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Abstract: With the rapid development of China’s industrialization, air pollution is becoming more
and more serious. Predicting air quality is essential for identifying further preventive measures
to avoid negative impacts. The existing prediction of atmospheric pollutant concentration ignores
the problem of feature redundancy and spatio-temporal characteristics; the accuracy of the model
is not high, the mobility of it is not strong. Therefore, firstly, extreme gradient lifting (XGBoost)
is applied to extract features from PM2.5, then one-dimensional multi-scale convolution kernel
(MSCNN) is used to extract local temporal and spatial feature relations from air quality data, and
linear splicing and fusion is carried out to obtain the spatio-temporal feature relationship of multi-
features. Finally, XGBoost and MSCNN combine the advantages of LSTM in dealing with time
series. Genetic algorithm (GA) is applied to optimize the parameter set of long-term and short-term
memory network (LSTM) network. The spatio-temporal relationship of multi-features is input into
LSTM network, and then the long-term feature dependence of multi-feature selection is output to
predict PM2.5 concentration. A XGBoost-MSCGL of PM2.5 concentration prediction model based on
spatio-temporal feature selection is established. The data set comes from the hourly concentration
data of six kinds of atmospheric pollutants and meteorological data in Fen-Wei Plain in 2020. To
verify the effectiveness of the model, the XGBoost-MSCGL model is compared with the benchmark
models such as multilayer perceptron (MLP), CNN, LSTM, XGBoost, CNN-LSTM with before and
after using XGBoost feature selection. According to the forecast results of 12 cities, compared with
the single model, the root mean square error (RMSE) decreased by about 39.07%, the average MAE
decreased by about 42.18%, the average MAE decreased by about 49.33%, but R2 increased by 23.7%.
Compared with the model after feature selection, the root mean square error (RMSE) decreased by an
average of about 15%. On average, the MAPE decreased by 16%, the MAE decreased by 21%, and R2

increased by 2.6%. The experimental results show that the XGBoost-MSCGL prediction model offer a
more comprehensive understanding, runs deeper levels, guarantees a higher prediction accuracy,
and ensures a better generalization ability in the prediction of PM2.5 concentration.

Keywords: XGBoost; MSCNN; genetic algorithm; LSTM; feature selection; spatiotemporal
feature extraction

1. Introduction

With the increasing of environmental pollution, the weather issue of haze is spreading
in China’s major cities. PM2.5 has become a major problem of air pollution. Recent studies
have shown that PM2.5 leads to the occurrence of respiratory diseases, immune diseases,
cardiovascular and cerebrovascular diseases and tumors [1,2]. Accurate prediction and
early warnings of the concentration of PM2.5 are of great significance. Many scholars
have begun to integrate multiple data features, but too many data and factor features
will affect the prediction effect, and redundant features will affect the performance of
model prediction. Therefore, many scholars have begun to use feature selection to make
predictions. For example: In power system, cooperative search algorithm is used to select
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power load features [3], and minimum redundancy and maximum correlation are used
to obtain the best feature set of power load [4]; In wind energy, the multi-agent feature
selection method is used to establish the wind speed prediction model [5]; In the stock
market, using random forest combined with depth generation model is used to predict
the daily stock trend [6]; In tourism, random forest is used for feature selection to predict
the number of visitors [7]; In agriculture, model feature (MF) and principal component
analysis (PCA) is combined with regression algorithm to predict the water content of rice
canopy [8]; In the economy, the genetic algorithm-based feature selection (GAFS) method
combined with random forest is used to estimate the per capita medical expenses [9]; In
the aspect of transportation, XGBoost (extreme gradient enhancement) screening feature
combined with long-term and short-term memory network is used to predict airport
passenger flow [10].

Aiming at air quality prediction, the main models used in the existing research include
linear regression model [11], grey model [12], geographical weighted regression model [13],
mixed effect model [14] and generalized weighted mixed model [15]. In essence, these sta-
tistical models are still linear, although the complex relationship between PM2.5 and other
factors is simplified in the model, the prediction result of PM2.5 concentration still remain
uncertain. With the development of computer technology, machine learning (including
deep learning) methods are increasingly used in PM2.5 concentration estimation due to their
strong nonlinear modeling ability, such as support vector regression (SVR) [16], k-nearest
neighbor (KNN) [17], random forest (RF) [18], multilayer neural network (MLP) [19], arti-
ficial neural network (ANN) [20], long-term memory network (LSTM) [21], convolution
neural network (CNN) [22], and chemical transport model (CTM) [23]. These models all
show better performance than traditional statistical models in predicting PM2.5 concentra-
tion, and have stronger nonlinear expression capabilities.

In order to better predict air quality, many scholars have also begun to apply feature
selection to air pollutants. Jin et al. [24] proposed a hybrid deep learning prediction that
decomposes PM2.5 data through empirical mode decomposition (EMD) and Convolutional
Neural Network (CNN) so that an air pollution prediction model can be established.
Masmoudi et al. [25] combined the multi-objective regression method with random forest
to perform feature selection and predict the concentration of multiple air pollutants. Mehdi
et al. [26] studied the impact of feature importance on PM2.5 prediction in Teheran urban
area, and used random forest, XGBoost and deep learning technology, of which XGBoost
was used to obtain the best model. Zhang et al. [27] used XGBoost model to screen out
the most critical characteristics and predict the PM2.5 pollutant concentration in Beijing
in the next 24 h. Ma et al. [28] used XGBoost and grid importance to predict PM2.5 in
the Northwestern United States. Zhai et al. [29] used XGBoost for feature screening and
predicted the daily average concentration of PM2.5 in Beijing area of GA-MLP. Gui et al. [30]
used XGBoost model to build a virtual ground-based PM2.5 observation network at 1180
meteorological stations in China, as a result, he found that XGBoost model has strong
robustness and accuracy for PM2.5 prediction.

At present, some researchers use deep learning method to estimate the spatial and
temporal distribution of PM2.5 concentration. Although the traditional prediction model
adds multivariate features, it ignores the impact of redundant features on the predic-
tion results, resulting in the impact of features with little correlation and importance on
the prediction results. The scale of relevant models is still relatively small, and it still relies
on artificial feature selection to a large extent, and does not make full use of deep learning
method to give full play to the advantages of deep learning through deeper and wider
network structure. In the related research on the prediction of PM2.5 using feature selection,
the prediction is mainly based on a single model, not the perspective of spatio-temporal
features, and the importance of feature selection is too emphasized in the related research
on the application of feature selection for prediction. The problem of insufficient precision
still remains unsolved. The single or combined PM2.5 concentration prediction model does
not show strong robustness, and the degree of model optimization is not high. Existing



Sustainability 2021, 13, 12071 3 of 24

researches are limited to cities in specific regions, ignoring the predictive performance of
the model itself, resulting in poor applicability and migration of the model used.

The main contributions of this paper are as follows:

(1) In terms of the research object, the air quality of Fenwei plain is worse than that
of other regions in China. Therefore, it is typical to predict and analyze the PM2.5
concentration of the cities in this region. In this paper, the PM2.5 concentration of
12 cities in this region is predicted. Through the simulation and comparison in 12
cities, the portability and applicability of this study are verified.

(2) In terms of prediction model, firstly, Pearson correlation analysis and XGBoost are
used to select the features of PM2.5 to solve the problem of feature redundancy, and
the optimal features are extracted through one-dimensional multi-scale convolution
kernel to solve the local time relationship and spatial feature relationship in air quality
data. Then the parameters of LSTM are optimized by genetic algorithm to solve
the accuracy problem of the model. Finally, the extracted features are input into
LSTM for prediction. An XGBoost MSCGL (XGBoost-MSCNN-GA-LSTM) model
is proposed to improve the PM2.5 prediction of Fenwei plain. The combined model
constructed in this paper not only conforms to the temporal characteristics of pre-
diction data, solves the problem of feature redundancy and insufficient accuracy of
the traditional machine model, but also follows the optimal and simplest principle in
the nesting of the model.

(3) In terms of prediction results, the experiment also discusses the PM2.5 h concentration
prediction under the influence of different characteristics. The prediction results show
that appropriate input characteristics will help to improve the prediction accuracy of
the model, and the model has been proved for many times that the prediction accuracy
of the combined prediction model proposed in this paper is higher than that of a
single deep learning model. After many experiments, it is found that the prediction
results of XGBoost mscgl are better than XGBoost CNN, XGBoost LSTM, XGBoost
MLP and XGBoost CNN LSTM models. The advantages of the proposed model are
verified from multiple angles and multiple evaluation indexes, and the experimental
results show that the proposed model has good robustness.

2. Study Area and Data
2.1. Study Area

Fenwei plain is the general name of Fenhe plain, Weihe plain and its surrounding
terraces in the Yellow River Basin. It ranges from the north, Yangqu County in Shanxi
Province to the south, Qinlin Moutains in Shaanxi Province, and to the west, Baoji City in
Shaanxi Province. It is distributed in Northeast southwest direction, about 760 km long and
40–100 km wide. It has a population of 55,5445., including Xi’an, Baoji, Xianyang, Weinan
and Tongchuan in Shaanxi Province, Taiyuan, Jinzhong, Lvliang, Linfen and Yuncheng
in Shanxi Province, and Luoyang and Sanmenxia in Henan Province. Since 2019, Fenwei
plain is still the area with the highest PM2.5 concentration in China. The average PM2.5
concentration in autumn and winter is about twice as much as other seasons, and the days
of heavy pollution account for more than 95% of the whole year [31]. In 2020, the average
concentration of PM2.5 in Fenwei plain was 70 µg/m3, and serious pollution occurred in
152 days. Table 1 shows the factors of air pollutants [32].

Table 1. Air Pollutant Factors of PM2.5 Concentration Prediction Model.

Variable Unit Variable Unit

PM2.5 µg/m3 CO mg/m3

PM10 µg/m3 NO2 µg/m3

SO2 µg/m3 O3_8h µg/m3
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2.2. Study Data
2.2.1. Air Quality Data

Since December 2013, the China Environmental Protection Agency (EPA) has pub-
lished open air quality observation data from China’s ground monitoring stations. The study
data in this article comes from the atmospheric pollutants of 12 cities in Xi’an, Baoji, Xi-
anyang, Weinan, Tongchuan, Taiyuan, Jinzhong, Luliang, Linfen, Yuncheng, Luoyang, and
Sanmenxia from 1 January 2020 to 31 December 2020 (PM2.5, PM10, NO2, SO2, O3, CO)
hourly concentration data set, Table 1 is the atmospheric pollutant factors of PM2.5 concen-
tration prediction model. There are 2,838,240 pieces of air quality data and meteorological
data in 12 cities.

2.2.2. Meteorological Data

The meteorological data of this paper come from the Chinese weather website plat-
form. As shown in Table 2, through data preprocessing, 21 types of meteorological factors
are selected in this paper, and they are average surface temperature, maximum surface
temperature, minimum surface temperature, daily average wind speed, daily maximum
wind speed, daily maximum wind direction, maximum wind speed, maximum wind
direction, daily precipitation of maximum wind speed, 20–8 h (mm) precipitation, 8–20 h
(mm) precipitation, 20–20 h (mm) precipitation, average temperature, maximum temper-
ature, minimum temperature, daily average pressure, daily maximum pressure, daily
minimum pressure, sunshine hours, daily average relative humidity, daily minimum
relative humidity, and season.

Table 2. Meteorological Factors of PM2.5 Concentration Prediction Model.

Variable Unit Abbreviation Variable Unit Abbreviation

Average
surface

temperature

◦C avg (ST) Average
temperature

◦C avg (T)

Maximum
surface

temperature

◦C high (ST) Maximum
temperature

◦C high (T)

Lowest
surface

temperature

◦C low (ST) Minimum
temperature

◦C low (T)

Average
wind speed m/s avg (m/s) Sunshine

duration h sunshine (h)

Maximum
wind speed m/s high (m/s) Average

humidity % avg (%)

Daily
maximum

wind speed
and direction

- highdirection Lowest
humidity % low (%)

Extreme
wind speed m/s extrem (m/s) Average air

pressure hPa avg (hPa)

Extreme
wind

direction
- extremdirection

Maximum
daily

pressure
hPa high (hPa)

20–8 h (mm)
precipitation mm 20–8 (mm) Lowest daily

pressure hPa low (hPa)

8–20 h (mm)
precipitation mm 8–20 (mm) Season - season

20–20 h (mm)
precipitation mm 20–20 (mm)
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2.3. Data Processing
2.3.1. Division of Data Set

The data set needs to be divided before it can be input to the model for training.
Otherwise, the prediction model will have no additional data for effect evaluation, and
the training results may be overfitted due to training on all data. In the experiment, each
data set is divided into training set and test set, after that, the training set is divided into
training set and verification set. The data ratio of training set, test set, and verification
set is 6:2:2. The training set mainly learns the sample data set and establishes a classifier
by matching some parameters. A classification method is established, which is mainly
used to train the model. The verification set is used to determine the network structure or
the parameters controlling the complexity of the model, and select the number of hidden
units in the neural network. The test set is used to test the performance of the finally
selected optimal model. It mainly tests the resolution of the trained model (recognition
rate, etc.).

2.3.2. Raw Data Processing
Identification and Processing of Abnormal Data

Abnormal data may be caused by errors in the process of collecting and recording
data. Abnormal data will affect the prediction accuracy of the model, so it is necessary to
identify and process the abnormal data. Outlier detection is used to find outliers. Here,
quartile analysis is used to identify outliers. First, the first quartile and the third quartile of
variables are solved. If there is a value less than the first quartile or greater than the third
quartile, the value is determined as an outlier. The horizontal processing method is used to
correct the abnormal data.

The calculation formula of horizontal treatment method is shown in Equations (1) and (2)
If, {

|yi − yi−1| < εa
|yi − yi+1| > εa

(1)

Then,

yt =
yt+1 + yt−1

2
(2)

Among them, yi represents the concentration of air pollutants in a certain day or
hour, yi−1 represents the concentration of air pollutants in the previous day or hour, and
yi+1 represents the concentration of air pollutants in the next day or hour, εa represents
the threshold.

Data Normalization

Due to the different meanings and dimensions of physical quantities such as air
pressure and evaporation, the input to the prediction model will have an impact on
results., so it is necessary to normalize such data. The input of normalized data into
the prediction model can effectively reduce the training time of the model, accelerate
the convergence speed of the model, and further improve the prediction accuracy of
the model. The normalized calculation formula of the data is shown in Equation (3). This
method realizes the equal scaling of the original data [33]:

xnorm =
x− xmin

xmax − xmin
(3)

Among them, xnorm is the normalized value, x is the original data, xmin is the minimum
value in the original data, xmax is the maximum value in the original data, and the size of
the normalized data is constrained between 0 to 1 interval.
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3. Method
3.1. XGBoost

XGBoost is an extreme gradient boosting decision tree, which belongs to a machine
learning algorithm. The algorithm introduces regular items during the generation period
and prunes at the same time, making the algorithm more efficient and more accurate. [34].

XGBoost (eXtreme Gradient Boosting) can be expressed in a form of addition, as
shown in Equation (4):

ŷi =
K

∑
k=1

fk(xi), fk ∈ F (4)

Among them, ŷi represents the predicted value of the model; K represents the number
of decision trees, fk represents the k sub-models, xi represents the i-th input sample;
F represents the set of all decision trees. The objective function of XGBoost consists of two
parts: a loss function and a regular term, as shown in Equations (5) and (6):

L(ϕ)t =
n

∑
i=1

l(yi, ŷ(t−1)
i + ft(xi)) + Ω( fk) (5)

Ω( fk) = γT +
1
2
λ‖ω‖2 (6)

Among them, L(ϕ)t represents the objective function of the tth iteration, ŷ(t−1)
i rep-

resents the predicted value of the (t− 1) iteration; Ω( fk) represents the regular term of
the model of the tth iteration, which plays a role in reducing overfitting; γ and λ repre-
sent the regular term Coefficient to prevent the decision tree from being too complicated;
T represents the number of leaf nodes of the model.

Using Taylor’s formula to expand the objective function shown in Equation (7), we
can get:

L(φ) ∼=
n
∑

i=1
[gi ft(xi) +

1
2 hi f 2

t (xi)] + γT + 1
2λ

T
∑

j=1
ω2

j

∼=
T
∑

j=1
[( ∑

i∈Ij

gi)ωj +
1
2 ( ∑

i∈Ij

hi + λ)ω2
j ] + γT

(7)

Among them, gi represents the first derivative of sample xi; hi represents the second
derivative of sample xi; ωj represents the output value of the j-th leaf node, and Ij represents
the sample subset of the value of the j-th leaf node.

It can be seen from Equation (7) that the objective function is a convex function. Taking
the derivative of ωj and making the derivative function equal to zero, the objective function
can reach the minimum value of ωj, as shown in Equation (8):

ω∗j = −
∑

i∈Ij

gi

∑
i∈Ij

hi + λ
(8)

Equation (9) can be used to evaluate the quality of a tree model. The smaller the value,
the better the tree model. It can be easily concluded that we can obtain the scoring formula
for the tree to split the node:

L̂(φ)min = −1
2

T

∑
j=1

( ∑
i∈Ij

gi)
2

∑
i∈Ij

hi + λ
+ γT (9)
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Equation (10) is used to calculate the split node of the tree model.

Gain = −1
2
[

( ∑
i∈Ij

gi)
2

∑
i∈Ij

hi + λ
+

( ∑
i∈IR

gi)
2

∑
i∈IR

hi + λ
+

(∑
i∈I

gi)
2

∑
i∈I

hi + λ
]− γ (10)

3.2. One-Dimensional Multi-Scale Convolution Kernel (MSCNN)

Convolutional neural network has been successfully applied to image recognition
direction, which verifies that the network has a strong extraction of feature map. Based
on the analysis of the data set, it is found that the characteristics of the data are multi
features, shown in the form of numerical value, rather than in the form of feature map.
Therefore, this study preprocesses the data, combines the characteristics of the data into a
feature map, and inputs it to the convolution neural network to complete the extraction
of the spatial and temporal characteristics of the air pollutant concentration data and
meteorological factors [35]. The spatiotemporal feature extraction of single factor PM2.5
is shown in Figure 1. Among them, the feature map is traversed from left to right on
the data feature axis through a one-dimensional multi-scale convolution kernel to complete
the convolution operation, the number of steps is 1, and the feature vectors output by
different convolution kernels are spliced and fused to obtain a single factor. The spatial
characteristics of the relationship. On the time axis, as the convolution kernel traverses
from top to bottom to complete the convolution operation, the number of steps is 1, and
the local trend of the single factor changing over time can be obtained. Finally, the spliced
and fused feature vectors are merged in the data feature direction, and the spatio-temporal
features of multi-site PM2.5 are output.

Figure 1. One-dimensional convolution feature extraction process diagram.

The following is the formula derivation of MSCNN’s convolution operation on
the special whole. The feature map contains N sample data and M air pollutant factors.
Then the feature map formula of single factor i is as shown in Equations (11) and (12):

Xi = [x1
i , x2

i , x3
i , . . . , xN

i ]
T

(11)

Xt:t+T−1
i = [xt

i , xt+1
i , xt+2

i , . . . , xt+T−1
i ]

T
(12)
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In the formula, Xt
i = [xt

i , xt+1
i , xt+2

i , . . . , xt+T−1
i ] ∈ R represents the vector of the single

factor i at time t, Xt:t+T−1
i represents the T group vector of Xi in the [t,t + T− 1] time zone,

and T represents the matrix transpose.
The convolution operation multiplies the weight matrix Wj by Xt:t+T−1

i .

(1) Single-factor spatial feature relationship: multiply Wj by Xt:t+T−1
i on the data

feature axis.
(2) Single factor time change feature: multiply x by y on the time feature axis.

When the first convolution kernel traverses the entire feature map on the time axis,
and the number of steps is 1, the feature vector aj

i is obtained, and its size is N − T + 1, and
the eigenvectors obtained by multiple convolution kernels Z merge [N − T + 1]× Z size
Ai in the data feature direction, and Ai represents the single-factor spatiotemporal feature
matrix, as shown in Equations (13) and (14).

aj
i= [aj

t+T−1,j, aj
t+T,j, aj

t+T+1,j, . . . , aj
N

]
(13)

Ai= [a1
n, a2

n, a3
n, . . . , aZ

n

]
(14)

So far, the single-factor spatiotemporal feature extraction has been completed, but the
data set also contains other features, such as NO2, SO2, CO, etc. A total of M factors, so
we can extract the M factors through the same operation as above, and then they can be
extracted. Single-feature spatio-temporal feature matrix, and then linearly splicing and
fusion them to form a multi-factor fusion spatio-temporal feature matrix A, as shown in
Equation (15):

A= [A1, A2, A3, . . . , AM] (15)

Based on MSCNN convolution neural network, the space-time characteristics of
air quality data are extracted. This method makes a simple transformation of the two-
dimensional feature map to form a side-by-side one-dimensional feature map, which makes
the network training show better generalization ability. Meanwhile, the convolution neural
network automatic feature extraction method replaces the traditional artificial feature
selection method, which makes the feature extraction more comprehensive and deeper.

3.3. Genetic Algorithm

The genetic algorithm is a method to perform crossover and mutation operations on
feasible solutions in the population, so the objective function of the genetic algorithm does
not require derivable or continuous conditions. The genetic algorithm applies a probabilis-
tic optimization method to automatically obtain and guide the optimized search space,
and adaptively adjust the search direction. The genetic algorithm is simple, universal, and
suitable for parallel processing. The specific steps of the algorithm are shown in Figure 2.

Figure 2. GA algorithm flow.
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The GA process can be divided into six stages: initialization, fitness calculation, check-
ing termination conditions, crossover, selection, and mutation. In the initialization phase, a
chromosome is selected arbitrarily in the search space, and then the fitness of the chromo-
some is determined according to the preset fitness function. For optimization algorithms
such as GA, the fitness function is a key factor that affects the performance of the model.
Chromosomes are randomly selected based on the fitness of the fitness function. Dominant
chromosomes have a higher chance of being inherited to the next generation. The selected
dominant chromosomes can produce offspring through the exchange of similar segments
and changes in gene combinations.

3.4. LSTM

Long Short-Term Memory (LSTM) is an improvement of Recurrent Neural Network
(RNN) [36]. RNN has a higher probability of gradient disappearance and gradient explo-
sion during training, and there is a long-term dependence problem. LSTM can effectively
solve this problem. LSTM introduces a gate mechanism, which makes LSTM have a longer-
term memory than RNN and can be more effective in learning. In LSTM, each neuron is
equivalent to a memory cell (cell, ct). LSTM controls the state of the memory cell through a
“gate” mechanism, thereby increasing or deleting the information in it. The structure of
LSTM is shown in Figure 3.

Figure 3. LSTM Unit Structure.

In the LSTM cell structure, the Input Gate (it) is used to determine what information
is added to the cell, and the Forget Gate ( ft) is used to determine what information is
deleted from the cell. The Output Gate (ot) is used to determine what information is output
from the cell. The complete training process of LSTM is that at each time t, the three gates
receive the input vector xt at time t and the hidden state ht−1 of the LSTM at time t− 1
and the information of the memory unit ct and then perform the received information
Logical operation, the logical activation function σ decides whether to activate it, and then
synthesize the processing result of the input gate and the processing result of the forgetting
gate to generate a new memory unit ct, and finally obtain the final output result ht through
the nonlinear operation of the output gate. The calculation formula for each process as
shown in Equations (16)–(20).

Input Gate calculation formula:

it = σ(WT
xixt + WT

hiht−1 + bi) (16)
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Forget Gate calculation formula:

ft = σ(WT
x f xt + WT

h f ht−1 + b f ) (17)

output gate calculation formula:

ot = σ(WT
xoxt + WT

hoht−1 + bo) (18)

Memory unit calculation formula, the internal hidden state:

ct = ft × ct−1 + it × tanh(WT
xcxt + WT

hcht−1 + bc) (19)

Hidden state calculation formula:

ht = ottanh(ct) (20)

Among them, σ represents generally a nonlinear activation function, such as a sigmoid
or tanh function. Wxi, Wx f , Wxo, Wxc represents the weight matrices of nodes connected
to the input vector Wt for each layer, Whi, Wh f , Who, Whc represents the weight matrices
connected to the previous short-term state ht−1 for each layer, bi, b f , bo, bc represents
the offset terms of each layer node. In short, the input gate in LSTM can identify important
inputs, and the forget gate can reasonably retain important information and extract it when
needed. Therefore, this feature of LSTM can effectively identify long-term patterns such as
time series, making training convergence faster.

3.5. XGBoost-MSCGL Model

Figure 4 shows the XGBoost-MSCGL process. First, the atmospheric pollutant data and
meteorological data are normalized and processed with missing values. Secondly, Pearson
analyzes the correlation of the original data and uses XGBoost to select the importance
of features. Furthermore, input the data after feature selection into MSCNN, and use
the MSCNN algorithm to extract the temporal and spatial features of the data. At the same
time, GA is used to optimize the parameters of the LSTM, the best fitness output of
the chromosome is used as the global optimal parameter combination of the LSTM network,
and then the data extracted from the spatiotemporal features are input into the optimized
LSTM for prediction. In order to better verify the effect of the model, finally combined
models such as XGBoost-MLP, XGBoost-LSTM, XGBoost-CNN are used for comparison,
and then RMSE, MAE, MAPE and other indicators are used for evaluation.

Figure 4. XGBoost-MSCGL Model Process.
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3.6. Evaluation Index

In order to measure the accuracy of the prediction model, this paper uses Root Mean
Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error
(MAPE) as evaluation indicators. The formulas are shown in Equations (21)–(23).

RMSE =

√√√√ 1
N

N

∑
i=1

(Xi − X)
2 (21)

MAE =
1
N

N

∑
i=1

∣∣Xi − X
∣∣2 (22)

MAPE =
100
N

N

∑
i=1

∣∣∣∣Xi − Xi
Xi

∣∣∣∣∣ (23)

R2 = 1−
∑
i
(ŷi − yi)

2

∑
i
(y− yi)2 (24)

Where ŷ represents the predicted value, yi is the true value, and N is the number
of test samples. The ranges of RMSE, MAE, and MAPE are all [0, +∞). Generally, the
larger the value of RMSE and MAE, the greater the error and the lower the prediction
accuracy of the model. MAPE is the most intuitive prediction accuracy criterion. When
MAPE tends to 0%, it means the model is perfect, when MAPE tends to 100%, it means
that the model is inferior. Generally, it can be considered that the prediction accuracy is
higher when the MAPE is less than 10% [37]. R2 measures the applicability of the model to
sample values and can test the prediction ability of the model. The closer to 1, the higher
the fitness of the model, and the closer to 0, the lower the fitness of the model.

4. Results
4.1. Analysis of Factor Characteristics

In order to better analyze the characteristics of the model input factors, the Pearson
correlation method is used for analysis. As shown in Figure 5, the factors for the correlation
coefficient of PM2.5 in Yuncheng are PM10 (0.9) and CO (0.8), which are highly positively
correlated. Further, SO2 (0.5), average humidity (0.5), and seasons (0.5) are moderately
positively correlated, and the average surface temperature (−0.5), the highest surface tem-
perature (−0.5), the duration of sunshine (−0.5), the average temperature (−0.5), the lowest
temperature (−0.5), and the highest temperature (−0.5) have a moderately negative cor-
relation. The factors of the correlation coefficient of Xianyang PM2.5 are that CO (0.9) is
highly positively correlated. Further, PM10 (0.6), the lowest humidity (0.5), season (0.6), etc.
are moderately correlated, the average surface temperature (−0.5), the surface, the lowest
temperature (−0.5), the highest surface temperature (−0.5), the average temperature (−0.5),
the lowest temperature (−0.5), and the highest temperature (−0.5) have a moderately neg-
ative correlation. The correlation coefficients of PM2.5 in Xi’an are PM10 (0.8), CO (0.9) and
SO2 (0.7), which are highly positively correlated, and season (0.5) is moderately correlated.
The average surface temperature (−0.6), minimum surface temperature (−0.6), extremely
high wind speed (−0.5), average temperature (−0.6), minimum temperature (−0.5) and
maximum temperature (−0.6) are moderately negatively correlated. The correlation coeffi-
cient of PM2.5 in Weinan is that PM10 (0.8) and CO (0.8) are highly positively correlated.
average humidity (0.5), minimum humidity (0.5) and season (0.5) are moderately correlated,
sunshine duration (−0.6) is highly negatively correlated, and maximum surface temper-
ature (−0.5), maximum wind speed (−0.5), average temperature (−0.5) and maximum
temperature (−0.5) are moderately negatively correlated. The factors of the correlation coef-
ficient of Taiyuan PM2.5 are PM10 (0.9) and CO (0.9), which are highly positively correlated.
NO2 (0.5), SO2 (0.6), average humidity (0.6), minimum humidity (0.6), season (0.5) It is
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moderately correlated. The highest surface temperature (−0.5), highest wind speed (−0.5),
extremely high wind speed (−0.5), and sunshine duration (−0.5) are moderately negatively
correlated The correlation coefficient of PM2.5 in Tongchuan had a high positive correlation
with CO (0.9), moderate correlation with PM10 (0.6), average humidity (0.5), minimum
humidity (0.5) and season (0.5), and moderate negative correlation with maximum surface
temperature (−0.5), maximum wind speed (−0.5), extremely high wind speed (−0.5) and
sunshine duration (−0.5). The factors of the correlation coefficient of PM2.5 in Sanmenxia
are PM10 (0.7) and CO (0.8), which are highly positively correlated, the average humidity
(0.5), the lowest humidity (0.5), and the season (0.5) are moderately positively correlated,
and the average surface temperature (−0.5), the highest surface temperature (−0.5), ex-
tremely high wind speed (−0.5), average temperature (−0.5), and highest temperature
(−0.5) have a moderately negative correlation. The factors of the correlation coefficient of
Lvliang PM2.5 are PM10 (0.6), CO (0.7), average humidity (0.6), minimum humidity (0.6),
and season (0.6), which are highly positively correlated. The average surface temperature
(−0.5) and the surface average temperature (−0.5), extremely high wind speed (−0.5),
average temperature (−0.5), maximum temperature (−0.5), sunshine duration (−0.5) are
moderately negatively correlated, average humidity (0.5), minimum humidity (0.5), season
(0.5), etc. have a moderate correlation. Luoyang PM2.5 correlation coefficient factors are
PM10 (0.8) and CO (0.9) are highly positively correlated, the average surface temperature
(−0.5), the highest surface temperature (−0.5), the average temperature (−0.5), the highest
temperature (−0.5), sunshine duration (−0.5) are moderately negatively correlated, and
average humidity (0.5), minimum humidity (0.5), season (0.5), etc. are moderately corre-
lated. Linfen PM2.5 correlation coefficient factors PM10 (0.9) and CO (0.9) are extremely
highly positively correlated. Further, SO2 (0.7), average humidity (0.6), minimum humidity
(0.7), season (0.6) are highly positively correlated. The average surface temperature (−0.6),
the highest surface temperature (−0.7), the average temperature (−0.6), the lowest tem-
perature (−0.5), the highest temperature (−0.6), and the duration of sunshine (−0.5) have
a moderately negative correlation. The correlation coefficients of PM2.5, PM10 (0.9) and
CO (0.9), S02 (0.7), average humidity (0.6) and minimum humidity (0.7) in Jinzhong were
highly positively correlated. The average surface temperature (−0.5), maximum surface
temperature (−0.6), average temperature (−0.5), minimum temperature (−0.4), maximum
temperature (−0.5), and sunshine duration (−0.5) were moderately negatively correlated.
The correlation coefficient of PM2.5 was PM10 (0.7) and CO (0.8), and the average humidity
(0.5), minimum humidity (0.5) and season (0.5) were moderately correlated. The average
temperature (−0.5), the maximum temperature (−0.5), the average temperature (−0.5),
the minimum temperature (- 0.4), and the maximum temperature (−0.5) were moderately
negatively correlated.

Meteorological elements affect air quality by affecting the accumulation, diffusion,
and elimination of pollutants. In the studies of PM2.5 and PM10 concentration, they
are found closely related to meteorological elements (such as temperature, precipitation,
wind speed, etc.). According to existing studies, relative humidity has an important a
key factor to fine particle concentration [38]. At higher relative humidity, pollutants are
attached to the surface of water vapor easier. Water solution is a good place for chemical
reaction [39]. Wind direction and speed affect the dispersion of particulate matter in the
air [40]. Chen et al. made predictions on PM2.5 concentration in Zhejiang Province, finding
that meteorological factors such as air temperature, air pressure, evaporation, humidity
are remarkably correlated with PM2.5 concentration [41]. Zhang Zhifei et al. found that
O3 h mass concentration has positive correlation with air temperature, solar radiation,
visibility and wind speed, whereas NO2 concentration is positively correlated with relative
humidity and atmospheric pressure [42]. Precipitation [43], season [44], precipitation [45],
sunshine duration [46], and other factors have remarkable impacts on the concentrations
of air pollutants. Different city characteristics will also have different impacts on PM2.5,
the correlation coefficient of PM10 and CO in Jinzhong and Linfen is 0.9. Further, the
two numbers in Lv Liang are 0.6 and 0.7. The correlation coefficients of 12 cities show
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that temperature, surface temperature, atmospheric pressure, air humidity, and sunshine
duration all affect PM2.5. Further analysis is needed in selecting appropriate features for
the model.

Figure 5. Pearson Analysis of Atmospheric Pollutants and Meteorological Factors in 12 Cities of Fenwei Plain.

4.2. Feature Selection

Through Pearson analysis, it is found that addition to the traditional six atmospheric
pollutants, meteorological factors are also main factors to PM2.5 concentration, such as
surface temperature, temperature, sunshine duration, humidity, and so on. Consider
unrelated and redundant factors, which may obscure the role of important factors and
require the mining and refinement of raw data.

4.2.1. Feature Importance Sorting Principle

The traditional GBDT algorithm uses first derivative, while XGBoost expands the error
function with second-order Taylor, using both first-order and second-order derivatives.
XGBoost uses a second-order Taylor expansion of the error function, and XGBoost uses
column sampling of features to select the proportion of features used in training and to pre-
vent over-fitting effectively. The parallel approximate histogram algorithm for XGBoost’s
feature split gain calculation can make full use of multicore CPUs for parallel computation.
Traditional feature selection models iterate continuously during operation, and new trees
will be generated after each iteration. When dealing with complex datasets, they may
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iterate over hundreds of thousands of times, so they are not efficient. To overcome this
disadvantage, the XGBoost algorithm uses a regression tree to build models. This system
is based on the Boosting algorithm, which has made great breakthroughs in prediction
accuracy and training speed. In fact, XGBoost calculates which feature to select as the
split point based on the gain of the structure fraction. The importance of a feature is the
sum of times it occurs in all trees. The more an attribute is used to build a decision tree in
a model, the more important it is. Using gradient enhancement makes it relatively easy
to retrieve the importance for each attribute after building an enhanced tree. Generally,
importance represents a score, indicating the usefulness or value of a feature in the process
of building an enhanced tree in a model. The more attributes used for key decisions in a
decision tree, the higher its relative importance is. Generally speaking, importance pro-
vides a score indicating how useful or valuable each attribute is in building an enhanced
decision tree in a model. The more times attributes are used to make key decisions using
a decision tree the higher the relative importance is. This importance is explicitly calcu-
lated for each attribute in the dataset so attributes can be ranked and compared with each
other. The importance of a single decision tree is calculated by increasing the number of
performance indicators per attribute split point, weighted by the number of observations
the node is responsible for.

4.2.2. Experimental Process and Analysis of Feature Selection

We conduct a feature filtration on some parts of training set, and divided data sets
into training sets and validation sets. First, we make XGBoost model which contains that
contains all the feature training sets, use the five-fold cross validation to find the optimal
parameters, and sort the features based on Fscore. Then we filter the sorted feature sets,
evaluate whether a feature can be preserved under Fscore value, and delete the feature set
which is scored lowest one by one. The AUC value of the validation set under the new
feature subset is used to determine whether the predicted results of the remaining features
are better or not. Both the number of features and the model improvement effect should be
taken into consideration when selecting features. As some features have limited improve-
ment effect on models, this experiment should use features that have greater impact on
prediction of PM2.5 concentration. The threshold h is set (the exact value of H is set accord-
ing to the experimental results) to select the features. If the AUC value of the validation set
increases more than h, the recently deleted features are saved. If the AUC value increases
less than h or decreases, the deleted features are still removed. The algorithm can filter out
the features that have a greater impact on the target variable and reduce the redundancy
between the features.

As shown in the Figure 6, features are filtered by XGBoost. we use the “importance_type
= gain” method to calculate the importance of features. We use five-fold cross validation
meothod and grid search to find the optimal parameters of XGBoost model. The parameters
of XGBoost algorithm are according to the weight of features. The importance of a feature
can be used as a model explanatory value. This method represents the average gain from
the presence of a feature as a split point in all trees.

In all trees, the number of times a feature is used to split nodes is Weight, and the total
gain that a feature brings each time it splits a node is Total_gain. F Score formula is shown
in Equation (25):

F Score = Total_gain/weight (25)

Average gain is calculated as Equation (26):

AverageGain =
Total_gain

Fscore
(26)

XGBoost calculates which feature to select as the split point based on the increment
of the structure fraction. The importance of a feature is the sum of the number of times it
occurs in all trees. The more an attribute is used to construct a decision tree in a model,
the more important it is. Using XGBoost to rank the feature importance, as shown in
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Figure 6, the top 10 cities are the 12 cities with different feature importance of PM2.5. We
input the filtered features into MSCNN-GA-LSTM.

Figure 6. XGBoost model flow.

The importance of features is sorted by XGBoost, and the threshold h is set to 0.002. As
shown in Figure 7 the y-axis represents each city, and the x-axis coordinates represent each
feature. The numbers in the box represent the value of features importance in different
cities. The color depth of the box represents the size of Fscore. The darker the color,
the more important the feature. The lighter the color, the less important the feature. The
top 10 feature importance of 12 cities are listed in the chart. Consistent with the previous
Pearson correlation analysis, we found that the air pollutant characteristics with strong
correlation, such as PM10 and CO, ranked as first and second in 12 cities in the feature
importance ranking, while the factors with strong negative correlation, such as maximum
temperature and average wind speed, are also of high importance. The feature importance
of PM2.5 varied in different cities. We input the filtered features into MSCNN-GA-LSTM.
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Figure 7. Atmospheric Pollutant Factors and Meteorological Factors in 12 cities of Fenwei Plain.

4.3. GA Optimize LSTM Optimal Parameters

In the prediction model, genetic algorithm is introduced to globally optimize the initial
parameters of the LSTM network. Using traditional experience to set parameter value will
make algorithm convergence easily fall into local optimum in the late period of algorithm
iteration. To overcome this problem, we dynamically set the initialization parameters of
the genetic algorithm. Further, we use a larger probability of perturbation, and avoid local
optimum as the number of times of iteration gradually increases. Our repeated experiments,
and the final optimization parameters are listed in the Table 3—a good convergence effect
has been achieved.

Table 3. GA Optimized LSTM Optimal Parameters.

City Generations Chromosome Adaptability First Layer Second Layer Third Layer Dense Layer

Baoji 3 2 1464 223 215 172 225
Jinzhong 6 5 842 147 92 237 141

Linfen 20 15 1529 93 241 - 168
Luoyang 13 5 2679 159 77 73 196
Lvliang 18 11 1197 120 18 - 226

Sanmenxia 10 5 1195 181 226 - 140
Taiyuan 6 16 1653 59 - - 187

Tongchuan 13 17 986 97 - - 220
Weinan 12 4 2605 224 39 122 91

Xi’an 14 14 2179 65 238 - 255
Xianyang 14 18 1360 194 89 - 122
Yuncheng 1 6 1779 146 53 - 139

4.4. Forecast Results
4.4.1. Model Comparison before and after Feature Selection

At the beginning of this section, we evaluate the performance of different models
by using the predictions from the test set. Figures 8 and 9 show the simulated prediction
results of PM2.5 in 12 cities using nine models. First, PM2.5 test set data are input into four
single trained models for calculation, and the PM2.5 h predictions are compared with the
measured results. The predicted PM2.5 h concentration is close to the measured value when
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the measured value of PM2.5 h concentration increases rapidly, the predicted values deviate
from the measured values significantly. This may be due to the redundancy of features and
the influence of space-time characteristics. It is difficult to accurately predict if the model is
not trained to filter feature values. The MLP model is similar to the LSTM model in that
the predicted values deviate greatly from the measured values when the measured values
increase or decrease sharply. The main reason why XGBoost model is not efficient is that it
cannot achieve accurate prediction over time series data. When the measured values are
small, the predicted values of PM2.5 concentration are consistent with the measured values,
and when the measured values are large, the predicted values are larger than the measured
values. Comparing the predicted values of PM2.5 concentration of four single models in 12
cities, the LSTM model has the best predicted results.

PM2.5 test set data are input into five trained combination models to calculate.
The predicted PM2.5 h concentration values of 12 cities are compared with the mea-
sured values which are shown in Figures 8 and 9. In the figure, the predicted values of
the XGBoost-MSCGL model PM2.5 are consistent with the measured values, even when
some individual PM2.5 h concentration values increase or decrease sharply, the predicted
values are close to the measured values. XGBoost-LSTM prediction is similar to XGBoost-
MSCGL model in that when the measured value increases or decreases sharply, the pre-
dicted value has a smaller deviation from the measured value, but the predicted result is
slightly worse than that of XGBoost-MSCGL model. When the measured value of XGBoost-
MLP model is higher or lower, the predicted value has a larger deviation from the measured
value and the predicted value is smaller than that of the measured value. CNN-LSTM
model performs better when the measured value increases or decreases sharply. However,
compared with the other eight models, its prediction effect is the worst. For PM2.5 average
concentration prediction, the predicted value is larger than the measured value. Comparing
XGBoost-MLP, XGBoost-LSTM, XGBoost-CNN, XGBoost-MSCGL with CNN, LSTM, MLP,
and CNN-LSTM, we found that the predicted value of the model after feature selection
is closer to the measured value than that before feature selection, with a greater increase
in accuracy, and a marked decrease in derivation value. Comparing the predicted values
of PM2.5 h concentration of the nine models with their corresponding measured values,
the XGBoost-MSCGL model had the best prediction effect.

Figure 8. Predicted and Measured PM2.5 h Concentration Values of Nine Models in Six Cities: Baoji, Jinzhong, Linfen,
Luoyang, Lvliang, and Sanmenxia.
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Figure 9. Predicted and Measured PM2.5 h Concentration Values of Nine Models in Six Cities: Tongchuan, Taiyuan, Weinan,
Xi’an, Xianyang, and Yuncheng.

4.4.2. Model Accuracy Evaluation

The accuracy of the four models was evaluated by RMSE, MAPE, MAE, and R2. The
smaller the RMSE, MAPE, and MAE, the higher the accuracy of the model, and the larger
the R2, the higher the accuracy of the model. In order to better evaluate the error, prediction
effect, and prediction accuracy of the nine models, we selected four evaluation indexes to
evaluate the performance results of each model in each city, as shown in Table 4.

Table 4. Accuracy comparison of nine models in 12 cities.

City Evaluation
Index CNN LSTM MLP XGBoost CNN-

LSTM
XGBoost

-CNN
XGBoost-
LSTM

XGBoost-
MLP

XGBoost-
MSCGL

BAOJI

RMSE 11.45 10.43 18.28 12.82 11.10 9.38 9.23 8.50 8.15

MAE 7.87 7.06 11.34 8.92 8.89 5.94 5.96 5.55 5.19

MAPE 13.41 11.82 15.89 25.45 23.23 11.87 12.36 10.68 10.14

R2 82.15% 83.48% 79.98% 90.09% 92.62% 94.73% 94.90% 95.67% 96.02%

JINZHONG

RMSE 9.23 11.45 18.28 10.01 11.10 10.75 7.55 11.74 7.14

MAE 5.96 7.87 11.34 7.64 8.89 7.36 4.94 8.78 4.80

MAPE 12.36 13.41 15.89 12.68 23.23 10.64 7.94 20.37 7.39

R2 94.90% 92.15% 79.98% 78.06% 92.62% 96.01% 98.03% 95.23% 98.24%

LINFEN

RMSE 12.70 12.70 19.12 11.34 10.92 11.85 10.15 10.73 10.09

MAE 10.07 10.07 15.88 8.47 7.62 8.20 7.21 7.54 6.74

MAPE 24.26 24.12 44.35 40.36 19.65 29.1 23.2 17.6 17.1

R2 88.70% 88.70% 74.38% 90.98% 91.64% 90.16% 92.78% 91.92% 92.86%
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Table 4. Cont.

City Evaluation
Index CNN LSTM MLP XGBoost CNN-

LSTM
XGBoost

-CNN
XGBoost-
LSTM

XGBoost-
MLP

XGBoost-
MSCGL

LUOYANG

RMSE 12.36 15.47 10.04 19.50 9.36 9.38 7.64 11.82 7.64

MAE 7.10 6.98 6.95 14.63 6.00 5.10 5.03 4.90 4.90

MAPE 9.91 12.84 14.52 38.39 8.27 9.79 9.78 7.05 7.75

R2 85.63% 83.16% 87.12% 89.13% 94.50% 97.48% 96.33% 96.01% 98.33%

LVLIANG

RMSE 9.19 10.62 6.18 10.39 6.35 8.47 7.08 5.89 5.31

MAE 7.87 8.92 5.17 7.63 5.23 6.99 5.91 4.75 4.26

MAPE 22.87 27.78 16.03 26.16 17.71 22.65 17.22 15.08 13.43

R2 57.46% 43.19% 80.76% 45.58% 79.68% 63.88% 74.75% 82.52% 85.78%

SANMENXIA

RMSE 13.71 11.39 11.71 26.03 12.01 11.88 10.48 11.00 11.61

MAE 8.79 7.79 7.50 16.65 7.66 8.37 7.07 6.99 7.24

MAPE 25.51 21.55 26.21 51.50 20.47 15.98 21.79 17.22 12.71

R2 81.35% 84.03% 83.69% 68.83% 93.37% 93.50% 94.94% 94.43% 93.80%

TAIYUAN

RMSE 16.49 11.76 10.61 20.97 7.39 12.43 8.55 7.66 7.08

MAE 14.43 9.85 8.27 15.02 5.35 10.16 6.25 5.46 5.07

MAPE 36.22 23.93 21.66 44.90 12.47 22.30 14.64 12.11 11.54

R2 74.30% 86.93% 89.35% 58.42% 94.84% 85.39% 93.08% 94.44% 95.25%

TONGCHUAN

RMSE 16.49 11.76 8.55 20.97 10.61 12.43 7.66 7.39 7.08

MAE 14.43 9.85 6.25 15.02 8.27 10.16 5.46 5.35 5.07

MAPE 36.22 23.93 14.64 44.90 21.66 22.30 12.11 12.47 11.54

R2 74.30% 86.93% 93.08% 58.42% 89.35% 85.39% 94.44% 94.84% 95.25%

WEINAN

RMSE 11.25 14.23 14.47 23.47 11.56 10.05 9.50 9.17 8.90

MAE 8.25 10.27 10.59 16.85 9.31 7.62 6.77 6.79 6.66

MAPE 15.86 24.35 22.49 35.85 20.81 13.79 10.99 11.03 11.27

R2 84.96% 81.95% 81.67% 78.09% 84.68% 95.98% 96.41% 96.66% 96.85%

XI’AN

RMSE 10.80 12.37 11.19 26.78 16.51 9.33 6.56 12.01 6.07

MAE 7.55 9.06 8.39 16.59 11.21 6.85 4.65 7.30 3.94

MAPE 12.50 16.30 16.68 25.98 16.62 10.38 8.16 8.97 5.95

R2 84.99% 83.43% 84.63% 69.21% 88.29% 96.27% 98.15% 93.81% 98.42%

XIANYANG

RMSE 16.55 22.58 15.78 41.72 12.79 16.12 13.04 13.80 12.65

MAE 11.34 14.85 12.05 26.81 8.56 11.68 8.88 9.41 8.25

MAPE 17.91 27.03 22.50 34.86 12.32 16.87 11.36 13.27 11.31

R2 83.02% 87.02% 83.66% 55.69% 85.84% 93.38% 95.67% 95.15% 95.92%

YUNCHENG

RMSE 15.21 11.90 11.19 38.39 11.08 10.75 11.74 7.55 7.14

MAE 12.58 9.08 7.97 28.79 8.47 7.36 8.78 4.94 4.80

MAPE 20.26 13.29 11.75 42.15 13.15 10.64 20.37 7.94 7.39

R2 82.01% 85.11% 85.67% 49.05% 85.76% 96.01% 95.23% 98.03% 98.24%

Among the nine models which predicted PM2.5 h concentration value, XGBoost-
MSCGL had the best prediction effect. The average MAE (8.26), RMSE (5.6), MAPE (9.9),
R2 (0.95) in 12 models were the highest, while the XGBoost model had the worst predictive
effect in nine models, with the average MAE (21.67), RMSE (15.25), MAPE (31.94%), R2



Sustainability 2021, 13, 12071 20 of 24

(0.69) in 12 cities. R2 was the smallest of the nine models. The correlation coefficient R2 of
the four single models was 79.07%, which may be related to the unstable time series of PM2.5
concentration and no screening of features during the model building process, resulting
in no further improvement of model accuracy. From the prediction effect after feature
selection, the overall prediction effect of the combination of feature selection based on
XGboost with a single model has been remarkably improved. XGBoost-CNN and XGBoost
in 12 cities prediction compared with CNN, LSTM, MLP, XGBoost-MSCGL, the values of
-LSTM, XGBoost-MSCGL, and CNN-LSTMRMSE decreased by 13.25%, 28.63%, 20.16%,
21.64%, the values of MAPE decreased by 14.86%, 29.96%, 27.31%, 26.25%, respectively,
and the values of MAE decreased by 17.02%, 24.90%, 32.26%, 33.68%. R2 Values increased
by 11.98%, 16.62%, 12.70%, and 6.80%. The results show that feature selection based on
XGBoost can effectively improve the accuracy of prediction model and reduce the error.
For PM2.5 concentration prediction, feature selection can effectively improve the accuracy
and reduce the overestimation or underestimation caused by redundant features.

Among the four combination models which predicted PM2.5 h concentration value
after feature selection, XGBoost-MSCGL has the best prediction effect. Compared with
XGBoost-CNN model and XGBoost-LSTM model, XGBoost-MLP model has slightly higher
prediction accuracy with correlation coefficient R2(0.83). The prediction results of XGBoost-
CNN model are the worst among the four models, MAE (7.98), RMSE (11.07), MAPE (13.96),
R2(0.9). XGBoost-MSCGL is better than XGBoost-MLP, XGBoost-LSTM, and XGBoost-CNN
in predicting performance, with RMSE, MAE, and MAPE decreasing 11.11%, 15.97%,
15.36%, and R2 increasing 3%, respectively, in 12 cities. Overall, XGBoost-MSCGL is better
than XGBoost-MLP, XGBoost-LSTM, and XGBoost-CNN in predicting performance. As for
cities, XGBoost-MSCGL performed best in Xi’an with MAE (3.94), MAPE (5.59), R2 (0.98).
The worst in Xianyang was RMSE (12.65), MAE (8.25), and Lv Liang’s R2 (85.78).

By analyzing the predicted data of 12 cities in the Fenwei Plain, it is noted that different
prediction models have different performances in reducing errors and improving consis-
tency of changes in different cities. The prediction error may be related to the different city
characteristics that we choose, and to a different dispersion of air pollutant concentration
values in each season. Using four deep learning combination models for training and
validating the prediction accuracy, the results show that XGBoost-MSCGL has the highest
prediction accuracy for most city training sets, and its prediction performance is better than
other models. Through the three indicators of RMSE, MAE, and MAPE, we can see that
XGBoost-MSCGL has better prediction performance than XGBoost-MLP, XGBoost-LSTM,
XGBoost-CNN. In 12 cities, RMSE, MAE, and MAPE decreased by 11.11%, 15.97%, and
15.36%, respectively. However, XGBoost-LSTM in Xianyang, XGBoost-MLP in Weinan, and
XGBoost-CNN in Jin are slightly higher than XGBoost-MSCGL in MAPE. XGBoost-MSCGL
in Xi’an, Taiyuan, Sanmenxia, and other cities declined significantly. Overall, the error value
of XGBoost-MSCGL in the four combined prediction models is small, the performance is
outstanding, and the prediction effect is better.

Through the analysis of the prediction data of the 12 cities in the Fenwei plain, we
noticed that the performances of different prediction models were different in reducing
errors and improving the consistency of changes of changes in different cities. The predic-
tion errors might have something to do with the different types of city characteristics and
the degree of dispersion of the concentration of air pollution in different seasons. We used
four models of deep learning to train and test. The results show that XGBoost-MSCGL has
the highest prediction accuracy for most of the city’s test sets, and it is better than other
models in terms of prediction performance.

5. Discussion

In this study, the PM2.5 feature selection based on XGBoost, combined with MSCNN
to extract temporal and spatial features, and GA optimized LSTM, were used to establish
the XGBoost-MSCGL air pollutant concentration prediction model. Compared with other
machine learning, feature selection combined with feature extraction and combined with
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deep learning is an effective method for processing big data (especially spatio-temporal fea-
ture data). Combining spatio-temporal feature and models can improve the performance
of spatio-temporal data prediction to a certain extent. In different cities, the importance of
PM 2.5 influencing factors are different. It is necessary to select PM2.5 influencing factors in
different cities and propose redundant features and delete redundant features in order to
avoid influencing the accuracy of the prediction model. The prediction method proposed
in this paper is feasible for the PM2.5 h concentration data prediction in multiple cities, and
the method can be used in multiple regions and predictions on different atmospheric pollu-
tant concentration. In terms of input variables, regular monitoring data from the National
Environmental Monitoring Station, and China Meteorological Administration are used. In
terms of modeling methods, machine learning and deep learning algorithms are combined.
On the premise of eliminating redundant features, space and time features are considered,
and a genetic algorithm is used to optimize the parameters of the LSTM network, enabling
it to capture optimal parameters better. With stronger capturing ability, the long-term
dependence relationship hidden by air quality data is more accurate, and the prediction
accuracy is further improved.

The shortcoming of this research is that in different cities, the performances of XGBoost-
MSCGL model may be different due to driving factors, spatio-temporal characteristics,
model types, model structure, and model development methods. We find that in cities such
as Xi’an, the model performs well. However, in some cities, their performances cannot
achieve the same accuracy and prediction effect. The dispersion of PM 2.5 concentration
data in different cities and other city air pollutants may also affect the prediction perfor-
mance of the model. So, it was necessary to further analyze the reason for the difference.
At the same time, the data volume, the dispersion between air pollutant concentration
values and space features might also affect the performance of model prediction. So, it
was necessary to further analyze the reason for the difference. In this study, the range and
interval prediction of air pollutants concentrations are not taken into consideration. In
following researches, it needs to be discussed in detail. Only in this way could the relevant
government and enterprises better monitor and manage the release of air pollution.

6. Conclusions

In this study, based on the hourly concentration data and meteorological data of six
air pollutants in 12 cities in the Fenwei Plain in 2020, a PM 2.5 concentration prediction
model, based on XGBoost-MSCGL, was established, and the performance of the model
was compared with XGBoost-MLP, XGBoost-LSTM, and XGBoost-CNN. The main research
results are as follows: In the PM2.5 concentration prediction, the XGBoost-MSCGL model
performs better in 12 cities in the Fenwei Plain, with smaller error values and better pre-
diction results. As for feature selection, compared with the prediction of all influencing
factors, the prediction effect of the former is significantly improved for the factors of feature
selection. From the perspective of spatio-temporal characteristics, the hourly concentra-
tion prediction performance of the 12 cities considering spatio-temporal characteristics is
better than the prediction model that does not consider spatio-temporal characteristics.
From the perspective of the optimized model, the accuracy of the optimized model is
significantly improved compared to the unoptimized model. In general, based on fea-
ture selection, screening the influencing factors of PM2.5 according to their importance
helps to reduce the feature redundancy of the data set. In terms of overall performance,
the prediction performance of the XGBoost-MSCGL model is generally better than that
of the XGBoost-MLP, XGBoost-LSTM, and XGBoost-CNN models. Compared with other
prediction methods, the PM2.5 concentration prediction, based on the XGBoost-MSCGL
model, has better performance in accurately predicting the actual data in different cities.
Compared with other models, it has a higher accuracy improvement and achieves better
prediction especially when the data are at extremely high and low points in the sharp
fluctuations. The migration of the model is verified by the prediction results of 12 cities
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in Fenwei plain. The concentration change direction and volatility of PM2.5 need to be
further considered in future research.
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