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Abstract: Ensemble learning was adopted to design risk prediction models with the aim of improving
border inspection methods for food imported into Taiwan. Specifically, we constructed a set of
prediction models to enhance the hit rate of non-conforming products, thus strengthening the border
control of food products to safeguard public health. Using five algorithms, we developed models
to provide recommendations for the risk assessment of each imported food batch. The models
were evaluated by constructing a confusion matrix to calculate predictive performance indicators,
including the positive prediction value (PPV), recall, harmonic mean of PPV and recall (F1 score),
and area under the curve. Our results showed that ensemble learning achieved better and more
stable prediction results than any single algorithm. When the results of comparable data periods were
examined, the non-conformity hit rate was found to increase significantly after online implementation
of the ensemble learning models, indicating that ensemble learning was effective at risk prediction.
In addition to enhancing the inspection hit rate of non-conforming food, the results of this study can
serve as a reference for the improvement of existing random inspection methods, thus strengthening
capabilities in food risk management.
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1. Introduction

The diversity of food and its raw materials profoundly affects food safety, and the
increasing liberalization of the global economy has led to a commensurate rise in food
importation, thus highlighting the importance of food risk management in safeguarding
the health of consumers. Prediction and early warning are paramount to food safety;
in particular, the inspection of food prior to its entry into the consumer market is an
extremely important measure for ensuring food quality. However, with the exception of
practical applications in the United States (US) and the European Union (EU), there is little
research on the use of proactive inspections for high-risk food prediction as part of the
border control of imported food in various countries. If government agencies are capable
of detecting food with quality concerns through inspections, the entry of such products
into the consumer market can be prevented to ensure food safety.

In recent years, many countries have attempted to combine big data with machine
learning techniques to strengthen existing management methods to ensure food safety.
For instance, in 2015, Bouzembrak and Marvin [1] proposed a Bayesian network (BN)
model based on adulteration/fraud notifications reported in the Rapid Alert System for
Food and Feed (RASFF) operated by the European Commission. The BN model is capable
of predicting the expected food fraud type for imported products of which the product
category and country of origin are known, which can serve as a key reference for enforce-
ment activities in EU countries. With the model developed by Bouzembrak and Marvin,
risk managers/controllers at border inspection posts can decide on the necessary checks for
at-risk products to prevent food-related hazards [1,2]. Because of the continuous increase
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in the volume of imported food and limited inspection capacity in the United States, the US
government adopted the Predictive Risk-based Evaluation for Dynamic Import Compli-
ance Targeting (PREDICT) tool to predict the risk of imported food. PREDICT employs
and analyzes big data mainly obtained from relevant product and vendor information to
determine the risk level of imported food, making recommendations for random product
inspections on the basis of its analysis results [3].

Data mining and machine learning are used to aid in the border inspection of im-
ported food in the United States and the European Union; consequently, it is evident that
information technology techniques can improve food risk management and control models.
Therefore, the present study aimed to employ ensemble learning to construct models for
food quality inspections. It is hoped that the implementation of optimum imported-food
risk-prediction models aimed at blocking the entry of at-risk products can contribute to
effective border control of food, thus ensuring food safety and protecting public health.

2. Literature Review
2.1. Machine Learning and Ensemble Learning

Machine learning, a major branch of artificial intelligence, differs from traditional
programming. It involves the processing and learning of a vast quantity of data, followed
by model construction by inductive reasoning to solve problems. Ensemble learning is
a machine learning method that combines the prediction results of several models by
establishing a set of independent machine learning models.

Ensemble learning, a key area of machine learning, is used for classification because
it can enhance the overall classification performance by combining the advantages of
different classifiers. Wolpert et al. [4] asserted that a single classifier cannot achieve
optimum modeling for all pattern identification problems because each classifier has
its own domain of competence. Pagano et al. [5] also reported that combinations of
multiple diverse classifiers can effectively enhance the overall classification accuracy of
classification systems.

There is a need to seek the best machine learning method that increases the effective-
ness of machine-learning prediction methods for food inspections at the border. Many
difficult or important decisions are usually made after consulting experts from different
disciplines to reduce the probability of making a single erroneous inference; ensemble learn-
ing operates on a similar concept to reduce the overall risk of inference errors. Therefore,
we adopted an approach based on ensemble learning, which can aid in the implementation
of this study.

2.2. Advantages of Ensemble Learning

The provision of adequate generalization is recognized as an advantage of current
ensemble learning methods, which enables the application of models to resolve different
prediction problems in various fields. This is also a key requirement of strong predictive
tools [6]. In addition to reducing the risk of inference errors, ensemble learning has four
advantages in the practical application of classification:

1. Ability to process a large training dataset. When there is a large amount of data in the
training dataset, using a single classification algorithm to train classification models
may result in training processes that are inefficient and time consuming. Using an
ensemble learning method, a large training dataset can be divided into multiple
training data subsets, which can be separately trained using classification algorithms
to produce different classification models. The outputs of these classification models
can then be combined to obtain the overall inference.

2. Allows processing of imbalanced data. During classification model training, an ex-
cessively small number of instances in minority classes often causes data imbalance,
which creates biases and ultimately results in misclassification. Resampling can be
performed to increase the number of instances in these minority classes, although
this creates different balanced datasets, which can be trained separately using classifi-
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cation algorithms to produce different classification models. Alternatively, different
classification algorithms can be used to establish classification models with greater
diversity, and larger weights can be assigned to minority classes. Moreover, the pre-
diction results of the aforementioned classification models can be combined using
an ensemble learning method to reduce the effects of data imbalance and enhance
classification performance for minority classes.

3. Enhancement of linear classification model performance. Nonlinear classification
problems cannot be effectively solved using linear classification learning algorithms.
With ensemble learning methods, multiple linear classification models can be com-
bined to obtain nonlinear decision boundaries between samples of different classes.

4. Enables fusion of heterogenous data. Ensemble learning can be used to fuse het-
erogeneous datasets and characteristic data. In the present study, random quality
inspections were performed on each batch of imported food products with the aim
of predicting quality conformity or non-conformity using the data of each selected
declared batch of products. The dataset of each batch contains highly diverse data,
including basic vendor data, records of non-conformity during previous inspections,
previous imported items, basic data of manufacturers at the source of imported items,
non-conformities during post-market inspections in Taiwan, and international prod-
uct recall alerts; the various datasets also contain different characteristics. Therefore,
when inspections are performed on batches in which non-conformity is more likely to
occur, it is not possible to achieve direct training of classification models based on the
aforementioned heterogeneous datasets and characteristics information. To address
this issue, we separately trained individual classification models and subsequently
combined the models using ensemble learning to obtain the overall inference result.

2.3. Principles of Ensemble Learning

The concept of ensemble learning was first proposed by Dasarathy and Sheela in 1979,
who proposed the use of two or more classifiers to partition the feature space [7]. In 1990,
Hansen and Salamon [8] found that an ensemble of similarly configured neural networks
achieved better accuracy than a single neural network. The main principle behind ensemble
learning is the reduction in the risk of inference errors arising from a single classification
model. Although the various classification models used in ensemble learning have similar
training performances and provide comparable accuracies, they also possess different
generalization capacities, i.e., different inferential abilities toward different samples, similar
to the opinions of different experts. The outputs of these individual classification models
are ultimately merged to produce the final classification results, which significantly reduces
the probability of misclassification. Polikar [9] noted that combining the different inference
results of various classification models in ensemble learning may not necessarily provide
a better classification than using the best individual classifier in the ensemble. However,
there is a substantially high probability that ensemble learning reduces the risk of making
a particularly poor selection and increases the overall classification prediction stability.

Suganyadevi et al. [10], Wang et al. [11], and Wang and Sonoussi [12] held the view that
classification models should be as diverse as possible to achieve good ensemble learning
effects, mainly because ensemble learning assumes that each classification model has a
certain level of accuracy, and greater diversity among the various classification models
in the ensemble system leads to greater dissimilarities in the samples misclassified by
the models. Therefore, the probability that a certain sample is misclassified by both a
single classification model and other classification models is considerably reduced. In other
words, the constructed ensemble system has a greater likelihood of correctly classifying
samples that have been previously misclassified.

Four key methods have been proposed to enhance the diversity of classification
models used in ensemble learning: (1) using different training datasets, (2) adopting
different parameter settings for various classification models, (3) using different algorithms



Sustainability 2021, 13, 12291 4 of 26

to train different classification models, and (4) using different features for classification
model training [9,13,14].

2.4. Applications of Ensemble Learning in Food Management

In recent years, ensemble learning methods have been widely applied in the food
industry, such as production capacity improvement, quality measurement and monitor-
ing, and component identification. For instance, Feng et al. [15] developed an ensemble
learning system that combined three types of widely used classifiers, namely, random
forest (RF), support vector regression (SVR), and K-nearest neighbors (KNN), to predict
in-season alfalfa yield from unmanned aerial vehicle (UAV) -acquired hyperspectral images.
Parastar et al. [16] combined portable, handheld near-infrared (NIR) spectroscopy with
ensemble machine learning algorithms for the measurement and monitoring of authenticity
in chicken meat. In authenticity identification, the proposed method performed signifi-
cantly better than single classification methods, such as partial least squares-discriminant
analysis (PLS-DA), artificial neural network (ANN), and support vector machine (SVM).
Neto et al. [17] applied deep learning and ensemble machine learning techniques to milk
spectral data to predict common fraudulent milk adulterations that occur in the dairy
industry. The proposed method outperformed both common single learning algorithms
and Fourier-transform infrared spectroscopy (FTIR), which is a common technique used to
determine sample composition in the dairy industry. A considerable amount of research
effort in recent years has been dedicated to the utilization of ensemble learning methods
for food safety. However, there is a severe lack of studies on the successful identification of
non-conforming food via inspection and the application of ensemble learning to the data of
border inspections, which are characterized by dynamic changes and involve large import
quantities. In the present study, we employed ensemble learning techniques to construct
food-quality risk-prediction models aimed at preventing the entry of non-conforming food
into the market, thus contributing to effective border control and food safety management.

2.5. Bagging (Bootstrap Aggregating) Classification

Bagging (bootstrap aggregating) is a machine learning ensemble algorithm first pro-
posed by Breiman in 1994 [18]. With the bagging algorithm, the original training dataset is
divided into multiple training data subsets (bootstrapped datasets), which are individually
used to train a classifier. The prediction results generated by the multiple classifiers are
then aggregated by voting to obtain the final classification results (Figure 1). In other
words, in bagging, multiple predictors are trained using the same algorithm and the final
ensemble model is produced using a non-weighting method.
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Bagging has been used to solve classification problems in various fields. For instance,
Lin [19] established an ensemble model to predict the credit rating of listed companies;
the average misclassification rate for the bagging model was 24.9%, which was a significant
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improvement of 25.75% compared to the performance of a single classifier neural network
model. Tang et al. [20] established a model to predict traffic congestion and achieved
an overall prediction accuracy of up to 90.6% when the bagging algorithm was run for
10 iterations, demonstrating that bagging provided significantly better predictions than
a single model. Furthermore, Hsieh [21] used patient discharge summaries to determine
International Classification of Diseases (ICD) codes and adopted a bagging approach to
enhance the accuracy of Bayesian classification; notably, a classification accuracy of up
to 83.12% was achieved with bagging, which was 2% higher than that of the original
Bayesian classification method. Mbogning and Broet [22] developed a bagging survival
tree procedure using genomic data for variable selection and prediction with datasets
containing non-susceptible patients; this procedure achieved satisfactory results with
datasets containing the data of patients with early-stage breast carcinoma. Bagging can
be considered a characteristic of random forests (RFs) in which the final prediction is
obtained by averaging the predictions of individual trees. Kieu et al. [23] developed an
ensemble learning framework that used binary voting (yes/no) to obtain the majority
vote of classifiers for the prediction of customer booking behavior and demand using the
observed data of a suburban on-demand transport service. The developed framework
provided a better prediction accuracy than traditional supervised classification methods,
such as logistic regression (LR), RF, SVM, and other ensemble techniques. Mosavi et al. [24]
developed a novel prediction system to estimate groundwater potential more accurately
for informed groundwater resource management to address the rapidly increasing de-
mand for groundwater, which is a principal freshwater resource. The bagging models
(i.e., RF and Bagged CART) performed better than the boosting models (i.e., AdaBoost
and GamBoost). Importantly, the prediction results of the study may aid managers and
policymakers in watershed and aquifer management to preserve and optimally exploit
important freshwater resources.

Considering that the models developed in this study require algorithmic explainability
and the ability to process imbalanced samples, we selected five algorithms for ensemble
learning: LR (logistic regression algorithm), classification and regression trees (CART),
C5.0 and naive Bayes (decision tree algorithms), and RF (ensemble learning algorithm).
These machine learning classification algorithms are supervised learning methods that
can make output predictions based on functions when given new data. Among the data
mining methods commonly used in recent years, ensemble learning algorithms, which com-
bine multiple machine learning classifiers, are the most widely applied in various fields.
From the literature described above, it is apparent that bagging-based models provide
better predictive performance than non-bagging-based models. Therefore, we adopted the
bagging RF algorithm proposed by Mbogning and Broet [22] to enhance the predictive
ability of our models. We also implemented a majority voting ensemble learning method
based on LR and RF, as described by Kieu et al. [23], and RF and Bagged CART, as described
by Mosavi et al. [24].

3. Materials and Methods
3.1. Data Sources and Tools

The main data sources of this study were data from border food inspections conducted
in Taiwan, food inspection data, food product flow data, food product inspection and test
data, business registration data, and food safety-related open databases around the world,
including the gross domestic product (GDP), GDP growth rate, Global Food Security Index
(GFSI), Corruption Perceptions Index (CPI), Human Development Index (HDI), Legal
Rights Index (LRI), and Regional Political Risk Index (PRI) (Table 1), which provided a
total of 125 different factors. Data analysis was performed using Tableau 2019.2, R 3.5.3,
and Microsoft Excel 2010.
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Table 1. Type and sources of characteristic factors.

Type Factors

Data Sources

Taiwan Food Cloud Information on International Public
Opinion and Product Recall Alerts

Product

Value, net weight, inspection methods,
blacklisted products, packaging methods,

validity period, products for which
international recall alerts have been issued,

manufacturing date, expiry date, etc.

Data of
border inspections

Product inspection and
testing data

Product alerts

United States Food and Drug
Administration (US FDA)

https://www.fda.gov
Food Safety and Inspection Service

(FSIS) of the US Department of
Agriculture (USDA)

https://www.fsis.usda.gov
Rapid Alert System for Food and

Feed (RASFF) of the European Union
https://ec.europa.eu/food/safety/

rasff_en
Canadian Food Inspection Agency

(CFIA) http://inspection.gc.ca
Food Standards Agency (FSA) of the

United Kingdom
https://www.food.gov.uk

Food Safety Authority of Ireland
(FSAI) https://www.fsai.ie
Food Standards Australia

New Zealand (FSANZ)
http://www.foodstandards.gov.au
Consumer Affairs Agency (CAA)

of Japan
https://www.recall.caa.go.jp
Singapore Food Agency (SFA)

https://www.sfa.gov.sg
China Food and Drug Administration

(CFDA) http://gkml.samr.gov.cn
Foodmate Network of China
http://news.foodmate.net

Centre for Food Safety (CFS) of Hong
Kong http://www.cfs.gov.hk

Border
inspection

Transportation time, month of inspection,
quarter of inspection, year of inspection,

method of transportation, agent importation,
re-exportation, customs district, etc.

Management data of
border inspections Nil

Customs
broker

Number of declarations filed, number of
border inspection cancellations, number of
days from the previous importation, rate of

change of number of days taken for
importation, number of cases of

non-conforming labels and external
appearances, number of batches forfeited or
returned, number of inspections, number of

failed inspections, number of failed
document reviews, number of product

classes, etc.

Food company
registration data

Data of
border inspections
Business registra-

tion data

Nil

https://www.fda.gov
https://www.fsis.usda.gov
https://ec.europa.eu/food/safety/rasff_en
https://ec.europa.eu/food/safety/rasff_en
http://inspection.gc.ca
https://www.food.gov.uk
https://www.fsai.ie
http://www.foodstandards.gov.au
https://www.recall.caa.go.jp
https://www.sfa.gov.sg
http://gkml.samr.gov.cn
http://news.foodmate.net
http://www.cfs.gov.hk
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Table 1. Cont.

Type Factors

Data Sources

Taiwan Food Cloud Information on International Public
Opinion and Product Recall Alerts

Importer

Capital, years of establishment, number of
branches, number of downstream vendors,
number of company registration changes,

number of late deliveries, sole focus on
importation (yes/no), number of lines of

businesses, new company (yes/no), district
of registration, branch company (yes/no),
blacklisted importer (yes/no), county/city,
number of preliminary inspections, GHP

inspections, HACCP inspections, label
inspections, product inspections, number of
lines of food businesses, factory registration

(yes/no), delayed declaration of goods
receipt/delivery (yes/no), interval between

importations, variations in the interval
between importations, variations in the
number of days taken for importation,

variations in total net weight, number of
declarations filed, number of cases of

non-conforming Chinese labels and external
appearances, value, net weight, number of
non-releases, number of batches detained,

forfeited or returned, number of failed
inspections, number of inspections, number

of failed document reviews, number of
border inspection cancellations, number of

manufacturers, number of product classes for
which declarations have been filed, total

number of classes, etc.

Food company
registration data
Data of border

inspections
Product inspection and

testing data
Product flow data
Business registra-

tion data

Nil

Manufacturer

Trademarks, interval between importations,
rate of change of interval between

importations, internationally alerted
manufacturer (yes/no), internationally

alerted brand (yes/no), number of cases of
non-conforming Chinese labels and external

appearances, number of batches detained,
forfeited or returned, number of failed

inspections, number of inspections, number
of failed document reviews, number of

declarations filed, number of border
inspection cancellations, number of

importers, number of product classes, etc.

Food company
registration data
Data of border

inspections
Product inspection and

testing data
Product alerts

USFDA
https://www.fda.gov

FSIS
https://www.fsis.usda.gov

CFIA
http://inspection.gc.ca

FSA
https://www.food.gov.uk

RASFF
https://ec.europa.eu/food/safety/

rasff_en
FSAI

https://www.fsai.ie
FSANZ

http://www.foodstandards.gov.au
CAA

https://www.recall.caa.go.jp
SFA

https://www.sfa.gov.sg
CFDA

http://gkml.samr.gov.cn
Foodmate Network of China
http://news.foodmate.net

CFS
http://www.cfs.gov.hk

https://www.fda.gov
https://www.fsis.usda.gov
http://inspection.gc.ca
https://www.food.gov.uk
https://ec.europa.eu/food/safety/rasff_en
https://ec.europa.eu/food/safety/rasff_en
https://www.fsai.ie
http://www.foodstandards.gov.au
https://www.recall.caa.go.jp
https://www.sfa.gov.sg
http://gkml.samr.gov.cn
http://news.foodmate.net
http://www.cfs.gov.hk
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Table 1. Cont.

Type Factors

Data Sources

Taiwan Food Cloud Information on International Public
Opinion and Product Recall Alerts

Country of
manufacture

Country of manufacture of products
subjected to inspection

Data of border
inspections Nil

GDP, economic growth rate, GFSI, CPI, HDI,
LRI, regional PRI Nil

https://data.oecd.org/gdp/gross-
domestic-product-gdp.htm

https://www.imf.org/en/Publications
https://foodsecurityindex.eiu.com/
https://www.transparency.org/en/

cpi/2020/index/nzl
http://hdr.undp.org/en/2020-report

https://data.worldbank.org/
indicator/IC.LGL.CRED.XQ
https://www.prsgroup.com/
regional-political-risk-index/

3.2. Study Process

The top three product classes (named A, B, and C) with the highest non-conformity
hit rates in the historical data of border inspections were selected as the scope for data
modeling and predictions in the present study. Using data from border food inspections,
risk prediction models were constructed using ensemble learning to serve as reference for
the establishment of risk prediction models for random border inspections of imported
food. The study process can be divided into four stages: data collection, data integration
and preprocessing, construction of risk prediction models, and evaluation of predictive
performance. Figure 2 shows a flowchart of the study process.
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3.2.1. Data Collection

In the present study, product classes A, B, and C in border inspections were set as the
targets of our analysis. In addition to using product-oriented data, such as data related
to border inspections, products, manufacturers, customs brokers, and importers, we also
included the inspection and test results of manufacturers and products and the open data of
other countries in our analysis through factor connections as part of the main data sources
for the construction of risk prediction models. A total of 125 factors were included in the
analysis, as shown in Table 1.

3.2.2. Data Integration and Preprocessing

Missing values are often present in the data of many characteristic factors in various
datasets. Data preprocessing is necessary as relationships may exist among the factors,
but the arbitrary deletion of factor data may result in the partial loss of information and data,
which affects the model prediction results. However, the retention of complete factor data
may also lead to poorer predictive performance because of model overfitting. Considering
the inability of most models to deal with missing values, we substituted the missing
values with the average values in this study. The data integration and preprocessing
stage of the study involved two main work processes: (1) Establishment of consistent
linkage names for food products and vendors. The purpose of this process was to ensure
the smooth execution of the subsequent database connection and analysis steps. Factors
were sorted on the basis of individual border inspections and various data to establish
consistent linkage names, which were used to connect the various databases to generate
the datasets required for modeling. (2) Data cleaning for noise removal. Missing data
were substituted to ensure the representativeness and accuracy of the data to be analyzed.
The main purpose of this stage was to resolve difficulties in data identification because
of a lack of standardized data formats, which rendered these data unusable. Examples of
noise in the data included punctuation marks, special symbols, and missing or mismatched
characters. Inconsistencies in product and vendor name formats in the data were also
resolved by data cleaning to reduce the amount of noise in the data.

3.2.3. Construction of Risk Prediction Models
Risk Characteristic Factor Selection

The integrated and preprocessed data were subjected to a two-stage variable screening
process in which risk characteristic factors were selected for inclusion in model construc-
tion. During the first stage, single-factor analysis was performed to identify factors that
had statistically significant relationships with conformity or non-conformity during in-
spections and exhibited statistically significant differences. Different statistical tests were
adopted depending on the variable type; categorical variables, such as customs district,
year and month of border inspection, import and export methods, and country of manu-
facture, were analyzed using Fisher’s exact test, and continuous variables, such as GDP,
duty-paid value in New Taiwan dollars, registered capital of vendor, and transportation
time, were analyzed using the Wilcoxon rank-sum test. During the second stage, step-
wise regression was performed to select risk factors with higher explanatory power for
model simplification. As the purpose of this stage was to gather factors with significant
influences from the previous stage for the efficient selection of optimum factor combina-
tions, we adopted forward-backward stepwise regression for factor selection in the second
stage. First, a single-factor LR was established, and F-values were determined for the
corresponding regression coefficients (a larger F-value indicates that the factor has a higher
explanatory power for the model). In the forward stepwise regression process, all factors
that had not been included in the model were individually evaluated by calculating the
F-values, and factors with the largest F-values were subsequently selected for inclusion in
the model. The backward stepwise regression process involved the calculation of F-values
for all factors that had already been included in the model, followed by deletion of vari-
ables with the smallest F-values. In the forward-backward stepwise regression method
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employed in the present study, which combined the features of the two aforementioned
methods, forward and backward stepwise regressions were performed in alternation to
achieve efficient determination of the optimum factor combinations. For variables with
statistical significance (p < 0.05), stepwise regression was subsequently performed to serve
as a basis for variable screening.

Splitting of Data into Training, Validation, and Test Datasets

To obtain optimum models, perform model validation, and evaluate model perfor-
mance, the study data were split by year into the training (2011–2017), validation (2018),
and test (2019) datasets prior to modeling (Figure 3). After the risk models were constructed,
we divided the historical data used for modeling into test, training, and validation datasets,
followed by oversampling to address data imbalance in the training dataset. The main
purpose of resampling was to enhance the discriminatory ability of the model rather than
to learn erroneous samples. If sampling is performed before data splitting, the resultant
data of the test dataset will deviate from the original data. Consequently, noise in the data
will be learned by the model, which will cause deviations in model predictions.
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Data Mining and Modeling

Six data/resampling method combinations were established: the training dataset was
classified by year into short-term (2016–2017) and long-term (2011–2017) data, blacklisted
vendors were classified into inclusion or non-inclusion groups, and different resampling
methods were used to process imbalanced data (scale-up and synthetic minority over-
sampling technique (SMOTE)). Five data mining methods, namely, Bagging-C5.0, Bagging-
CART, Bagging-BN, Bagging-RF, and Bagging-Logistic, were used for classifier construction.
Iterative modeling was then performed for 10 iterations, and the average values were used
for model construction. During model building with the training dataset, the characteristic
factors to be included in the model were identified simultaneously.

Resampling for Training Dataset

Model prediction biases were likely because cases of product non-conformity only
accounted for a small portion of the border inspection results. Therefore, oversampling was
adopted in this study to achieve a conformity:non-conformity ratio close to 7:3. Two over-
sampling methods were utilized: scaling up the number of non-conformities and SMOTE.
The latter approach involves the generation of new samples by interpolating between adja-
cent minority class samples to increase the proportion of non-conforming samples, thereby
enhancing the model detection ability. In the present study, the effects of oversampling on
model performance were evaluated using conformity:non-conformity ratios of 7:3, 6:4, 5:5,
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4:6, and 3:7 achieved with SMOTE and 7:3 achieved with scaling. Our modeling results
using the test dataset indicated that 7:3 was the optimum ratio.

Iterative Modeling

After resampling to obtain balanced data in the training dataset, iterative modeling
was performed for 10 iterations to reduce misclassifications caused by single sampling
errors. The results of each validation were saved, and the average values were ultimately
calculated to serve as model selection criteria under different parameter conditions.

Selection of Optimum Model

In the present study, to select the optimum model and evaluate model performance,
model effects were measured and validated using a confusion matrix and model predictive
performance indicators. A confusion matrix was constructed using the entries defined
in Table 2, and the required predictive performance indicators were calculated using the
numbers of true positives (TP), false positives (FP), true negatives (TN), and false negatives
(FN). Predictive performance indicators included accuracy (ACR), positive predictive value
(PPV) (also known as precision), Recall, F1 score, and area under curve (AUC), which are
described in detail below.

1. The accuracy rate (ACR) measures the overall discriminatory power of the model
toward samples, i.e., the ability to classify conforming samples as conforming and
non-conforming samples as non-conforming. However, an imbalance was present in
the samples of the present study because of the smaller number of non-conformities in
our data. Therefore, ACR may reflect a tendency toward the prediction of conformities
because of the stronger discriminatory power toward conformity. To address this
issue, greater emphasis was placed on Recall and PPV during the evaluation of model
performance. ACR was calculated using Equation (1):

ACR = (TP + TN) / (TP + TN + FP + FN) (1)

2. Recall or sensitivity is the proportion of samples correctly classified as non-conforming
among all the samples that are actually non-conforming, as shown in Equation (2):

Recall = TP / (FN + TP) (2)

3. Positive predictive value (PPV) or precision is the proportion of samples that are
actually non-conforming among all the samples classified as non-conforming by the
model, i.e., the non-conformity hit rate. PPV was calculated using Equation (3):

PPV = TP / (TP + FP) (3)

4. F1 score, defined as the harmonic mean of Recall and PPV, is particularly important
when working with imbalanced data. In the present study, model performance was
estimated using the F1 score by assuming that the PPV and F1 thresholds were 0.5,
i.e., equal weights were assigned. Larger F1 scores are indicative of higher TP values.
The F1 score was calculated using Equation (4):

F1 = 2(PPV × Recall) / (PPV + Recall) = 2TP / (2TP + FP + FN) (4)

5. Area under the receiver operating characteristics (ROC) curve (AUC) is a measure
of the classification accuracy of the model; a larger AUC indicates higher accuracy.
AUC = 1 denotes a perfect classifier, 0.5 < AUC < 1 indicates that the model is superior
to random guessing, AUC = 0.5 indicates that the model is comparable to random
guessing and does not possess classification ability, and AUC < 0.5 denotes a classifier
inferior to random guessing.
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Table 2. Definitions of entry types in the confusion matrix of this study.

Entry Type Definition

True Positive (TP)
Predicted border inspection result for the product batch by

model classification: non-conforming; actual inspection
result: non-conforming

False Positive (FP)
Predicted border inspection result for the product batch by

model classification: non-conforming; actual inspection
result: conforming

True Negative (TN)
Predicted border inspection result for the product batch by

model classification: conforming; actual inspection
result: conforming

False Negative (FN)
Predicted border inspection result for the product batch by

model classification: conforming; actual inspection
result: non-conforming

After iterative modeling, the 2018 data in the validation dataset were used for pre-
diction by the established models, and the optimum model was selected according to the
values of predictive performance indicators used for model evaluation. In the present study,
we used a confusion matrix to evaluate the classification prediction results and model pre-
dictive performance. The classification prediction results were first calculated, and models
with AUC > 0.5 were then selected for comprehensive evaluation. As the present study
was mainly focused on the non-conformity hit rate, PPV (i.e., the proportion of samples
that are actually non-conforming among all the samples classified as non-conforming by
the model) was used as the key indicator for model evaluation. Recall (sensitivity) was
also used to evaluate the accuracy of the model in correctly classifying non-conforming
samples. However, higher Recall values also indicate higher inspection rates. Therefore,
an increase in PPV to achieve a balance between Recall and PPV within a tolerable range of
inspection rates is crucial for the determination of predictive performance.

3.2.4. Evaluation of Predictive Performance

To determine the predictive performance of the model, model predictions were made
using the 2019 data of the test dataset to simulate predictions when the model was im-
plemented online. Similar to the process used to select the optimum prediction model,
a confusion matrix was also used for the evaluation of predictive performance, with PPV
and Recall as the evaluation indicators. Both the non-conformity hit rate and inspection
rate were calculated and compared with the values of the previous year. To evaluate the
overall model predictive performance, the presence or absence of significant changes in the
non-conformity hit rate and inspection rate were determined using the chi-squared test.

4. Results
4.1. Processing Methods for Imbalanced Samples and Optimum Conformity: Non-Conformity Ratio

The scarcity of non-conformities in the present study made it necessary to adopt
measures to increase the number of minority samples. Scaling up is conventionally used
because of its simple working principle, which merely involves scaling up the data of
minority classes to achieve the desired ratio. In the present study, scaling was performed
to reach a conformity:non-conformity ratio of 7:3, a ratio adopted during modeling with
the training dataset. Synthesized minority oversampling technique (SMOTE), another
approach used to increase the number of minority samples, is commonly implemented
in a number of ways: resampling of minority samples, sampling by certain distribution
methods, or artificial synthesis of samples. In the present study, the minority class was
oversampled by synthesizing new samples near the existing minority samples using the
following procedure:
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1. Set a value for the required amount of oversampling (N), which represents the number
of samples to be synthesized for each sample.

2. Set a value for the number of nearest neighbors to be considered (K), determine the K
nearest neighbors, and randomly select one sample from these K neighboring samples.

3. Generate N samples using Equation (5):

xnew = xchosen + (xnearest − xchosen)× δ; δ ∈ [0, 1] (5)

A minority sample was first randomly selected, and its K nearest neighbors was
identified (if K was set to 3, the 3 nearest neighbors were identified). From these neighboring
samples, one was randomly selected for the synthesis of N new samples using Equation (5)
(if N was set to 3, the randomly selected sample was used to generate 3 samples).

The modeling process consisted of two stages. In the first stage, the characteristic
factors were identified, and in the second stage, imbalanced samples in the overall data
were processed. We adopted the commonly used scaling up method and SMOTE to
determine the most appropriate processing method for data imbalance and the optimum
conformity:non-conformity ratio to be used for further experimentation. Five ratios (7:3, 6:4,
5:5, 4:6, and 3:7) were selected for 10 iterations of modeling using five types of algorithms
combined with bagging. The average results of each model were used for majority voting
ensemble learning to generate the classification results, and the predictive performance
was evaluated by comparing PPV, Recall, and F1 score for the various imbalanced data
processing methods and selected ratios.

Table 3 shows a comparison of the results obtained using different sampling ratios for
minority samples when ensemble learning was performed on the training dataset compris-
ing data from border inspections of food products belonging to classes A, B, and C. Because
higher PPV and F1 scores indicate better predictive performance, it follows that a sampling
ratio of 7:3 provided the best results for products of classes A, B, and C; the corresponding
values of the performance measures were (1) class A: PPV = 25.08%, Recall = 65.25%,
F1 score = 0.3624; (2) class B: PPV = 2.24%, Recall = 88.64%, F1 score = 0.0437; and (3) class
C: PPV = 7.25%, Recall = 65.73%, F1 score = 0.1307.

Table 3. Comparison of model predictive performances for different resampling methods and ratios adopted for imbalanced
data processing.

Resampling Method and Ratio * Adopted
for Processing Imbalanced Data

Class A Class B Class C
PPV Recall F1 PPV Recall F1 PPV Recall F1

SMOTE 7:3 25.08% 65.25% 0.3624 2.24% 88.64% 0.0437 7.25% 65.73% 0.1307
SMOTE 6:4 24.28% 71.19% 0.3621 1.92% 100.00% 0.0376 6.35% 71.35% 0.1166
SMOTE 5:5 22.92% 74.58% 0.3506 1.82% 100.00% 0.0357 5.75% 74.16% 0.1067
SMOTE 4:6 20.43% 79.66% 0.3253 1.49% 100.00% 0.0293 5.26% 79.21% 0.0986
SMOTE 3:7 18.82% 83.90% 0.3075 1.40% 100.00% 0.0276 4.74% 84.27% 0.0898
Scale-up 7:3 15.48% 95.76% 0.2665 2.07% 81.82% 0.0405 3.60% 93.82% 0.0693

* conformity:non-conformity ratio.

When calculations were performed with the different methods and ratios adopted
for processing imbalanced data, namely, “Scale-up 7:3,” “SMOTE 7:3,” “SMOTE 6:4,”
“SMOTE 5:5,” “SMOTE 4:6,” “SMOTE 3:7,” and the methods and ratios were ranked
in ascending order of the sum of the results, it was found that 7:3 was the optimum
ratio. Considering that this ratio also provided the highest F1 scores in the three product
classes, we adopted 7:3 as the parameter value for the conformity:non-conformity ratio for
subsequent experimentation. Both scale-up and SMOTE were jointly used for modeling to
determine the optimum model.

4.2. Optimum Number of Modeling Iterations

The timeliness of modeling is of great importance to the practical operation of the
prediction model, as it directly affects the length of time required for first-line personnel to
judge whether a food product is risky and whether it requires quality inspection. Although
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a larger number of iterations allows for more comprehensive considerations in the overall
model, an excessive number of iterations also affects the time required for modeling opera-
tion, thereby reducing the predictive performance. In the present study, we found that the
results obtained with 10 iterations were comparable to those obtained with 100 iterations,
but the time required for 100 iterations was 3–8 times that of 10 iterations. To ensure
that adequate iterations were used, the optimum number of modeling iterations was set
to 10 for the five types of algorithms, and the values obtained from the iterations were
averaged to serve as the final prediction results of each model.

4.3. Optimum Prediction Model

To establish the optimum risk prediction model, a total of six combinations of short-
/long-term training data, inclusion/non-inclusion of blacklisted vendors, and different
minority resampling methods were established to generate different characteristic factor
screening results, as shown in Table 4. Modeling was then performed with each of the
data/resampling method combinations using the five algorithms, namely, Bagging-Logistic,
Bagging-CART, Bagging-C5.0, Bagging-NB (Bayesian classification), and Bagging-RF. Sub-
sequently, the models were run with the validation dataset, and the prediction results of
the five methods were further subjected to majority voting ensemble learning. A proba-
bility threshold value of 0.5 was set for the five types of algorithms, i.e., inspection was
recommended when probability > 0.5 and not recommended when probability < 0.5. When
a certain batch of customs declarations was classified as non-conforming by three or more
of the five methods, the model recommended inspection, and the prediction results of
ensemble learning were obtained.

Table 4. Data/resampling method combinations for the risk prediction models.

Combination No. Data Interval (year) Inclusion/Non-Inclusion of
Blacklisted Vendors

Resampling Method for
Data Imbalance *

I 2011–2017 Non-inclusion Scale-up
II 2011–2017 Non-inclusion SMOTE
III 2011–2017 Inclusion Scale-up
IV 2011–2017 Inclusion SMOTE
V 2016–2017 Inclusion Scale-up
VI 2016–2017 Inclusion SMOTE

* conformity:non-conformity ratio = 7:3.

Among the various data/resampling method combinations, the combinations of
2016–2017 data/non-inclusion of blacklisted vendors/SMOTE and 2016–2017 data/non-
inclusion of blacklisted vendors/scale-up were not included for modeling, as there were
fewer data on blacklisted vendors in the 2016–2017 dataset. Given that there were also few
non-conforming batches during this interval, the importance of blacklisted vendors as a
factor was further diminished. Therefore, these two data/resampling method combinations
were eliminated because of their limited contribution to model prediction.

4.3.1. Optimum Data Combinations

The six data/resampling combinations mentioned above were used for ensemble
learning, and modeling was subsequently performed after majority voting. The modeling
results were validated using the validation dataset (2018 data) to determine the optimum
data/resampling combinations (Table 5). For each food product class, the optimum combi-
nation was as follows:

1. The optimum combination for class A was Scale-up/2011–2017 data/inclusion of
blacklisted vendors, and the values of the predictive performance indicators were
ACR = 86.6%, F1 score = 48.0%, PPV = 55.3%, and Recall = 42.4%.

2. The optimum combination for class B was SMOTE/2011–2017 data/inclusion of
blacklisted vendors, and the values of the predictive performance indicators were
ACR = 93.9%, F1 score = 18.5%, PPV = 11.4%, and Recall = 48.0%.
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3. The optimum combination for class C was Scale-up/2011–2017 data/inclusion of
blacklisted vendors, and the values of the predictive performance indicators were
ACR = 94.4%, F1 score = 22.0%, PPV = 24.5%, and Recall = 19.9%.

Table 5. Evaluation of various data/resampling method combinations.

Dataset Product
Class

Data/Resampling
Method Combination ACR Recall PPV NPV F1 AUC TN FP TP FN

Validation
dataset

A

P_11_non-inclusion 83.2% 36.4% 41.4% 89.3% 38.7% 74.7% 528 51 36 63
P_11_inclusion 86.6% 42.4% 55.3% 90.5% 48.0% 78.3% 545 34 42 57
P_16_inclusion 85.0% 25.3% 47.2% 88.2% 32.9% 76.7% 551 28 25 74

S_11_non-inclusion 82.3% 44.4% 40.4% 90.3% 42.3% 74.1% 514 65 44 55
S_11_ inclusion 84.8% 39.4% 47.6% 89.9% 43.1% 76.6% 536 43 39 60
S_16_ inclusion 83.9% 44.4% 44.9% 90.5% 44.7% 75.0% 525 54 44 55

B

P_11_non-inclusion 91.2% 12.0% 2.2% 98.6% 3.8% 72.3% 1584 131 3 22
P_11_ inclusion 94.8% 40.0% 11.6% 99.1% 18.0% 79.3% 1639 76 10 15
P_16_ inclusion 95.8% 20.0% 8.6% 98.8% 12.0% 75.9% 1662 53 5 20

S_11_non-inclusion 93.9% 12.0% 3.4% 98.7% 5.3% 71.1% 1630 85 3 22
S_11_ inclusion 93.9% 48.0% 11.4% 99.2% 18.5% 81.1% 1622 93 12 13
S_16_ inclusion 94.5% 36.0% 10.2% 99.0% 15.9% 76.2% 1636 79 9 16

C

P_11_non-inclusion 94.1% 14.0% 18.1% 96.5% 15.8% 65.9% 3237 86 19 117

P_11_ inclusion 94.4% 19.9% 24.5% 96.7% 22.0% 67.2% 3240 83 27 109

P_16_ inclusion 92.7% 25.7% 18.7% 96.9% 21.7% 68.2% 3171 152 35 101

S_11_non-inclusion 88.1% 20.6% 8.5% 96.5% 12.0% 62.9% 3020 303 28 108

S_11_ inclusion 87.7% 19.1% 7.6% 96.5% 10.9% 62.9% 3007 316 26 110

S_16_ inclusion 81.4% 21.3% 5.1% 96.3% 8.3% 59.7% 2785 538 29 107

Note: In the data/resampling method combinations, “P” denotes scale-up, “S” denotes SMOTE, “11” denotes 2011–2017 data, “16” denotes
2016–2017 data, “non-inclusion” denotes non-inclusion of blacklisted vendors, and “inclusion” denotes inclusion of blacklisted vendors.
A vendor is considered blacklisted if its non-conformity hit rate is higher than the overall average non-conformity hit rate.

Our results revealed that the optimum data/resampling method combinations differed
among the different food product classes. Both scale-up and SMOTE served as optimum
resampling methods in different optimum combinations, while the data interval and
choice of inclusion/non-inclusion of blacklisted vendors in all optimum combinations were
2011–2017 and inclusion, respectively. These results indicate that the selection of different
food classes leads to different optimum data/resampling method combinations. There-
fore, “Scale-up/2011–2017 data/-inclusion of blacklisted vendors,” “SMOTE/2011–2017
data/inclusion of blacklisted vendors,” and “Scale-up/2011–2017 data/inclusion of black-
listed vendors” were separately used as the optimum combinations for product classes A,
B, and C for subsequent construction of the prediction models.

The prediction results generated with the validation dataset were optimum when
different data/resampling method combinations were used for product classes A, B, and C.
In the present study, the prediction results were considered optimum when AUC > 50%
and the values of the F1 score and PPV were as large as possible. A large F1 score indi-
cates that optimum balance is achieved between PPV and Recall, which leads to optimum
prediction results. Among the various data/resampling method combinations for the
three product classes, both scale-up and SMOTE were the optimum resampling meth-
ods, whereas 2011–2017 or 2016–2017 data and inclusion of blacklisted vendors were the
optimum choices for classes A and C.

4.3.2. Generation of Optimum Prediction Model

In the present study, ensemble learning was performed using six data/resampling
method combinations with five bagging algorithms, namely, Bagging-CART, Bagging-
Logistic, Bagging-NB, Bagging-C5.0, and Bagging-RF. Using the prediction results, the pre-
dictive performance indicators were calculated, and F1 score, PPV, Recall, and AUC
were used to evaluate the prediction results to obtain the optimum data/resampling
method combinations for the three border inspection product classes, which were “Scale-
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up/2011–2017 data/inclusion of blacklisted vendors” for class A, “SMOTE/2011–2017
data/inclusion of blacklisted vendors” for class B, and “Scale-up/2011–2017 data/inclusion
of blacklisted vendors” for class C.

To generate the optimum prediction model, the optimum data/resampling method
combinations were first adopted for machine learning using five single bagging-type
algorithms and ensemble learning, and the prediction results of the various algorithms
were compared. The model with the highest values for F1 score, PPV, and Recall and with
AUC > 50% (i.e., the predictive performance of the model was better than that of random
guessing) was considered the optimum model.

Tables 6–8 show the predictive performances of the various models obtained with the
validation data for food product classes A, B, and C. For class A products, the data/resampling
method combination used was “Scale-up/2011–2017 data/inclusion of blacklisted ven-
dors.” The predictive performance indicator values obtained using ensemble learning
(No. A4) were F1 score = 48.0%, PPV = 55.3%, and AUC = 78.3% (>50%). Similar val-
ues were obtained with the Bagging-Logistic algorithm (F1 score = 48.0%, PPV = 53.8%,
and AUC = 70.3%). The Bagging-CART algorithm provided the best predictive perfor-
mance, with an F1 score of 53.9%, PPV of 52.4%, and AUC of 77.5%. For class B products,
the data/resampling method combination used was “SMOTE/2011–2017 data/inclusion of
blacklisted vendors.” The predictive performance indicator values obtained using ensemble
learning (No. B2) were F1 score = 18.5%, PPV = 11.4%, and AUC = 81.1% (>50%). Bagging-
Logistic achieved the highest F1 score, with predictive performance indicator values of F1
score = 18.6%, PPV = 11.5%, and AUC = 78.0%. For class C products, the data/resampling
method combination used was “Scale-up/2011–2017 data/inclusion of blacklisted ven-
dors.” The predictive performance indicator values obtained using ensemble learning (No.
C2) were F1 score = 22.0%, PPV = 24.5%, and AUC = 67.2% (>50%). Bagging-CART achieved
the highest F1 score, with predictive performance indicator values of F1 score = 23.6%,
PPV = 16.9%, and AUC = 66.1%. The results described above indicated that ensemble learn-
ing provided relatively stable predictive performance compared with other algorithms.
Although the predictive performance of ensemble learning was not the best algorithm,
it was also not the worst and was superior to random guessing (AUC > 50%). Therefore,
ensemble learning was selected as the optimum prediction model. The predictive perfor-
mance of the model was subsequently determined through model prediction using the test
dataset (2019 data).

4.3.3. Model predictive performance

The model obtained using ensemble learning was set as the optimum prediction
model and used for the simulation of online model implementation using the test dataset
(2019 data). Subsequently, the risk predictive performance of the model was evaluated by
selecting inspection batches with risk threshold values of 0.5 and above for the various
algorithms. Considering that the historical 2019 inspection data were obtained by random
sampling, i.e., inspection results were only available for certain inspection batches, samples
that were randomly selected for inspection were screened to evaluate model performance.
Tables 9 and 10 show the results of model prediction.
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Table 6. Comparison of prediction models for class A products.

No. Dataset Product
Class

Data/Resampling
Method

Combination
Algorithm ACR Recall PPV NPV F1 AUC TN FP TP FN

A1

Validation
dataset A

P_11_Inclusion Bagging-CART 86.1% 55.6% 52.4% 92.3% 53.9% 77.5% 529 50 55 44
A2 P_11_Inclusion Bagging-C5.0 86.1% 45.5% 52.9% 90.9% 48.9% 76.4% 539 40 45 54
A3 P_11_Inclusion Bagging-Logistic 86.3% 43.4% 53.8% 90.6% 48.0% 70.3% 542 37 43 56
A4 P_11_Inclusion Ensemble learning 86.6% 42.4% 55.3% 90.5% 48.0% 78.3% 545 34 42 57
A5 P_11_Inclusion Bagging-NB 80.8% 59.6% 39.6% 92.4% 47.6% 77.3% 489 90 59 40
A6 P_11_Inclusion Bagging-RF 86.6% 36.4% 56.3% 89.7% 44.2% 79.0% 551 28 36 63

Note: Arranged in descending order of F1 score.

Table 7. Comparison of prediction models for class B products.

No. Dataset Product
Class

Data/Resampling
Method

Combination
Algorithm ACR Recall PPV NPV F1 AUC TN FP TP FN

B1

Validation
dataset B

S_11_Inclusion Bagging-Logistic 94.0% 48.0% 11.5% 99.2% 18.6% 78.0% 1623 92 12 13
B2 S_11_Inclusion Ensemble learning 93.9% 48.0% 11.4% 99.2% 18.5% 81.1% 1622 93 12 13
B3 S_11_ Inclusion Bagging-CART 93.2% 52.0% 10.9% 99.3% 18.1% 77.2% 1609 106 13 12
B4 S_11_ Inclusion Bagging-C5.0 93.6% 48.0% 10.8% 99.2% 17.6% 81.5% 1616 99 12 13
B5 S_11_ Inclusion Bagging-RF 93.9% 44.0% 10.6% 99.1% 17.1% 81.9% 1622 93 11 14
B6 S_11_ Inclusion Bagging-NB 91.8% 52.0% 9.1% 99.2% 15.5% 81.1% 1585 130 13 12

Note: Arranged in descending order of F1 score.

Table 8. Comparison of prediction models for class C products.

No. Dataset Product
Class

Data/Resampling
Method

Combination
Algorithm ACR Recall PPV NPV F1 AUC TN FP TP FN

C1

Validation
dataset

C

P_11_Inclusion Bagging-CART 90.1% 39.0% 16.9% 97.4% 23.6% 66.1% 3063 260 53 83
C2 P_11_Inclusion Ensemble learning 94.4% 19.9% 24.5% 96.7% 22.0% 67.2% 3240 83 27 109
C3 P_11_Inclusion Bagging-Logistic 92.6% 23.5% 17.5% 96.8% 20.1% 58.4% 3172 151 32 104
C4 P_11_Inclusion Bagging-NB 83.1% 36.0% 9.0% 97.0% 14.4% 58.6% 2827 496 49 87
C5 P_11_Inclusion Bagging-C5.0 93.6% 7.4% 9.6% 96.2% 8.3% 61.1% 3229 94 10 126
C6 P_11_Inclusion Bagging-RF 96.0% 1.5% 33.3% 96.1% 2.8% 63.3% 3319 4 2 134

Note: Arranged in descending order of F1 score.
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Table 9. Model predictive performance indicators for model prediction on the test dataset for product classes A, B, and C.

Dataset Product
Class

Data/Resampling
Method Combination ACR Recall PPV NPV F1 AUC TN FP TP FN

Test
dataset

A P_11_Inclusion 85.5% 19.0% 55.0% 87.1% 28.2% 70.7% 636 18 22 94

B P_16_Inclusion 95.3% 28.6% 13.0% 98.7% 17.9% 78.0% 1873 67 10 25

C P_11_Inclusion 95.8% 21.1% 25.4% 97.6% 23.0% 72.5% 4813 94 32 120

Table 10. Risk prediction performance for product classes A, B, and C.

Product
Class

Overall Inspection Prediction Model

No. of
Batches

Inspection
Rate Hit Rate

Predicted
Number of

Batches

Recommended
Number of Batches

to be Inspected

Recommended
Inspection

Rate

No. of
Model Hits

Model Hit
Rate

A 3643 18.64% 15.76% 770 40 5.19% 22 55.00%

B 23,011 7.51% 1.51% 1975 77 3.90% 10 12.99%

C 37,387 12.31% 2.72% 5059 126 2.49% 32 25.40%

In 2019, a total of 3643 batches of class A products were declared, of which 770
batches were randomly inspected and the inspection results were available (note: this is
not the total number of batches declared in the entire year). The data of these 770 declared
batches with available inspection results were used as the test dataset for model prediction.
The model prediction results were as follows: recommended number of batches to be
inspected: 40, recommended inspection rate: 5.19%, hit rate: 55.00%, and number of model
hits: 22. The actual inspection rate, hit rate, and number of non-conforming batches were
18.64%, 15.76%, and 107, respectively. Therefore, the hit rate predicted by the model was
approximately 3.5 times the hit rate of the existing random inspection method.

A total of 23,011 batches of class B products were declared in 2019, of which 1975 batches
were randomly inspected and the inspection results were available (note: this is not the
total number of batches declared in the entire year). The data of these 1975 declared
batches with available inspection results were used as the test dataset for model prediction.
The model prediction results were as follows: recommended number of batches to be
inspected: 77, recommended inspection rate: 3.90%, hit rate: 12.99%, and number of model
hits: 10. The actual inspection rate, hit rate, and number of non-conforming batches were
7.51%, 1.51%, and 26, respectively. Therefore, the hit rate predicted by the model was
approximately 8.6 times the hit rate of the existing random inspection method.

A total of 37,387 batches of class C products were declared in 2019, of which 5059 batches
were randomly inspected and the inspection results were available (note: this is not the
total number of batches declared in the entire year). The data of these 5059 declared
batches with available inspection results were used as the test dataset for model prediction.
The model prediction results were as follows: recommended number of batches to be
inspected: 126, recommended inspection rate: 2.49%, hit rate: 25.40%, and number of
model hits: 32. The actual inspection rate, hit rate, and number of non-conforming batches
were 12.31%, 2.72%, and 26, respectively. Therefore, the hit rate predicted by the model
was approximately 9.3 times the hit rate of the existing random inspection method.

In summary, the use of ensemble learning as the optimum model for product classes
A, B, and C led to higher model-predicted hit rates compared with random inspection for
all three product classes.

5. Discussion
5.1. Comparison of Single Algorithms with Ensemble Learning

On the basis of the prediction model construction methods reported in the literature,
five commonly used machine learning algorithms were separately combined with bagging
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to obtain the algorithms Bagging-Logistic, Bagging-CART, Bagging-C5.0, Bagging-NB,
and Bagging-RF. These five algorithms were subsequently used with ensemble learning to
construct model classifiers, and the predictive performance of single algorithms and the
ensemble learning model was evaluated. The predictive performance indicators used in
this study were AUC, F1 score, PPV, and Recall. PPV refers to the proportion of samples
that are actually non-conforming among all the samples classified as non-conforming by
the model. Recall, also known as the true positive rate (TPR), refers to the proportion of
samples correctly classified as non-conforming among all the samples that are actually
non-conforming. The ROC curve is a plot of Recall (TPR) against the false positive rate
(FPR) at various threshold levels, and a larger area under the ROC curve (AUC) signifies
better predictive performance. An AUC value between 0.5 and 1 indicates that the model
is better than random guessing and possesses prediction value. F1 score is defined as the
harmonic mean of Recall and PPV. A high F1 score indicates that the values of Recall and
PPV are comparable, as an extremely small value of either indicator generally leads to a
considerably lower F1 score.

Table 11 shows the values of the various predictive performance indicators for class A
products. Among the various algorithms, ensemble learning achieved the highest AUC
value, demonstrating its superiority over any single algorithm. Therefore, there is a higher
probability that a sample predicted as non-conforming by the ensemble learning model is
actually non-conforming, i.e., a lower false-positive risk. The AUC values also indicated
that all single algorithms and the ensemble learning method provided better predictive
performance than random inspection. In comparing the PPV of the various algorithms,
ensemble learning (PPV = 55.0%) was superior to the single algorithms (PPV = 25.0–52.6%).
Therefore, ensemble learning provided the highest number of hits for truly non-conforming
batches among the batches predicted as non-conforming. The PPV of Bagging-RF was
close to that of ensemble learning (52.6 vs. 55.0%), indicating high performance compared
with other single algorithms. Ensemble learning achieved a Recall value of 19%, which was
close to the mid-point of the range 8.6–34.5% for the various algorithms. According to
the overall performance, ensemble learning is the optimum prediction model for class
A products.

Table 11. Predictive performance of various algorithms on the test dataset for class A products.

Dataset Product
Class

Data/Resampling
Method

Combination
Algorithm ACR Recall PPV NPV F1 AUC TN FP TP FN

Test
dataset A P_11_Inclusion

Bagging-C5.0 84.2% 23.3% 45.0% 87.5% 30.7% 66.1% 621 33 27 89

Bagging-CART 84.3% 34.5% 47.1% 88.9% 39.8% 69.6% 609 45 40 76

Bagging-Logistic 82.3% 8.6% 25.0% 85.5% 12.8% 58.2% 624 30 10 106

Bagging-NB 78.7% 34.5% 31.3% 88.2% 32.8% 65.6% 566 88 40 76

Bagging-RF 85.2% 17.2% 52.6% 86.9% 26.0% 69.8% 636 18 20 96

Ensemble learning 85.5% 19.0% 55.0% 87.1% 28.2% 70.7% 636 18 22 94

Table 12 shows the values of the various predictive performance indicators for class B
products. The AUC of the various algorithms was within the range 58.9–78.6%. In particu-
lar, the AUC values of ensemble learning and Bagging-RF were almost identical at 78.4%
and 78.6%, respectively. Therefore, both algorithms had similar abilities in predicting truly
non-conforming batches, i.e., the possibility of false positives was relatively low with both
algorithms. All AUCs > 50%, indicating that all single algorithms and ensemble learning
provided better predictive performance than random inspection. However, the AUC of
Bagging-Logistic was only 58.9%, making it the poorest performing algorithm.
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Table 12. Predictive performance of various algorithms on the test dataset for class B products.

Dataset Product
Class

Data/Resampling
Method

Combination
Algorithm ACR Recall PPV NPV F1 AUC TN FP TP FN

Test
dataset B S_11_Inclusion

Bagging-C5.0 92.4% 54.3% 12.4% 99.1% 20.2% 72.8% 1806 134 19 16

Bagging-CART 92.9% 57.1% 13.7% 99.2% 22.1% 73.3% 1814 126 20 15

Bagging-Logistic 92.9% 40.0% 10.5% 98.9% 16.7% 58.9% 1821 119 14 21

Bagging-NB 90.9% 37.1% 7.6% 98.8% 12.6% 66.5% 1782 158 13 22

Bagging-RF 91.8% 31.4% 7.4% 98.7% 12.0% 78.6% 1803 137 11 24

Ensemble learning 93.1% 40.0% 10.8% 98.9% 17.0% 78.4% 1824 116 14 21

The PPVs of the various algorithms were within the range 7.4–13.7%; the PPV of
Bagging-CART was the highest at 13.7%, and that of ensemble learning was close to the
median PPV of the five single algorithms. This is consistent with the view held by Kieu
et al. [23] that ensemble learning may not provide the best prediction results but avoids the
selection of the worst classifier, which leads to greater stability in prediction. Although the
PPV of ensemble learning was not higher than those of all the single algorithms, all the PPV
values did not differ significantly. Therefore, the number of batches correctly predicted
as non-conforming was similar among the algorithms. The Recall values were within the
range 31.4–57.1%, and the value (40%) of ensemble learning was close to the median value.
Considering the need to maintain prediction stability, ensemble learning was also selected
as the optimum model for class B products.

Table 13 shows the values of the various predictive performance indicators for class C
products. The AUC of the various algorithms were within the range 57.1–75.3%. In particu-
lar, the AUC values of ensemble learning and Bagging-RF were similar at 72.5% and 75.3%,
respectively. Therefore, both algorithms had comparable abilities in identifying true posi-
tives and false positives, which was also reflected in the PPVs. All AUCs > 50%, indicating
that all single algorithms and ensemble learning provided better predictive performance
than random inspection. Despite achieving a high AUC, Bagging-RF had a low F1 score of
9.8%, indicating a poorer balance between PPV and Recall. By contrast, ensemble learning
and Bagging-CART achieved better F1 scores of 23.0% and 28.6%, respectively.

Table 13. Predictive performance of various algorithms on the test dataset for class C products.

Dataset Product
Class

Data/Resampling
Method

Combination
Algorithm ACR Recall PPV NPV F1 AUC TN FP TP FN

Test
dataset C P_11_Inclusion

Bagging-C5.0 93.4% 8.6% 6.2% 97.1% 7.2% 64.9% 4710 197 13 139

Bagging-CART 93.1% 46.1% 20.7% 98.3% 28.6% 72.7% 4639 268 70 82

Bagging-Logistic 92.0% 26.3% 12.1% 97.6% 16.6% 57.1% 4616 291 40 112

Bagging-NB 87.6% 35.5% 9.3% 97.8% 14.7% 66.6% 4379 528 54 98

Bagging-RF 96.7% 5.9% 29.0% 97.2% 9.8% 75.3% 4885 22 9 143

Ensemble learning 95.8% 21.1% 25.4% 97.6% 23.0% 72.5% 4813 94 32 120

The PPVs of all the algorithms were within the range 6.2–29.0%, and the PPV of
ensemble learning was 25.4%. Although Bagging-RF had the highest PPV of 29.0%, its F1
score was significantly lower than those of most other algorithms, while ensemble learning
exhibited relatively stable performance. The Recall values were in the range 5.9–46.1%,
and the Recall value (21.1%) of ensemble learning was close to the median value. Consider-
ing the need to maintain prediction stability, ensemble learning was also selected as the
optimum model for class C products.

5.2. Evaluation of Model Performance after Online Implementation

The models developed in this study were implemented online in 2020, and the model
predictive performance for class A, B, and C products from the start of implementa-
tion to November 30 2020 were compared with the data of comparable periods (non-
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consecutive days) in previous years. In 2020, the number of non-conforming batches and
non-conformity hit rate were respectively 54 and 14.96% for class A, 48 and 3.34% for class
B, and 64 and 4.48% for class C. During the comparable period in 2019, the corresponding
values were 53 and 12.86% for class A, 18 and 1.74% for class B, and 78 and 2.43% for class
C. For both classes A and B, the number of non-conforming batches and non-conformity
hit rate were higher in 2020 than in 2019 (Table 14 and Figures 4–6).

After model implementation and operation, the inspection rate for class A decreased
from 16.18% in 2019 to 14.66% in 2020, but the non-conformity hit rate increased from 12.86%
in 2019 to 14.96% in 2020. Although the chi-squared test did not indicate the presence
of statistically significant differences, the total number of inspected batches decreased,
while the number of non-conforming batches remained approximately the same (53 in 2019
and 54 in 2020). For class B, the inspection rate increased from 7.47% in 2019 to 10.16% in
2020, and the non-conformity hit rate increased from 1.74% in 2019 to 3.34% in 2020. The
results of the chi-squared test showed that the increases in inspection rate (p = 0.001 ***)
and non-conformity hit rate (p = 0.021 *) were both statistically significant. Even though
the inspection rate increased, the total number of non-conforming batches in 2020 was
more than double that of the previous year. For class C, the inspection rate decreased from
11.63% in 2019 to 6.68% in 2020, and the non-conformity hit rate increased from 2.43% in
2019 to 4.48% in 2020. The results of the chi-squared test indicated that the decrease in
inspection rate (p = 0.001 ***) and increase in non-conformity hit rate (p = 0.001 ***) were
both statistically significant (Table 15).

Table 14. Prediction results of risk prediction models for product classes A, B, and C after online implementation.

Product Class Year (Comparable
Period)

No. of
Batches Declared

No. of
Batches Inspected Inspection Rate (%)

No. of
Non-Conforming

Batches

Non-Conformity
Hit Rate (%)

A
2020 2463 361 14.66 54 14.96

2019 2547 412 16.18 53 12.86

B
2020 14,152 1438 10.16 48 3.34

2019 13,859 1035 7.47 18 1.74

C
2020 21,314 1424 6.68 64 4.48

2019 27,591 3209 11.63 78 2.43

Note: Year (comparable period) refers to the inspected batches and inspection dates for which the prediction models were used rather than
the whole-year data or specific year-on-year time periods.
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Figure 6. Comparison of prediction results across years (comparable periods) for class C after model implementation.
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Table 15. Evaluation of predictive performance for product classes A, B, and C after online imple-
mentation of risk prediction models.

Product
Class

Inspection Rate Non-Conformity Hit Rate

2019 2020 # p 2019 2020 # p

A 16.18%
(412/2547)

14.66%
(361/2463) 0.1474 12.86%

(53/412)
14.96%

(54/361) 0.4612

B 7.47%
(1035/13,859)

10.16%
(1438/14,152) <0.001 *** 1.74%

(18/1035)
3.34%

(48/1438) 0.021 *

C 11.63%
(3209/27,591)

6.68%
(1424/21,314) <0.001 *** 2.43%

(78/3209)
4.48%

(64/1424) <0.001 ***

# Determined using the chi-squared test.

The results described above indicate that the prediction models established for food
product classes A, B, and C effectively increase the hit rate of non-conforming batches,
which contributes to risk prediction and prevention in border food inspections.

5.3. Learning Feedback Mechanisms

The ensemble learning method used in this study was implemented through majority
decision using five machine-learning algorithms. The greatest limitation of this method
is that the number of unqualified articles must be used as the learning goal to carry out
prediction. The historical data of border food sampling inspection shows that not all
food categories have unqualified cases; thus, it is impossible to perform machine learning
through training, which is the main limitation of this study. Therefore, by merging the data
of similar food categories, we have accumulated a small number of unqualified features
for learning, and have arranged 1–3% random sampling in addition to the sampling
method suggested by the ensemble learning method to avoid overfitting results. In this
manner, the problem of too few unqualified articles can be solved and a robust model can
be achieved.

In the present study, SMOTE was used for resampling to resolve the issue of data
imbalance. Although SMOTE was established on the basis of data science, it involves
sample synthesis using a small number of samples, which potentially introduces overfit-
ting. Nonetheless, oversampling is still commonly adopted in practice to avoid choosing
a model that lacks discriminatory power. In addition, sample synthesis by SMOTE is
performed in a linear fashion, which does not alter the original state of the numerical data.
This makes linear interpolation a reasonable method for sample synthesis. However, linear
interpolation may introduce noise if the available data are not distributed in Euclidean
space. Therefore, it is necessary to observe the data before applying the methods described
in this study. To this end, we randomly inspected 1–3% of food products from various
classes to observe the number of at-risk batches that may have been missed by model
prediction. This provides feedback to the models for relearning and remodeling.

In the present study, the data of class A products were used in the five models
established by machine learning algorithms, and model predictions were obtained for each
batch of declared products. The decision to inspect each batch of products was then made
on the basis of majority voting, i.e., inspection was performed if it was recommended by
more than half of the models (three or more out of five). Therefore, the poorer performing
models among the five models affected the overall predictive performance. When ensemble
learning was carried out with the five models, the non-conformity hit rate (PPV or precision)
was 8.07% and the F1 score was 0.12 (Figure 7). When the poorer performing logistic
regression and naive Bayes classification models were removed and ensemble learning was
performed using the remaining three models, the resulting non-conformity hit rate and F1
score were respectively 9.22% and 0.14, which were better than that of ensemble learning
with five models (Figure 8). Therefore, selection mechanisms may be adopted in the design
of inspection prediction methods after modeling to include the most appropriate algorithms
in ensemble learning while maintaining the objectivity and accuracy of majority voting.



Sustainability 2021, 13, 12291 24 of 26

Sustainability 2021, 13, x 26 of 28 
 

models among the five models affected the overall predictive performance. When ensem-

ble learning was carried out with the five models, the non-conformity hit rate (PPV or 

precision) was 8.07% and the F1 score was 0.12 (Figure 7). When the poorer performing 

logistic regression and naive Bayes classification models were removed and ensemble 

learning was performed using the remaining three models, the resulting non-conformity 

hit rate and F1 score were respectively 9.22% and 0.14, which were better than that of 

ensemble learning with five models (Figure 8). Therefore, selection mechanisms may be 

adopted in the design of inspection prediction methods after modeling to include the most 

appropriate algorithms in ensemble learning while maintaining the objectivity and accu-

racy of majority voting. 

 

Figure 7. Comparison of prediction results of the five models. 

 

Figure 8. Comparison of predictive performance before and after ensemble pruning. 

6. Conclusion 

The global COVID-19 pandemic in 2020 has greatly impacted the production, manu-

facture, importation, and exportation of raw food materials and food products in badly 

affected countries. In the present study, we used historical customs declaration data for 

10.06%

8.14%
7.44%

4.54%

3.52%

0.14 

0.13 
0.12 

0.08 

0.06 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

Random

forest

Decision tree

C5.0

Decision tree

CART

Logistic

regression

Naive Bayes

classification

PPV F1

8.07% 9.22%

0.12 

0.14 

0.12

0.12

0.12

0.12

0.13

0.13

0.13

0.13

0.13

0.14

0.14

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

Five-model ensemble Three-model ensemble

PPV F1

Figure 7. Comparison of prediction results of the five models.

Sustainability 2021, 13, x 26 of 28 
 

models among the five models affected the overall predictive performance. When ensem-

ble learning was carried out with the five models, the non-conformity hit rate (PPV or 

precision) was 8.07% and the F1 score was 0.12 (Figure 7). When the poorer performing 

logistic regression and naive Bayes classification models were removed and ensemble 

learning was performed using the remaining three models, the resulting non-conformity 

hit rate and F1 score were respectively 9.22% and 0.14, which were better than that of 

ensemble learning with five models (Figure 8). Therefore, selection mechanisms may be 

adopted in the design of inspection prediction methods after modeling to include the most 

appropriate algorithms in ensemble learning while maintaining the objectivity and accu-

racy of majority voting. 

 

Figure 7. Comparison of prediction results of the five models. 

 

Figure 8. Comparison of predictive performance before and after ensemble pruning. 

6. Conclusion 

The global COVID-19 pandemic in 2020 has greatly impacted the production, manu-

facture, importation, and exportation of raw food materials and food products in badly 

affected countries. In the present study, we used historical customs declaration data for 

10.06%

8.14%
7.44%

4.54%

3.52%

0.14 

0.13 
0.12 

0.08 

0.06 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

Random

forest

Decision tree

C5.0

Decision tree

CART

Logistic

regression

Naive Bayes

classification

PPV F1

8.07% 9.22%

0.12 

0.14 

0.12

0.12

0.12

0.12

0.13

0.13

0.13

0.13

0.13

0.14

0.14

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

Five-model ensemble Three-model ensemble

PPV F1

Figure 8. Comparison of predictive performance before and after ensemble pruning.

6. Conclusions

The global COVID-19 pandemic in 2020 has greatly impacted the production, manu-
facture, importation, and exportation of raw food materials and food products in badly
affected countries. In the present study, we used historical customs declaration data for
food products imported into Taiwan to construct risk prediction models and evaluated the
predictive performance of the models. The results indicated that the models significantly
increased the hit rate of non-conforming batches among the declared batches and signifi-
cantly decreased the inspection rate compared with random inspection. These findings may
potentially serve as a valuable reference for the improvement of existing random inspection
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methods for imported food products. The results of this study are currently implemented
in the border food quality sampling operation in Taiwan. Through this operation mode,
the unqualified rate can be effectively reduced, the number of samples inspected can be
reduced, and manpower and material costs can be saved.

In the present study, risk prediction models for border food inspection were con-
structed by performing ensemble learning with five different machine learning methods
combined with bagging: Bagging-Logistic, Bagging-CART, Bagging-C5.0, Bagging-RF,
and Bagging-NB. In addition to reviewing the relevance of the important characteristic
factors on a regular basis, we also recommend continuous exploration of other critical
characteristic factors for future modeling to further enhance predictive performance for
non-conforming batches of imported food products. Compared with random inspection,
the hit rate of non-conforming products and batch inspection rate are effectively increased
using ensemble learning to perform predictions, which greatly reduces inspection costs
and provides considerable benefits to food safety management. Therefore, if the ensemble
learning models developed in this study can be progressively applied to predictions for all
imported products, an automatic modeling and risk prediction system can be established
for real-time feedback of daily declaration, inspection, and test results to the models. This
will potentially aid in the continuous updating of risk prediction models to further improve
the predicted hit rate of at-risk products by the models.
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