and the remaining group of sample data as the verification set for a total
of five times, in order to use the average accuracy to verify the model. As the sample data
in this study are small, we adopted five-fold cross-validation for every model, in which
each group had four samples. The training set had 16 samples and the validation set has
4 samples.

The simulations were run on an Inter(R) Core(TM) CUP: i7-9750H, 16 GB RAM,
2.60 GHz main frequency computer, and the program was implemented using Python
programming. The population size was set to 30.

The algorithm parameters are set as shown in Table 2, where the first decimal of each
parameter is rounded to the nearest whole number.

Table 2. Parameter settings related to the GBDT algorithm.

Metrics Range

min_samples_split [1, 10]
min_samples_leaf [1, 10]

min_weight_fraction_leaf [0, 0.5]
max_depth [1, 10]

The predicted results are shown in the graph below.
Relative error (RE) refers to the absolute error caused by the measurement and the ratio

of the measured (agreed) true value multiplied by 100% of the resulting value, expressed
as a percentage. The closer the RE value is to 0, the better the variables of the equation
explain y and the better the model fits the data. The closer the RE value is to 1, the worse
the model fits.

In general, the relative error is more reflective of the degree of confidence in the
measurement. The actual values for the period of 1990–2019 are compared with the
predicted values predicted using MWOA-GBDT, as shown in Table 3 and Figure 2.
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Table 3. Table of relative errors.

Year Actual Value (Million Tons) Predicted Value (Million Tons) RE (%)

1990 2088.854238 2090.273265 0.07%
1991 2200.885206 2201.585453 0.03%
1992 2295.775295 2296.007805 0.01%
1993 2500.729949 2500.970731 0.01%
1994 2599.5029 2599.938564 0.02%
1995 2900.265046 2895.900413 0.15%
1996 2871.980724 2876.946359 0.17%
1997 2925.748702 2924.439849 0.04%
1998 3020.716711 3017.665887 0.10%
1999 2920.896797 2923.52852 0.09%
2000 3099.685154 3101.90848 0.07%
2001 3255.951126 3255.92946 0.00%
2002 3511.727723 3511.81841 0.00%
2003 4068.094745 4068.242272 0.00%
2004 4741.830883 4741.818747 0.00%
2005 5407.51803 5407.501885 0.00%
2006 5961.808473 5961.646666 0.00%
2007 6473.211479 6473.05578 0.00%
2008 6669.111668 6669.091118 0.00%
2009 7131.511865 7131.449172 0.00%
2010 7830.968904 7830.918884 0.00%
2011 8569.652812 8569.504519 0.00%
2012 8818.41331 8818.224146 0.00%
2013 9188.380792 9185.842412 0.03%
2014 9116.341237 9118.100151 0.02%
2015 9093.303762 9093.147602 0.00%
2016 9054.476007 9054.255438 0.00%
2017 9245.581695 9245.049652 0.01%
2018 9606.6 9605.988844 0.01%
2019 9920.5 9919.274747 0.01%Sustainability 2021, 13, x FOR PEER REVIEW 10 of 19 
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As can be seen from the above graphs, the prediction curves for energy consumption
formed using the MWOA-GBDT model show an excellent fit to the actual curves and the
predictions are quite significant, with the relative error at all prediction points not even
exceeding 1%. This proves that MWOA-GBDT has superior prediction performance.

3.3. Comparison of Prediction Results between Models

In order to further demonstrate the reliability of MWOA-GBDT prediction models,
we selected five models (WOA-GBDT, PSO-GBDT, GWO-GBDT, BA-GBDT and GBDT)
to predict the data via the same samples, and the prediction results and prediction errors
of each model are analyzed and studied in this paper. Figure 3 shows the actual carbon
emission values and the predicted carbon emission values of each model.
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The prediction results of the MWOA-GBDT model fit the actual carbon emission
values best, and the fitting effect of PSO-GBDT is also very significant. The prediction
results of GWO-GBDT have large fluctuation, and the prediction results of GBDT have an
obvious error. The box plots in the figure show the minimum, first quartile, median, third
quartile and maximum values of the relative errors in the six models.

Figures 4 and 5 compare the relative error magnitudes of the models. As seen in
Figure 4, the MWOA-GBDT model has the smallest prediction error, followed by PSO-
GBDT.

In addition to visually comparing the magnitude and distribution of errors, MAPE
(mean absolute percentage error), RMSE (root mean square error) and MAE (mean absolute
error) were used to compare the forecasting accuracy. The metrics selected by us are
formulated as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (13)
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RMSE =

√√√√ 1
n

n

∑
i=1

(ŷi − yi)
2

(14)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (15)
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MAPE is an indicator that represents the average deviation of the predicted outcome
from the true outcome. MAPE takes into account not only the error between the predicted
and true values, but also the ratio between the error and the true value. In addition, MAPE
can also evaluate the goodness of the model.

The indicator RMSE represents the deviation of the observed value from the true
value.

The indicator MAR represents the average of the absolute values of the deviations of
the predicted values from the true values.
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The smaller the value of these three indicators, the better the accuracy of the prediction
model in describing the experimental data.

As we can see from Table 4, among the three indicators MAPE, RMSE and MAR,
MWOA-GBDT has the smallest value, which proves that the model accuracy is relatively
optimal. It is closely followed by PSO-GBDT, and the unoptimized GBDT has the relatively
worst prediction accuracy.

Table 4. Calculation results.

MWOA-GBDT PSO-GBDT BA-GBDT GWO-GBDT WOA-GBDT GBDT

MAPE
(%) 0.028 0.546 0.484 0.512 1.854 1.90

RMSE
(Million tons) 1.64 88.71 26.24 85.34 4770.59 4863.45

MAR
(Million tons) 0.99 5.69 4.32 5.26 3874.14 3980.81

4. China’s Carbon Emission Projections for 2020–2035

China has proposed to achieve the “carbon peak” target by 2030, and, therefore,
this paper uses MWOA-GBDT to project carbon emission values for 2020–2035 to help
China formulate relevant policies. In addition to the carbon peak target, at the UN Climate
Ambition Summit, President Xi announced that, by 2030, China’s carbon emissions intensity
will drop by more than 65% compared to 2005.

Based on this, this paper uses MWOA-GBDT to project China’s carbon emissions
and carbon intensity data for 2020–2035 in conjunction with existing policies and data to
determine whether China will be able to efficiently meet its carbon peaking targets.

4.1. Simulation of Influencing Factors

Before predicting China’s carbon emissions, it is necessary to forecast the influencing
factors in advance. Since China has only proposed carbon neutrality and carbon peaking
targets come 2020, a considerable number of important policies have been or are being
introduced. The traditional gray forecasting method is based on the past situation, and it
does not match with the impact factors that we need. Therefore, it is necessary to combine
the factors with China’s policy planning to determine the trend of some influencing factors,
and then combine them with the gray forecasting method to obtain more accurate forecast-
ing results. In this paper, all of the indicators are set according to China’s current plans and
targets.

4.1.1. GDP

Due to the COVID-19 pandemic, the GDP growth rate for 2020 is 2.3% per year. At
China’s two sessions, China set its expected GDP growth target for 2021 at 6% or more.
The Fifth Plenary Session of the 19th Central Committee proposed that GDP per capita
should reach the level of medium developed countries by 2035, implying that China’s GDP
growth rate needs to be maintained in a reasonable range over the next 15 years. In the
process of shifting from high growth to high quality development, China’s total economic
base is increasing in size, while the potential economic growth rate is expected to slow
down due to declining labor productivity growth and demographic changes, and then the
GDP growth rate will gradually decline over time.

4.1.2. Consumption Level of the Population

Under the influence of the COVID-19 pandemic, residents’ consumption levels have
dropped; however, under the joint promotion of policy support factors, such as a stable
employment situation and recovery of business activities due to economic recovery and
continuous increase in livelihood protection, residents’ disposable income has improved
in tandem with the economic situation. In the long run, the 14th Five-Year Plan period
will be a critical period for China to move towards becoming a high-income country. The
Fifth Plenary Session of the 19th CPC Central Committee clearly put forward that raising
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people’s income level is a very important issue. We will strive to reach a new level of
livelihood and well-being, with the growth of people’s income and economic growth
essentially synchronized and the distribution structure significantly improved. In the
future, China’s economic upward growth pulling force will mainly rely on consumer
demand, which mainly requires raising residents’ income, and better income distribution
can improve overall consumer demand and raise residents’ consumption level.

4.1.3. Total Imports and Exports

China’s Ministry of Commerce in July in the “14th Five-Year Plan” for business devel-
opment proposed that, by 2025, China’s total imports and exports of goods should increase
from USD 4.65 trillion in 2020 to USD 5.1 trillion, with an average annual growth rate of
2%. Officials have indicated that China will expand imports of high-quality consumer
goods, advanced technology, important equipment and energy resources, and improve
the quality of exports. The global target of “double carbon” will also greatly enhance
the global competitiveness of China’s manufacturing industry and improve the country’s
export capacity. However, the continued evolution of the overseas COVID-19 pandemic
has exacerbated the complexity of the foreign trade situation and put pressure on future
import and export trade.

4.1.4. Industrial Structure

At present, the industrial base of China’s service industry trade development is still
relatively weak, and the share of the service industry in the value added of GDP is 54.5%,
which is lower than the share of world service industry in the value added of the world GDP
of 67%. Under the double carbon target, China will prevent the continued development of
high energy-consuming and high-emission industries and accelerate the development of
strategic emerging industries, high-tech industries and modern service industries. As a
result, the share of the service sector will increase until it reaches the world average.

4.1.5. Urbanization Rate

The integration of peak carbon and carbon neutrality with urbanization is proceeding
in an orderly manner. Globally, the countries and regions that have already achieved peak
carbon and that are promoting carbon neutrality are generally developed countries and
regions. The common feature of these developed countries and regions is that they have
already achieved urbanization. In a certain sense, they are building low-carbon and zero-
carbon cities in the post-urbanization and post-industrialization period. The difference in
China is that urbanization has not yet been completed and is still in the process of shaping
changes, which provides a scenario where carbon peaking and carbon neutrality can be
fully utilized, and each city needs to target its urbanization process according to its own
carbon pressure. During the 2030–2035 period, China’s resident population urbanization
rate is also expected to approach or reach its peak and enter a relatively stable state.

4.1.6. Total Energy Consumption

In the future, because China is still a developing country, China’s total energy con-
sumption will remain on the increase for a longer period of time, and the growth rate of
energy consumption is expected to show a gradual slowdown. The government’s work
report proposes that energy consumption per unit of GDP will be reduced by 13.5% dur-
ing the 14th Five-Year Plan period. The National Development and Reform Commission
(NDRC) has proposed a target of controlling total energy consumption to within six billion
tonnes of standard coal by 2030. With the continuous development of high-tech carbon
reduction technologies and policy subsidies, the total energy consumption will continue
to decrease in later years. At present, China is entering the late stages of industrialization
and the overall energy consumption demand has seen a post-peak decline. The World and
China Energy Outlook 2050, published in 2016, states that China’s energy consumption
will peak at around 2035 under the influence of accelerated economic restructuring and
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policies to control total energy consumption. Based on the current new mission targets and
new energy policies, total energy consumption is expected to peak by 2030.

Based on the above, we combined policy regulations and the gray forecasting method
to obtain the data on influencing factors in China for the period of 2020–2035.

4.2. Forecast Results

Based on our previous settings of the corresponding influencing factors, we used the
constructed MWOA-GBDT model to forecast the carbon emission values of China for the
period of 2020–2035. The prediction results are shown in Figure 6 and Table 5 and the
comparison results of the predictions are shown in Table 6.
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Table 5. Forecast results.

Year Carbon Emissions (Million Tons) Carbon Emissions Intensity Tons Per
CNY One Million

2020 11,126.69642 1.097680814
2021 11,431.2639 1.059894057
2022 11,744.00943 1.024356985
2023 12,065.095 0.99092588
2024 12,394.67921 0.959467641
2025 12,732.91655 0.929858935
2026 12,947.38987 0.892843706
2027 13,299.93001 0.866875849
2028 13,435.77832 0.82850549
2029 13,285.61181 0.775800761
2030 13,196.19702 0.730407079
2031 13,138.33327 0.689947183
2032 12,848.25022 0.640753794
2033 12,566.72413 0.595735585
2034 12,293.38063 0.554498114
2035 12,027.83171 0.516686112
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Table 6. Forecast results.

Year Carbon Emissions
(Million Tons)

Carbon Emissions
Intensity (Tons per
CNY One Million)

Can We Achieve
Our Carbon Peak

Target?

Can Carbon
Intensity Targets be

Met?

2020 11,126.69642307 1.09768081375886 — —
2030 13,196.19701519 0.7304070790301 Yes Yes
2035 12,027.83170639 0.516686112487781 — —

Carbon intensity refers to the amount of carbon dioxide emissions per unit of GNP
growth. This indicator is used to measure the relationship between a country’s economy
and its carbon emissions. If a country’s economic growth is accompanied by a decline in
carbon dioxide emissions per unit of GNP, then the country has achieved a low carbon
development model. The predicted results are shown in Table 6. To show more clearly the
trend of carbon emission values and carbon emission intensity, a line graph is drawn in
this paper, as shown in Figure 6.

As can be seen in Figure 6, the carbon emission values show an increasing and then
decreasing trend, peaking in 2028, while the carbon emission intensity shows a decreasing
trend year by year. The comparison of the results in Table 6 shows that both policy target
values for China can be achieved under the existing policies, while the peak carbon target
will be achieved earlier in 2028.

5. Conclusions and Recommendations

Based on the results in the previous subsection, the following conclusions can be
drawn in this paper.

(1) Total energy consumption, urbanization level and industrial structure are the top
three factors with the highest correlation. Therefore, relevant suggestions can be made
in terms of low carbon consumption to further reduce carbon emissions;

(2) By comparing the performance of the optimization algorithm and the prediction
model, the MWOA-GBDT model constructed in this paper has an excellent prediction
capability;

(3) Due to the superiority of MWOA-GBDT in error comparisons, the prediction results of
carbon emission consumption have practical significance. According to the prediction
results of 2020–2035, China can achieve the carbon emission-related target in 2030
under the existing policies.

To ensure that China’s carbon targets are met on time, this paper also makes the
following observations.

As China is currently in a period of high-quality development, many high-energy con-
sumption and high-carbon projects are still being deployed, and the Fifth Plenary Session
of the 19th CPC Central Committee has put forward a clear requirement to “formulate
a carbon emission peaking action plan by 2030”. It is necessary to make some relevant
recommendations.

The recommendations in this paper are as follows:

(1) Acceleration of the adjustment of industrial structure and implementation of industry
transformation.

China’s high-carbon industries account for more than 70% of total energy consump-
tion. From the screening of the above-mentioned influencing factors, there is a close
connection between industrial structure and energy consumption. Strictly controlling
the new production capacity of high energy-consuming industries and promoting the
transformation and upgrading of traditional high energy-consuming industries are the key
measures to reduce the value of carbon emissions.

(2) Acceleration of the construction of a perfect carbon market system.

Building a national carbon emission trading market is an important institutional
innovation to control greenhouse gas emissions and promote green and low-carbon de-
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velopment using market mechanisms, and it has become one of the core policy tools to
achieve China’s peak CO2 emission target and implement carbon-neutral vision.

(3) Building a clean, low-carbon, safe and efficient energy system.

Carbon dioxide emissions from energy consumption account for nearly 90% of China’s
total carbon dioxide emissions, and total energy consumption is highly correlated with
the value of carbon emissions. Promoting the effective allocation and utilization of energy
resources and effectively improving the energy-saving technology and energy management
capacity of key energy-using enterprises are important tasks.

(4) Promotion of a carbon-labeling system for products and low-carbon consumption by
the public.

On the basis of setting mandatory product energy efficiency standards, the state can
establish a product energy efficiency rating and certification system to compel enterprises to
express the effectiveness and level of product energy efficiency levels on product packaging,
which can effectively guide consumers’ demand and purchase behavior.

In summary, we forecasted China’s future carbon emissions for the sake of its future
policy development and made some relevant recommendations based on the current
situation.

Author Contributions: X.C.: conceptualization, methodology and writing—original draft prepara-
tion; S.E. and D.N.: data curation, analysis, and writing—original draft preparation; B.C. and J.F.:
resources, investigation, and validation. All authors have read and agreed to the published version
of the manuscript.

Funding: This work is supported by Theory and Method of Collaborative Data Space Design for
Manufacturing Multi-value Chain, National Key R&D Program of China (2020YFB1707800).

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author. The data are not publicly available due to privacy reasons.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhao, X.M.; Wei, X. A study on the relationship between traditional energy prices and carbon trading prices in China—Based on

panel data of seven pilot provinces and cities of carbon trading in China. Ecol. Econ. 2019, 35, 31–34.
2. Kazuya, N.; Chisato, T.; Shigehiro, I.; Shoji, H. Tree manipulation experiment for the short-term effect of tree cutting on N2O

emission: A evaluation using Bayesian hierarchical modeling. Environ. Pollut. 2021, 288, 117725.
3. Tamim, N.; Laboureur, D.M.; Hasan, A.R.; Mannan, M.S. Developing leading indicators-based decision support algorithms and

probabilistic models using bayesian network to predict kicks while drilling. Process Saf. Environ. 2018, 121, 239–246. [CrossRef]
4. Alade, I.O.; Rahman, M.A.; Saleh, T.A. Predicting the specific heat capacity of alumina/ethylene glycol nanofluids using support

vector regression model optimized with bayesian algorithm. Sol. Energy 2019, 183, 74–82. [CrossRef]
5. Lee, D.H.; Kim, K.J. Optimizing Mean and Variance of Multiresponse in a Multistage Manufacturing Process Using a Patient Rule

Induction Method. Procedia Manuf. 2019, 39, 618–624. [CrossRef]
6. Liu, Y.; Hu, X.; Luo, X.; Zhou, Y.; Farah, S. Identifying the most significant input parameters for predicting district heating load

using an association rule algorithm. J. Clean. Prod. 2020, 275, 122984. [CrossRef]
7. Du, P.; Cao, S.; Li, Y. Predicting protein subchloroplast locations with pseudo-amino acid composition and the evidence-theoretic

K-nearest neighbor (ET-KNN) algorithm. J. Theor. Biol. 2009, 261, 330–335. [CrossRef] [PubMed]
8. Jung, J.; Kim, S.; Hong, S.; Kim, K.; Kim, E.; Im, J.; Heo, J. Effects of national forest inventory plot location error on forest carbon

stock estimation using k-nearest neighbor algorithm. ISPRS J. Photogramm. 2013, 81, 82–92. [CrossRef]
9. Goodrich, J.P.; Wall, A.M.; Campbell, D.I.; Fletcher, D.; Wecking, A.R.; Shipper, L.A. Improved gap filling approach and uncertainty

estimation for eddy covariance N2O fluxes. Agric. For. Meteorol. 2021, 297, 108280. [CrossRef]
10. Zolfaghari, A.A.; Taghizadeh-Mehrjardi, R.; Moshki, A.R.; Malone, B.P.; Weldeyohannes, A.O.; Sarmadian, F.; Yazdani, M.R.

Using the nonparametric k-nearest neighbor approach for predicting cation exchange capacity. Geoderma 2016, 265, 111–119.
[CrossRef]

11. Tso, G.K.F.; Yau, K.K.W. Predicting electricity energy consumption: A comparison of regression analysis, decision tree and neural
networks. Energy 2007, 32, 1761–1768. [CrossRef]

12. Nie, P.; Roccotelli, M.; Fanti, M.P.; Ming, Z.; Li, Z. Prediction of home energy consumption based on gradient boosting regression
tree. Energy Rep. 2021, 7, 1246–1255. [CrossRef]

http://doi.org/10.1016/j.psep.2018.10.021
http://doi.org/10.1016/j.solener.2019.02.060
http://doi.org/10.1016/j.promfg.2020.01.433
http://doi.org/10.1016/j.jclepro.2020.122984
http://doi.org/10.1016/j.jtbi.2009.08.004
http://www.ncbi.nlm.nih.gov/pubmed/19679138
http://doi.org/10.1016/j.isprsjprs.2013.04.008
http://doi.org/10.1016/j.agrformet.2020.108280
http://doi.org/10.1016/j.geoderma.2015.11.012
http://doi.org/10.1016/j.energy.2006.11.010
http://doi.org/10.1016/j.egyr.2021.02.006


Sustainability 2021, 13, 12302 17 of 18

13. Wy, A.; Szbc, D. Using decision tree analysis to identify the determinants of residents’ CO 2 emissions from different types of
trips: A case study of Guangzhou, China. J. Clean. Prod. 2020, 277, 124071.

14. Wang, M.X. A review of data mining. Softw. Guid. 2013, 12, 135–137.
15. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
16. Zhang, C.S.; Liu, C.C.; Zhang, X.L.; George, A. An up-to-date comparison of state-of-the-art classification algorithms. Expert Syst.

Appl. 2017, 82, 128–150. [CrossRef]
17. Fan, J.; Yue, W.; Wu, L.; Zhang, F.; Cai, H.; Wang, X.; Lu, X.; Xiang, Y. Evaluation of SVM, ELM and four tree-based ensemble

models for predicting daily reference evapotranspiration using limited meteorological data in different climates of China. Agric.
For. Meteorol. 2018, 263, 225–241. [CrossRef]

18. Lu, X.; Ju, Y.; Wu, L.; Fan, J.; Zhang, F.; Li, Z. Daily pan evaporation modeling from local and cross-station data using three
tree-basedmachine learning models. J. Hydrol. 2018, 566, 668–684. [CrossRef]

19. David, M.; Luis, M.A.; Lauret, P. Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data.
Int. J. Forecast. 2018, 34, 529–547. [CrossRef]

20. Amar, M.N.; Shateri, M.; Hemmati-Sarapardeh, A.; Alamatsaz, A. Modeling oil-brine interfacial tension at high pressure and
high salinity conditions. J. Petrol. Sci. Eng. 2019, 183, 106413. [CrossRef]

21. Wang, S.M.; Wang, S.X.; Wang, D. Combined probability density model for medium term load forecasting based on quantile
regression and kernel density estimation. Energy Procedia 2019, 158, 6446–6451. [CrossRef]

22. Zheng, K.W.; Yang, C. Research on short-term load forecasting based on iterative decision tree (GBDT). Guizhou Electr. Power Tech.
2017, 20, 82–84.

23. Wang, H.Y.; Yang, C.; Tang, H. Research on GBDT short-term load forecasting based on LightGBM improvement. Automat.
Instrum. 2018, 39, 76–78+82.

24. Ma, J.; Cheng, J.C.P. Identification of the numerical patterns behind the leading counties in the U.S. local green building markets
using data mining. J. Clean. Prod. 2017, 151, 406–418. [CrossRef]

25. Park, H.; Haghani, A.; Samuel, S.; Knodler, M.A. Real-time prediction and avoidance of secondary crashes under unexpected
traffic congestion. Accid. Anal. Prev. 2018, 112, 39–49. [CrossRef] [PubMed]

26. Zhang, W.; Yu, J.; Zhao, A.; Zhou, X. Predictive model of cooling load for ice storage air-conditioning system by using GBDT.
Energy Rep. 2021, 7, 1588–1597. [CrossRef]

27. Wang, R.; Lu, S.L.; Feng, W. A three-stage optimization methodology for envelope design of passive house considering energy
demand, thermal comfort and cost. Energy 2020, 192, 11672314. [CrossRef]

28. Wu, Z.; Zhou, Y.; Wang, H.; Jiang, Z. Depth prediction of urban flood under different rainfall return periods based on deep
learning and data warehouse. Sci. Total Environ. 2020, 716, 137077. [CrossRef]

29. Tang, T.; Liu, R.; Choudhury, C. Incorporating weather conditions and travel history in estimating the alighting bus stops from
smart card data. Sustain. Cities Soc. 2019, 53, 101927. [CrossRef]

30. Zhuang, S.; Wang, P.; Jiang, B.; Li, M.; Gong, Z. Early detection of water stress in maize based on digital images. Comput. Electron.
Agric. 2017, 140, 461–468. [CrossRef]

31. Jia, C.; Yang, Q.; Zou, Q. NucPosPred: Predicting species-specific genomic nucleosome positioning via four different modes of
general PseKNC. J. Theor. Biol. 2018, 450, 15–21. [CrossRef] [PubMed]

32. Dai, W.; Jin, H.; Zhang, Y.; Liu, T.; Zhou, Z. Detecting temporal changes in the temperature sensitivity of spring phenology with
global warming: Application of machine learning in phenological model. Agric. For. Meteorol. 2019, 279, 107702. [CrossRef]

33. Yang, Q.; Jia, C.; Li, T. Prediction of aptamer–protein interacting pairs based on sparse autoencoder feature extraction and an
ensemble classifier. Math. Biosci. 2019, 11, 103–108. [CrossRef]

34. Zhou, S.; Wang, S.; Wu, Q.; Azim, R.; Li, W. Predicting potential miRNA-disease associations by combining gradient boosting
decision tree with logistic regression. Comput. Biol. Chem. 2020, 85, 107200. [CrossRef] [PubMed]

35. Huan, J.; Li, H.; Li, M.B.; Chen, B. Prediction of dissolved oxygen in aquaculture based on gradient boosting decision tree and
long short-term memory network: A study of Chang Zhou fishery demonstration base. Comput. Electron. Agric. 2020, 175, 105530.
[CrossRef]

36. Ghosh, S.; Maulik, S.; Chatterjee, S.; Mallick, I.; Chakravorty, N.; Mukherjee, J. Prediction of survival outcome based on clinical
features and pretreatment 18fdg-pet/ct for hnscc patients. Comput. Methods Prog. Biomed. 2020, 195, 105669. [CrossRef]

37. Yu, P.; Gao, R.; Zhang, D.; Liu, Z.P. Predicting coastal algal blooms with environmental factors by machine learning methods.
Ecol. Indic. 2021, 123, 107334. [CrossRef]

38. Wl, A.; Hong, F.A.; Min, X.B. Step-wise multi-grained augmented gradient boosting decision trees for credit scoring. Eng. Appl.
Artif. Intell. 2021, 97, 104036.

39. Li, Y.W.; Wang, X.Y.; Che, C.C.; Jing, C.Y.; Wu, T. Exploring firms’ innovation capabilities through learning systems. Neurocomput-
ing 2020, 409, 27–34. [CrossRef]

40. Du, X.D.; Li, W.; Ruan, S.M.; Li, L. Cus-heterogeneous ensemble-based financial distress prediction for imbalanced dataset with
ensemble feature selection. Appl. Soft Comput. 2020, 97, 106758. [CrossRef]

41. Yang, J.S.; Zhao, C.Y.; Yu, H.T.; Chen, H.Y. Use GBDT to predict the stock market. Procedia Comput. Sci. 2020, 174, 161–171.
[CrossRef]

http://doi.org/10.1214/aos/1013203451
http://doi.org/10.1016/j.eswa.2017.04.003
http://doi.org/10.1016/j.agrformet.2018.08.019
http://doi.org/10.1016/j.jhydrol.2018.09.055
http://doi.org/10.1016/j.ijforecast.2018.02.003
http://doi.org/10.1016/j.petrol.2019.106413
http://doi.org/10.1016/j.egypro.2019.01.169
http://doi.org/10.1016/j.jclepro.2017.03.083
http://doi.org/10.1016/j.aap.2017.11.025
http://www.ncbi.nlm.nih.gov/pubmed/29306687
http://doi.org/10.1016/j.egyr.2021.03.017
http://doi.org/10.1016/j.energy.2019.116723
http://doi.org/10.1016/j.scitotenv.2020.137077
http://doi.org/10.1016/j.scs.2019.101927
http://doi.org/10.1016/j.compag.2017.06.022
http://doi.org/10.1016/j.jtbi.2018.04.025
http://www.ncbi.nlm.nih.gov/pubmed/29678692
http://doi.org/10.1016/j.agrformet.2019.107702
http://doi.org/10.1016/j.mbs.2019.01.009
http://doi.org/10.1016/j.compbiolchem.2020.107200
http://www.ncbi.nlm.nih.gov/pubmed/32058946
http://doi.org/10.1016/j.compag.2020.105530
http://doi.org/10.1016/j.cmpb.2020.105669
http://doi.org/10.1016/j.ecolind.2020.107334
http://doi.org/10.1016/j.neucom.2020.03.100
http://doi.org/10.1016/j.asoc.2020.106758
http://doi.org/10.1016/j.procs.2020.06.071


Sustainability 2021, 13, 12302 18 of 18

42. Zhou, F.; Zhang, Q.; Sornette, D.; Jiang, L. Cascading logistic regression onto gradient boosted decision trees for forecasting and
trading stock indices. Appl. Soft Comput. 2019, 84, 105747. [CrossRef]

43. Zhou, J.; Li, W.; Wang, J.X.; Ding, S.; Xia, C.Y. Default prediction in p2p lending from high-dimensional data based on machine
learning. Phys. A 2019, 534, 122370. [CrossRef]

44. Zhang, H.B.; Zhong, H.; Bai, W.H.; Pan, F. Cross-platform rating prediction method based on review topic. Future Gener. Comput.
Syst. 2019, 101, 236–245. [CrossRef]

45. Deng, S.K.; Wang, C.G.; Wang, M.Y.; Sun, Z. A gradient boosting decision tree approach for insider trading identification: An
empirical model evaluation of china stock market. Appl. Soft Comput. 2019, 83, 105652. [CrossRef]

46. Wang, R.; Lu, S.; Li, Q. Multi-criteria comprehensive study on predictive algorithm of hourly heating energy consumption for
residential buildings. Sustain. Cities Soc. 2019, 49, 101623. [CrossRef]

47. Liu, S.; Zeng, A.; Lau, K.; Ren, C.; Chan, P.; Ng, E. Predicting long-term monthly electricity demand under future climatic and
socioeconomic changes using data-driven methods: A case study of Hong Kong. Sustain. Cities Soc. 2021, 70, 102936. [CrossRef]

48. Zhang, T.N.; He, W.H.; Zheng, H.; Cui, Y.P.; Song, H.Q.; Fu, S.L. Satellite-based ground PM2.5 estimation using a gradient
boosting decision tree. Chemosphere 2021, 268, 128801. [CrossRef] [PubMed]

49. Jiong, G.J.; Ma, S.F.; Peng, B.B.; Zuo, J.; Du, H.B. Exploring the nonlinear and asymmetric influences of built environment on CO2
emission of ride-hailing trips. Environ. Impact Asses. 2021, 92, 106691.

50. Gao, Y.N.; Li, Q.; Wang, S.S.; Gao, J.F. Adaptive neural network based on segmented particle swarm optimization for remote-
sensing estimations of vegetation biomass. Remote Sens. Environ. 2018, 211, 248–260. [CrossRef]

51. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
52. Wang, K.K.; Niu, D.X.; Zhen, H.; Sun, L.J.; Xu, X.M. A Study on Carbon Emission Forecasting in China Based on WOA-ELM

Model. Ecol. Econ. 2020, 36, 20–27.
53. Zhao, F.; Li, W. A combined model based on feature selection and woa for pm2.5 concentration forecasting. Atmosphere 2019, 10,

223. [CrossRef]
54. Zhao, H.R.; Guo, S.; Zhao, H.R. Energy-Related CO2 Emissions Forecasting Using an Improved LSSVM Model Optimized by

Whale Optimization Algorithm. Energies 2017, 10, 874. [CrossRef]
55. Yan, Z.; Sha, J.; Liu, B.; Tian, W.; Lu, J. An ameliorative whale optimization algorithm for multi-objective optimal allocation of

water resources in handan, china. Water 2018, 10, 87. [CrossRef]
56. Yan, S.C.; Wu, L.F.; Fan, J.L.; Zhang, F.C.; Zou, Y.F.; Wu, Y. A novel hybrid WOA-XGB model for estimating daily reference

evapotranspiration using local and external meteorological data: Applications in arid and humid regions of China. Agric. Water
Manag. 2021, 244, 106594. [CrossRef]

57. Yang, S.M.; Chen, D.J.; Li, S.L.; Wang, W.J. Carbon price forecasting based on modified ensemble empirical mode decomposition
and long short-term memory optimized by improved whale optimization algorithm. Sci. Total Environ. 2020, 716, 137117.
[CrossRef]

58. He, Q.; Wei, K.Y.; Xu, Q.S. A whale optimization algorithm based on hybrid policy improvement. Comput. Appl. Res. 2019, 36, 6.
59. Liu, L.; Bai, K.Q.; Dan, Z.H.; Zhang, S.; Liu, Z.G. A whale optimization algorithm for global search strategy. Small Microcomput.

Syst. 2020, 41, 30–35.
60. Lin, J.; He, Q.; Wang, X.; Yang, R.Y.; Ning, J.Q. Chaos-based sine cosine whale optimization algorithm. Intell. Comput. Appl. 2020,

10, 43–48+52.
61. Li, W.K. Design of dynamic encryption scheme for in-vehicle networks based on chaotic mapping. Comput. Eng. Appl. 2017, 53,

2287–2291.
62. Cui, X.W.; E, S.J.; Niu, D.X.; Wang, D.Y.; Li, M.Y. An Improved Forecasting Method and Application of China’s Energy

Consumption under the Carbon Peak Target. Sustainability 2021, 13, 8670. [CrossRef]

http://doi.org/10.1016/j.asoc.2019.105747
http://doi.org/10.1016/j.physa.2019.122370
http://doi.org/10.1016/j.future.2019.06.021
http://doi.org/10.1016/j.asoc.2019.105652
http://doi.org/10.1016/j.scs.2019.101623
http://doi.org/10.1016/j.scs.2021.102936
http://doi.org/10.1016/j.chemosphere.2020.128801
http://www.ncbi.nlm.nih.gov/pubmed/33139054
http://doi.org/10.1016/j.rse.2018.04.026
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.3390/atmos10040223
http://doi.org/10.3390/en10070874
http://doi.org/10.3390/w10010087
http://doi.org/10.1016/j.agwat.2020.106594
http://doi.org/10.1016/j.scitotenv.2020.137117
http://doi.org/10.3390/su13158670

	Introduction 
	Materials and Methods 
	Standard Whale Optimization Algorithm 
	Prey Encirclement Stage 
	Bubble-Net Attack 
	Searching for Prey 

	Modified Whale Optimization Algorithm 
	Composite Chaotic Mapping 
	Non-Linear Convergence Factor 
	Local Neighbourhood Perturbation 
	Reverse Learning Strategy 

	Gradient Boosting Tree 
	MWOA-Based GBDT Prediction Model 

	Experimental Analysis 
	Confirmation of Input Values for the Prediction Model 
	MWOA-GBDT-Based Carbon Emission Forecasting in China 
	Comparison of Prediction Results between Models 

	China’s Carbon Emission Projections for 2020–2035 
	Simulation of Influencing Factors 
	GDP 
	Consumption Level of the Population 
	Total Imports and Exports 
	Industrial Structure 
	Urbanization Rate 
	Total Energy Consumption 

	Forecast Results 

	Conclusions and Recommendations 
	References

