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Abstract: The Yangtze River Economic Belt (YREB) is an important part of China’s “two screens
and three belts” strategic ecological security barrier, and the urban agglomeration along the YREB
is the core of its economic development. However, it has suffered the most from frequent and
severe flood disasters that were affected by torrential rains, urbanization, and human activities, with
climate change intensifying the potential occurrence of flood disasters in this area. Based on the
CMIP6 climate data, this study constructed a flood risk assessment index system and assessed the
temporal and spatial changes of the flood risk in the YREB during 2020–2050 under four shared
socioeconomic pathways (SSP) scenarios, including SSP126, SSP245, SSP370, and SSP585. From the
perspective of temporal change, the results showed that at the grid level, the area of middle-low
risk (0.55 < R ≤ 0.65) accounted for 60% of the total area of the YREB and area of high-risk (R > 0.85)
fluctuated first and then decreased under the four scenarios, with the area of high-risk being largest
in the future under the SSP585 scenario. Specifically, at the city level, around half of the cities in the
YREB had faced high flood risk and the risk showed an increasing trend during 2020–2050 under
the SSP370 scenario. From the perspective of spatial change, the flood risk of the YREB presented
a spatial pattern of low in the west and high in the east, with high risk mainly concentrated in the
cities in the lower reaches of the YREB and also Chongqing and Sichuan. Compared with SSP126 and
SSP245 scenarios, it showed that high-risk areas were larger under high emission scenarios SSP370
and SSP585, which were mostly concentrated in middle and lower reaches of the YREB and the
cities of Chongqing and Chengdu during 2020–2050. Especially, flood risk showed an increasing
trend in the middle and lower reaches of the YREB during 2020–2050, and the regions with high
vulnerability would have greater socio-economic losses. The finding would provide scientific support
for resilience improvement, risk reduction and management, and formulating policies to achieve
green and sustainable development in the YREB.
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1. Introduction

Climate change has a serious impact on the water cycle process, and the risk of
flood disasters has become a major challenge affecting global security and sustainable
development [1]. The Fifth Assessment Report of the Intergovernmental Panel on Climate
Change (IPCC) firstly analyzed the impact of climate change on floods and other disaster
events. It found that increased precipitation intensity and variability would increase
the risk of floods and droughts, and some ecosystems and many human systems had
significant vulnerability and exposure to extreme weather events [2]. In addition, flood
disaster has caused billions of dollars economic losses and affected thousands of people
every year globally [3]. Climate change would cause variation in the water cycle and
intensify uneven distribution of precipitation, which may further aggravate extreme events
and hinder the sustainable development of society and economy [4]. Asia has become a
region with high frequency of floods and storm surges. Drought, storm surges, and floods
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have become the three major flood disasters threatening socio-economic development in
China [5]. Therefore, scientific assessment of flood risk under future climate change has
great significance for mitigating disasters, reducing socio-economic losses, and promoting
regional sustainable development.

As the process of urbanization accelerates and the global population grows, assessing
the flood risk of cities and urban agglomerations in a changing environment is conducive
to disaster adaption and management. The application of shared socioeconomic pathways
(SSP) and representative concentration pathway (RCP) scenarios in climate change analysis
and disaster risk assessment can help provide possible mitigation and response strategies.
Most scientific assessments for disaster risk are based on climate change scenarios and
emission scenarios [6–8]. These scenarios have been developed in the field of natural hazard
assessment or physical changes in the climate system. However, it lacks consideration of
socio-economic development scenarios, especially in terms of vulnerability and adaptability.
The SSPs have addressed the challenges of adaption and been closely linked to climate
change, vulnerability, adaption, and disaster risk [9]. Thus, the SSP and RCP scenarios can
be combined together for the future assessment of hazard and vulnerability. The Coupled
Model Intercomparison Project (CMIP) has released climatic data under different climate
models, and flood risk assessment based on the CMIP data has become a hot topic [10].
CMIP6 constructed a rectangular framework for SSP and RCP, which is better than CMIP5
in accuracy statistics and reduces the error between precipitation and temperature [11].
Apurv et al. (2015) analyzed the impact of climate change on floods in the Yarlung Zangbo
Basin based on the CMIP5 model data and found that the increase in the frequency and
intensity of precipitation caused by climate change may further increase the peak flood
disaster and the total flood volume [12]. Most studies have assessed the risks of storms,
floods, droughts, and high temperature disasters under climate change based on the CMIP5
data. While, there are very few studies focused on assessment of disaster risk with CMIP6
data. In addition, for China, the data of population and GDP for vulnerability assessment
that considered the impact of the fertility policy were less combined with the CIMP6 data
for disaster risk assessment.

Flood risk is the combination of the probability of extreme weather events and the
potential adverse consequences. It mainly depends on hazard and vulnerability, where
vulnerability is a function of exposure, sensitivity, and capacity [13–15]. Therefore, as-
sessment of urban flood risk in a changing environment should consider the spatial and
temporal interdependencies among hazards and vulnerability. For example, Weerasinghe
et al. (2018) comprehensively evaluated the flood risk in Sri Lanka by considering the
exposure and vulnerability indexes from the three aspects of society, economy, and hous-
ing [16]. In addition, the development of numerical models has provided a means to
assess disaster risk due to extreme climate change. The research on flood risk assessment,
simulation, and prediction commonly estimates the hazard component from climatic pro-
jections of atmospheric variables, which are then used to estimate the future disaster risk
through hydrological models and statistical analysis [17,18]. At present, there are various
methods for disaster risk assessment, including historical disaster mathematical statistics
analysis [19,20], fuzzy environmental risk assessment [21,22], fuzzy data envelopment
analysis [23], fuzzy SSP scenario analysis [24], Strength, Weakness, Opportunity, and Strate-
gies (SWOT) models [25], machine learning models (MLMs) [26,27], multi-criteria decision
analysis (MCDA) [28–30], and artificial intelligence [31]. Ntajal et al. (2017) assessed the
flood risk in different areas based on a risk assessment model that combined indicator
analysis and GIS technology [32]. Some studies have combined environmental data based
on remote sensing, machine learning, and GIS technology to improve accuracy and reduce
the uncertainty of flood risk assessment [33]. Among these methods, fuzzy approaches
deal with the fuzzy logic and have an advantage in complex uncertainty problem-solving
and analysis in disaster risk assessment. Fuzzy analytic hierarchy process (FAHP) is a
method which can deal with uncertainties of decision problems and have an advantage in
objective and quantitative assessment [34].
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The Yangtze River Economic Belt (YREB) is one of flood-prone areas in China, where
flood disasters have attracted much attention. However, the changes of flood risk under
future climate change are not clear in the YREB. Therefore, taking the YREB as the research
object, this study aims to assess flood risk during 2020–2050 under different SSP-RCP
scenarios from the perspectives of hazard and vulnerability using the FAHP. Firstly, this
study constructed the assessment index and model of flood risk from perspectives of hazard
and vulnerability. Then, indicators for the risk assessment were processed, for example,
climatic indexes were calculated based on CMIP6 data and the data of population and GDP
were processed with consideration of the impact of China’s fertility policy referring to the
study of Jing et al. (2019) [35]. Finally, the spatiotemporal changes of flood risk in the YREB
during 2020–2050 under the four scenarios of SSP126, SSP245, SSP370, and SSP585 were
assessed and analyzed.

2. Materials and Methods
2.1. Study Area

The YREB is an important region for agricultural production, as well as a strategic
development zone for economic growth with a dense population in China (Figure 1). It
includes nine provinces (Sichuan, Yunnan, Guizhou, Hunan, Hubei, Jiangxi, Anhui, Jiangsu,
and Zhejiang) and two municipalities (Shanghai and Chongqing). It also has three national
level urban agglomerations, including the Yangtze River Delta urban agglomerations, the
Yangtze River Middle Reaches urban agglomerations, and the Chengdu-Chongqing urban
agglomeration. In 2015, the gross domestic product (GDP) of the YREB was USD 4.12
trillion and the size of its population was approximately 6.16 billion, which accounted for
42.3% of China’s GDP and 40% of China’s population. The annual average precipitation
is 1100mm and the precipitation variability is large. More than 50% of the precipitation
in this area occurs from June to August. Most areas of the YREB are low-lying, thus
the dense water network coupled with the influence of the monsoon, can easily cause
flood disasters. Thus, the YREB had suffered from high frequency of flood disasters. It
had several catastrophic floods in 1931, 1949, 1954, 1991, and 1998 [36]. For instance, the
Taihu Lake Basin was hit by heavy rains, which caused severe floods in two provinces
and one city (Jiangsu, Zhejiang and Shanghai) surrounding the Taihu Lake from June
to July in 1991. In addition, the winter snow cover area of the Qinghai-Tibet Plateau in
2019–2020 was significantly more than that of the previous year, which indirectly led to the
strengthening of convective activities in the middle and lower reaches of the YREB in China
with more precipitation. It resulted in more flood disasters and led to secondary disasters
such as mudslides and landslides also happened frequently. The floods in 2020 affected
63.46 million people and caused a direct economic loss of RMB 178.96 billion in the YREB.
Therefore, assessing flood risk under climate change has significance for socio-economic
development in YREB.
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Figure 1. Geographical location of the Yangtze River Economic Belt.
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2.2. Data
2.2.1. Index System for Water-Disaster Risk Assessment

Natural disaster risk is formed under the joint action mechanism of hazard and the
vulnerability of the disaster bearer. Thus, this study constructed the index system for
flood risk from the perspectives of hazard and vulnerability (Table 1). Hazard refers to
the frequency and severity of damage or threats to people, property, systems, or functions.
Climate change has increased the frequency and intensity of extreme events, which are
generally measured by extreme precipitation. According to 27 extreme event indicators
defined by the World Meteorological Organization, the study selected maximum consec-
utive five-day precipitation (RX5D) and number of days with precipitation of more than
20 mm (R20) to indicate the intensity and duration of precipitation annually [37]. The
study also considered the impact of the terrain environment in the YREB, and selected
indicators of the relief ratio and river density. Vulnerability was the degree of injury or
damage caused by potential hazards to all properties in the region. The bearers of flood
disasters are generally population, buildings, farmland, etc. Therefore, population density,
economic density, and the proportion of farmland were selected as indicators to a construct
flood risk assessment index system under climate change. Based on the triangular fuzzy
analytic hierarchy (AHP) process, the weights of each indicator in the index system were
determined.

Table 1. Flood risk assessment index system under SSP-RCP scenarios.

Object Layer First Layer Second Layer Indicators Unit Weight

Flood risk index

Hazard

Precipitation

Maximum consecutive
five-day precipitation (RX5D) mm 0.16

Number of days with
precipitation of more than

20 mm (R20)
day 0.16

DEM Relief ratio degree 0.10

River network River density km/km2 0.08

Vulnerability

Population Population density persons/km2 0.185

Economy Economy density million yuan/km2 0.18

Farmland The proportion of farmland % 0.135

2.2.2. Data Sources

In this study, the data of the seven indicators that were selected to assess the flood
risk in the YREB are shown in Table 2. The indicator of RX5D and R20 represented the
frequency and intensity of extreme events. The RX5D and R20 of year 2020–2050 were
calculated based on the daily precipitation data, which was obtained from the CMIP6
database. Relief ratio was calculated based on digital elevation model (DEM), which was
derived from the Geospatial Data Cloud site, Computer Network Information Centre,
Chinese Academy of Sciences. River density was determined by river systems in the YREB,
which were collected from the Gaode’s product center. In addition, vulnerability was
determined with population density, economic density, and the proportion of farmland.
The fertility policy has affected population growth and economic development. Therefore,
the data of population and GDP of years 2020–2050 were calculated based on the impact of
China’s fertility policy referring to the study of Jing et al. (2019) [35]. The proportion of
farmland was determined by land use data, which was collected from the Data Center for
Resources and Environmental Sciences, Chinese Academy of Sciences.
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Table 2. Input data for flood risk assessment.

Data Type Spatial Resolution Data Source and Description

Precipitation 1 × 1 km

Daily precipitation was obtained from
CMIP6 database

(https://esgf-node.llnl.gov/search/cmip6/
(accessed on 26 July 2021))

River data 1 × 1 km
River data were collected from the Gaode’s

product center, which includes Yangtze River
and other river systems in the YREB

DEM 30 × 30 m

DEM was derived from the Geospatial Data
Cloud site, Computer Network Information

Centre, Chinese Academy of Sciences
(http://www.gscloud.cn (accessed on 27

May 2021))

Land use data 1 × 1 km
Land use data was collected from Data

Center for Resources and Environmental
Sciences, Chinese Academy of Sciences

Socio-economic
data 1 × 1 km

The socio-economic datasets, which included
population and economy, were processed
based on the impact of the fertility policy

(Jing et al., 2019) [35]

2.3. Methods
2.3.1. CMIP6 SSP-RCP Scenarios

In order to assess the relationship between socio-economic development and climate
change, IPCC has successively developed Scenario A, IS92, SRES, and RCP scenarios. Based
on different SSP and the latest trends in anthropogenic carbon emissions, CMIP6 proposed
a new projection scenario, namely a rectangular combination of different SSPs and RCPs.
An SSP scenario is the future development of society without climate change or climate
policy. SSP1 to SSP5 represent the five different development routes for societal trends,
i.e., sustainable development, middle of the road developments, global fragmentation,
strong inequality and rapid economic growth based on a fossil-fuel intensive energy system.
Combined with the RCP scenarios, the following scenarios were selected, including SSP585,
SSP370, SSP245, and SSP126 (Table 3). SSP585 is the updated RCP8.5 scenario. SSP5 is the
only pathway that can achieve anthropogenic radiation of 8.5 W/m2 in 2100. SSP370 is
the new radiative forcing scenario and represents a high social vulnerability and relatively
high anthropogenic radiative forcing scenario, which is very important for research on
climate change impacts, mitigation, and adaptation. SSP245 is the updated RCP4.5 scenario
and represents a combination of moderate social vulnerability and moderate shooting
force. SSP126 is the updated RCP2.6 scenario and represents the combined effects of low
vulnerability, low mitigation pressure, and low radiative forcing.

In the simulation model performance of inter-annual variability, the performance of
GFDL-CM4 and EC-Earth3 in the CMIP6 model is better than other models. Compared
with the CMIP5 model, the CMIP6 model can better simulate the climate average state and
trend change characteristics of the extreme precipitation index and has a higher correlation
coefficient with the observation [38]. In addition, the multi-model ensemble average
is generally better than a single model in simulating extreme precipitation. Therefore,
this study selected seven climate models of CESM2, CESM2-WACCM, EC-Earth3-Veg,
GFDL-CM4, GFDL-ESM4, MPI-ESM1-2-HR, and EC-Earth3 (2020–2050), and constructed a
multi-model ensemble average to derive the precipitation in the YREB.

https://esgf-node.llnl.gov/search/cmip6/
http://www.gscloud.cn
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Table 3. Descriptions of SSP-RCP scenarios.

Scenario Description Characteristic

SSP126

The updated version of RCP2.6 in CMIP5. It belongs to the
low forcing scenario, and the radiative forcing will stabilize
at about 2.6 W/m2 in 2100. Under this scenario, the global
average temperature will be significantly lower than 2 ◦C
compared to the multi-mode ensemble average before the

industrial revolution.

This scenario takes into account of the future increase in
global forest coverage and accompanying a large number

of land use changes. It has formed the characteristics of low
vulnerability and low mitigation challenges, which is in

line with the SSP1 scenario.

SSP245
The updated version of RCP4.5 in CMIP5. It belongs to the

medium radiative forcing scenario, and the radiative
forcing will stabilize at about 4.5 W/m2 in 2100.

This scenario is often used as a reference for CMIP6. In
addition, it only represents a scenario that combines

moderate social vulnerability and moderate radiative
forcing.

SSP370

It belongs to the middle-to-higher radiative forcing
scenario, and the radiative forcing will stabilize at about 7.0

W/m2 in 2100. It fills the gap in the high-compulsive
scenario in CMIP5.

The SSP3 path represents a large amount of land use
changes and high climate forcing factors. Therefore, the

SSP370 scenario combines relatively high social
vulnerability (SSP3) and relatively high radiative forcing

(RCP7.0).

SSP585 The updated version of RCP8.5 in CMIP5 belongs to the
high-force scenario.

SSP5 is the only pathway that can achieve anthropogenic
radiation of 8.5 W/m2 in 2100.

2.3.2. Flood Risk Assessment Model

In this study, hazard and vulnerability are the major components of flood risk. There-
fore, the flood risk (R) can be expressed by Equation (1):

R = f (H, V) (1)

where R is the flood risk, H is the hazard indicator, V is the vulnerability indicator.
The hazard and vulnerability indexes were quantified by specific metrics. Hazard

index can be defined by Equation (2):

H = H1 ∗ w1 + H2 ∗ w2 + H3 ∗ w3 + H4 ∗ w4 (2)

where H1, H2, H3 and H4 are indicators for hazard, including maximum consecutive
five-day precipitation, number of days with precipitation of more than 20 mm, relief ratio,
and river density; w1, w2, w3 and w4 are the weights of the indicators that calculated based
on triangular fuzzy AHP.

In addition, vulnerability index can be expressed by Equation (3):

V = V1 ∗ w1 + V2 ∗ w2 + V3 ∗ w3 (3)

where V1, V2 and V3 are indicators for vulnerability, including population density, economy
density, and the proportion of farmland; w1, w2 and w3 are the weights of the indicators
that are calculated based on triangular fuzzy AHP.

Therefore, flood risk index can be expressed by Equation (4):

R = αH ∗ H + αV ∗ V (4)

where αH and αV are the weights of the hazard index and vulnerability index. Hazard and
vulnerability are two important factors of flood risk, thus, αH = αV = 0.5. To ensure the
calculation results are comparable and standard, all the indicators for flood risk assessment
were standardized using the minimum-to-maximum standardization method, and the
values of the risk ranges from 0 to 1.

2.3.3. Frequency Statistics Analysis

In this study, frequency statistics of flood risk of cities were used to analyze the changes
in the number of cities that appear in different risk intervals. Frequency statistical analysis
can help determine the number and distribution of cities in different risk intervals. It can
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also show the concentration and difference of flood risk in different time periods. To get
the frequency of the flood risk, we firstly broke the risk values of 0–1 into 10 intervals, with
0.1 as the interval range. Then, the number of cities that appear in different risk intervals
was counted. Finally, the graph of frequency statistics of flood risk of cities in the YREB
was formed to investigate the changes in urban flood risk in different periods.

3. Results
3.1. The Temporal Changes of Flood Risk in the YREB during 2020–2050

In this study, the flood risk in the YREB was assessed under different SSP-RCP
scenarios during 2020–2050 and the risk was divided into five levels, namely high risk
(R > 0.85), high-middle risk (0.75 < R ≤ 0.85), middle risk (0.65 < R ≤ 0.75), middle-low risk
(0.55 < R ≤ 0.65), and low risk (R ≤ 0.55). The evolution characteristics of the proportion of
areas of different risk levels in the YREB under different scenarios were analyzed (Figure 2).
It showed that, at the grid level, the area of middle-low risk accounted for the most, with
around 60% of the total area of the YREB, meaning that most areas faced potential flood
risk. The high-risk area of flood disasters in the YREB had different characteristics under
different scenarios. The area of high-risk fluctuated first and then decreased under all
scenarios. Under the SSP126 scenario, the high-middle risk areas would be relatively high
from 2020 to 2035. The dependence on fossil energy and population growth would be
slow, and the risk of flood disasters could be reduced after 2035 under the SSP126 scenario.
Under the SSP370 scenario, which is highly dependent on fossil energy, the population will
grow rapidly, and the risk of flood disasters will increase. In 2045, the area with high risk
of flood disasters could be three times that under the SSP126 scenario. Compared to the
SSP126, SSP245, and SSP370 scenarios, the risk of flood disasters in the YREB under SSP585
showed an increasing trend. In 2040, the areas of high-risk flood disasters in SSP370 and
SSP126 scenarios were both at a relatively low level. However, the area of high-risk flood
disaster in the SSP585 scenario reached 2.09%, which was 1.66 and 2.55 times that of the
SSP370 and SSP126 scenarios, respectively.
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scenarios during 2020–2050.



Sustainability 2021, 13, 12097 8 of 17

Except for the SSP585 scenario, SSP126, SSP245, and SSP370 were widely used in
extreme climate studies. In this study, we selected the SSP370 scenario to clarify the
changes of flood risk among cities in the YREB. At the city level, based on the frequency
distribution patterns of the values of flood risk of cities in the YREB during 2020–2050
under the SSP370 scenario (Figure 3), it could be seen that the risk distribution only had
one peak, and the peak shifted to a higher value interval from 2020 to 2050. It showed
that flood risk had an overall increasing trend in the YREB. Specifically, the frequencies of
flood risk peaked in the interval of 0.7–0.8 (56 times), 0.8–0.9 (46 times), 0.8–0.9 (58 times),
and 0.8–0.9 (46 times) in 2020, 2030, 2040, and 2050, respectively, indicating that around
half of the cities in the YREB had faced high flood risk. Compared with 2020, the risk of
flood disaster showed an increasing trend in 2030, 2040, and 2050. The frequency in the
interval of 0.8–0.9 decreased from 58 to 46 during 2040–2050. However, the frequency in
the interval of 0.0–1.0 increased from 26 to 40 during this period. It can be seen that flood
risk of most cities was high and did not decrease much during 2040–2050. There was still
great potential for cities to improve resilience, including increasing the density of roads,
improving the drainage network system, and strengthening infrastructure construction.
Overall, flood risk of cities showed an increasing trend from 2020 to 2050 in the YREB and
some measures should be taken to improve urban resilience.
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Figure 3. Frequency statistics of flood risk of cities in the YREB during 2020–2050 under SSP370
scenario.

3.2. Spatial Changes of Flood Risk in the YREB during 2020–2050

The spatial pattern of flood risk in the YREB showed that, under the sustainable
development-low emission (SSP126) scenario, the high-risk areas (R > 0.85) were mainly
concentrated in the northern regions of the lower reaches of the YREB (Shanghai, Changzhou,
etc.) (Figure 4). The distribution of high-middle risk area (R > 0.65) showed obvious
agglomeration characteristics, which were mainly manifested with Chengdu and Wuhan
as the agglomeration centers in the upper and middle reaches of the YREB. The area of
high-risk regions in the YREB increased and then decreased during 2020–2050, with the
highest in 2030, accounting for 2.16% of the total area of the YREB, and the lowest is in 2040,
accounting for only 0.82% of the total area. In 2030, the disaster-prone areas of the YREB
were mainly concentrated in Chengdu and the middle and lower reaches of the Yangtze
River, and the high-risk areas were concentrated along the Yangtze River (Shanghai). The
sustainable development pathway (SSP126) met the requirements of the United Nations
Sustainable Development Goals. Therefore, with the characteristics of low vulnerability
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and low mitigation challenges (SSP126), the risk of flood disasters in the YREB showed a
decreasing trend.
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Under the moderate development-medium emission (SSP245) scenario, the high-risk
areas (R > 0.85) were also mainly concentrated in the northern regions of the lower reaches
(Shanghai, Nanjing, Bengbu, and Bozhou), and Yichun city in the middle reaches of the
YREB (Figure 5). The high-middle risk areas were mainly concentrated in the middle and
lower reaches of the YREB. The area of the high-risk regions in the YREB increased and
then decreased during 2020–2050, with highest in 2040, accounting for 2.65% of the total
area of the YREB, and the lowest in 2020, accounting for 1.07% of the total area of the
YREB. In 2040, the disaster-prone areas of the YREB were mainly concentrated in Chengdu
and the middle and lower reaches of the YREB. The high-risk areas were concentrated in
Shanghai, Jiangsu and Yichun, Jiangxi. The medium development path (SSP2) has made
progress in terms of technological progress, energy consumption, etc. In addition, the
income levels of various countries are approaching, and the social vulnerability presents
moderate characteristics. With the addition of moderate radiative forcing, compared
with the sustainable development-low emission (SSP12.6) scenario, the YREB has higher
socio-economic losses due to flood disasters caused by climate change.
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Under the local development-higher emissions (SSP370) scenario, the high-risk areas
(R > 0.85) were also mainly concentrated in the northern regions (Shanghai, Suzhou,
Jiaxing) in the lower reaches of the YREB (Figure 6). The area of the high-risk regions in
the YREB increased first and then decreased during 2020–2050, with the highest in 2030,
accounting for 1.47% of the total area of the YREB, and the lowest in 2040, accounting for
1.26% of the total area of the YREB. In 2030, the disaster-prone areas of the YREB were
mainly concentrated in Chengdu and the middle and lower reaches. High-risk areas were
concentrated in Shanghai, Suzhou, Jiaxing, Nanchang, and Yichun. The local development
path (regional competition path) relies heavily on fossil fuel energy. The regional division
of labor lacks coordination, and the trend of deglobalization is obvious. Most countries
maintain a growing income level of residents, and their social vulnerability presents high
characteristics. Considering the impacts of relatively high radiative forcing, compared with
SSP126 and SSP245 scenarios, the YREB has higher socio-economic losses due to climate
change induced floods. In 2030, the economic loss per unit area of the high-risk area under
the SSP370 scenario was 1.1 times that under the SSP126 scenario; in 2040, the area of the
high-risk area under the SSP370 scenario was 1.54 times that under the SSP126 scenario.
Therefore, under the SSP370 scenario, climate change has the most extensive damage and
higher GDP losses, especially in poorer and warmer regions. This unequal development
would lead to higher economic losses.
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Under the conventional development-high emission (SSP585) scenario, the high-risk
areas (R > 0.85) were also mainly concentrated in the northern regions of the lower reaches
of the YREB (Figure 7). The area of the high-risk region in the YREB showed a fluctuating
trend, with the highest in 2040, accounting for 2.09% of the total area of the YREB, and the
lowest in 2030, accounting for 0.84% of the total area of the YREB. In 2040, the high-risk
areas of the YREB would be concentrated in Shanghai, Jiangsu, and Jiaxing. Under the
conventional development path (fossil fuel-based development path), the socio-economic
development is rapid, extreme poverty is basically eliminated and education is popularized
on a large scale, but a large amount of greenhouse gas is emitted, which has high social
vulnerability. Therefore, climate change would cause great socio-economic losses in this
scenario. The regions with high vulnerability may face greater risks of flood disasters.
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Based on the comparison of the spatiotemporal changes of flood risk under different
SSP-RCP scenarios, it can be seen that in terms of flood risk, a larger area of high-risk
corresponded to higher emission scenarios, which were mostly concentrated in middle
and lower reaches of the YREB and the cities of Chongqing, Chengdu during 2020–2050.
In middle and lower reaches of the YREB, flood risk showed an increasing trend and
the regions with high vulnerability would have greater socio-economic losses. Notably,
considering all cities, scenarios, and future periods, high-emission scenarios exhibited an
increasing frequency of high risk.

4. Discussion

Flood risk was subject to changes of socio-economic development and the possible
influence of a changing climate. According to the risk definition proposed by the IPCC,
many studies have assessed flood risk by considering comprehensive socio-economic and
ecological impacts. Zhang et al. (2020) revealed that high-risk areas were concentrated
in the middle and lower reaches of the Yangtze River Basin, the eastern coastal regions,
Chongqing and Sichuan [39]. In addition, flood disasters could trigger natural hazards.
Gao et al. (2021) found that the risks triggered by flood disasters were concentrated in the
eastern area and central area [40]. Considering the impacts of climate change, the extreme
precipitation had increasing trends in the middle and lower reaches of the YREB [41,42].
CMIP has provided the latest climatic data for future climate scenarios, and it has been
widely used in many studies. For example, Bai et al. (2019) assessed the impact of climate
change on flood risks and found that the high emission scenario resulted in increasing
flood risks in the future [43]. The high-risk areas were mainly distributed in coastal regions
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in southeastern China and the eastern part of Sichuan under RCP8.5 scenario [44]. In this
study, the results were similar to the above-mentioned studies that the area of high flood
risk was mainly concentrated in the lower reaches of the YREB, Chongqing and Sichuan.

Water-related disasters can be categorized as floods, storms, waves, slides, and
droughts (Table 4). In the upper reaches of the YREB, flash floods, landslides, and droughts
are the main types of water-related disasters. In terms of Sichuan province, due to the
low terrain and numerous mountains, flash floods are more likely to occur in this region.
Chengdu has a high density of population and economy, which increases the potential
vulnerability and flood risk. The average annual flood risk is about 0.77 during 2020–2050.
Landslides can be initiated by storms, precipitation, and glacial melt. The development
of mountainous terrain has increased the risk from landslide hazards. Chongqing is a
typical city with mountains accounting for 76% of the area and hills for 22%. Affected by
climate change, landslides would become the main types of secondary disaster related
with flood disaster. Due to the changes of precipitation, droughts are more likely to happen
in Guizhou province. Tongling is a high-risk city with average annual flood risk of 0.76. In
the middle reaches of the YREB, fluvial floods are main types of water-related disasters.
This is because Hunan, Hubei, and Jiangxi provinces have dense distributions of rivers and
lakes. The extreme precipitation would increase the frequency of fluvial floods. Wuhan and
Nanchang are high-risk cities in Hubei and Jiangxi provinces, with both average annual
flood risks of 0.81. Factors such as rapid urbanization and imperfect drainage system have
also caused frequent waterlogging in Wuhan. In the lower reaches of the YREB, fluvial
floods and storms are two main types of water-related disaster risk. These provinces and
cities mostly are coastal areas and more likely to be affected by storms. Nantong, Jiaxing,
and Huai’an are high-risk cities in Jiangsu, Zhejiang, and Anhui provinces, with average
annual flood risks of 0.89, 0.87, and 0.82, respectively. In addition, saltwater intrusion
is most likely to occur in Shanghai. Due to increased demand from economic activities,
largescale saltwater intrusion has threatened the water supply in the Yangtze Delta re-
gion, especially Shanghai. Therefore, policy makers should focus on different types of
water-related disaster mitigation measures, especially for flood disasters.

Table 4. The main types of water-related disasters in the YREB.

The YREB Area The Main Types of Water-Related
Disasters High-Risk Regions The Average Risk

Index Scenario

The upper reaches of
the YREB

Sichuan Flash floods, landslides Chengdu 0.77 SSP370
Chongqing Flash floods Chongqing 0.67 SSP370

Yunnan Landslides, droughts Kunming 0.63 SSP370
Guizhou Droughts, floods Tongling 0.76 SSP370

The middle reaches
of the YREB

Hunan Fluvial floods Changsha 0.76 SSP370
Hubei Fluvial floods, waterlogging Wuhan 0.81 SSP370
Jiangxi Fluvial floods Nanchang 0.81 SSP370

The lower reaches of
the YREB

Anhui Fluvial floods, storms Huai’an 0.82 SSP370
Jiangsu Fluvial floods, storms Nantong 0.89 SSP370

Zhejiang Fluvial floods, Storms Jiaxing 0.87 SSP370

Shanghai Storms, saltwater intrusion,
waterlogging Shanghai 0.87 SSP370

In addition, flood risks showed different spatial patterns under various SSP-RCP
scenarios. Extreme precipitation is recognized as a key factor of climate changes. In terms
of hazard factor, extreme precipitation can increase the frequency of flood disasters. The
different socio-economic pathways would lead to deviations in vulnerability index. The
socio-economic pathway has influenced the growth rates of population and GDP, which
can result in various socio-economic losses. The flood risk of the YREB presented a spatial
pattern of low in the west and high in the east, with high risk mainly concentrated in
the cities in the lower reaches of the YREB, Chongqing, and Sichuan. The YREB has the
problem of unbalanced economic development level. The eastern region accounts for
less than one third of the total area of the YREB, but it contributes more than 50% of
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GDP. Moreover, the spatial distribution of resources and productivity is one of the main
reasons for the unbalanced economic development between regions. The eastern regions
are mostly coastal areas, which have high levels of economic development and productivity.
These factors can increase the vulnerability in the eastern regions. In addition, affected
by the terrain, the eastern regions are more likely to be affected by extreme precipitation.
Therefore, the flood risk in eastern regions is higher than that in the western regions.

The flood risk of the YREB changed in different time periods and regions, which
may depend on different factors. For example, the urbanization process of YREB and
extreme precipitation are the major factors affecting the flood risk. The rapid urbanization
may cause potential disruptive impacts, including large flood-prone areas, high flood
disasters, and environmental problems [45]. The growing population would increase
vulnerability, as vulnerability-prone areas were mainly concentrated in densely populated
areas. Satellite imaging revealed that there was an increased proportion of the population
exposed to floods, and climate change would increase further the proportion of the affected
population [46,47]. In addition, flood risk can be also affected by topography, the distance
to rivers, and human activities. In future research, the comprehensive assessment of flood
risk should combine more various factors under more climate change scenarios. Moreover,
it is essential to develop models of risk assessment and decision support, which can better
cope with challenges caused by climate change in the future. However, there were still
some uncertainties existing in various factors when using the CMIP data to assess future
flood risk, including the resolution of climate models, scenario parameters, as well as the
estimation of GDP and population. Therefore, the flood risk assessment accuracy can be
further improved by downscaling climate parameters in the future.

The flood risk assessment results indicated that the lower reaches of the YREB and
coastal regions would be a key area for future climate change adaptation and risk mitigation.
Flood mitigation infrastructure and natural ecosystems could reduce hazard of the flood
disasters. Satellite technology and monitoring systems can track changes of flood disasters
and population, which could help improve resilience in the YREB. Risk management and
mitigation can be achieved with these measures in the future. Furthermore, the government
should focus on flash floods and landslides in the upper reaches of the YREB, fluvial floods
in the middle reaches of the YREB, fluvial floods and storms in the lower reaches of the
YREB. Through resilience improvement, construction of drainage systems, application of
satellite technology, and disaster monitoring and early warning systems, the mitigation of
flood risk and sustainable development of the YREB can be realized.

5. Conclusions

Affected by climate change, the frequency, intensity, and severity of extreme events
have increased, hindering the sustainable development of the economy of the YREB. Thus,
assessing the risk of flood disasters in the YREB under the changing environment is an
important basis for improving urban risk management capabilities and achieving regional
sustainable development. This study constructed a flood risk assessment index system,
then analyzed the temporal and spatial changes of flood risk in the YREB during 2020–2050
under four climate change scenarios of SSP126, SSP245, SSP370, and SSP585. It showed that
the characteristics of flood risk in the YREB were different under different scenarios. The
area of middle-low risk accounted for 60% of the total area of YREB and area of high-risk
fluctuated first and then decreased under the four scenarios, with the area of high-risk being
largest in the future under the SSP585 scenario. Due to high dependence on fossil energy,
under the SSP585 scenario, the flood risk showed an increasing trend during 2020–2050.
The area of high-risk flood disaster in 2040 under the SSP585 scenario was 1.66 and 2.55
times that under the SSP370 and SSP126 scenarios, respectively. In addition, under the
SSP370 scenario, frequency statistics of flood risk of cities indicated that around half of the
cities in the YREB had faced high flood risk and the risk had showed an increasing trend
from 2020 to 2050.
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The spatial pattern of flood risk in the YREB showed that high-risk areas were mainly
concentrated in the lower reaches of the YREB, Chongqing, and Sichuan. The overall
spatial pattern of flood risk was low in the west and high in the east of the YREB. In
addition, the risk gradually shifted from regions of the lower reaches of the YREB (Shanghai,
Jiaxing, and Suzhou) to that of the middle reaches (Jiangxi, Hubei, Anhui), and gradually
spread outward from Chengdu in the upper reaches during 2020–2050. Based on the
comparison of the spatiotemporal changes of flood risk under different SSP-RCP scenarios,
the results indicated that the high-risk areas had an increasing trend under high emission
scenarios SSP370 and SSP585. Therefore, assessing flood risk under climate change has
great significance for risk reduction and risk management.
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