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Abstract: Nowadays, the sustainability risks and opportunities start to affect strongly insurance
companies in regard to the resulting additional variability of future values of variables taken into
account in the decision processes. This is important especially in the era of sustainable non-life
insurance promoting, among others, the use of ecological car engines or ecological systems of
building heating. The fundamental issue in non-life insurance is to predict future claims (e.g., the
aggregate value of claims or the number of claims for a single policy) in a heterogeneous portfolio
of policies taking account of claim experience. For this purpose, the so-called credibility theory is
used, which was initiated by the fundamental Bühlmann model modified to the Bühlmann–Straub
model. Several modifications of the model have been proposed in the literature. One of them is the
development of the relationship between the credibility models and statistical mixed models (e.g.,
linear mixed models) for longitudinal data. The article proposes the use of the parametric bootstrap
algorithm to estimate measures of accuracy of the credibility predictor of the number of claims for a
single policy taking into account new risk factors resulting from the emergence of green technologies
on the considered market. The predictor is obtained for the model which belongs to the class of
Generalised Linear Mixed Models (GLMMs) and which is a generalization of the Bülmann–Straub
model. Additionally, the possibility of predicting the number of claims and the problem of the
assessment of the prediction accuracy are presented based on a policy characterized by new green
risk factor (hybrid motorcycle engine) not previously present in the portfolio. The paper presents the
proposed methodology in a case study using real insurance data from the Polish market.

Keywords: sustainable insurance; measures of accuracy; credibility predictor; GLMM; bootstrap
estimation

1. Introduction

Nowadays, the financial sector including the insurance industry strengthens its activ-
ities to promote and build sustainable economies and societies. The management of the
sustainability risks, which takes into account both the asset and the liability side, but also
a broader corporate perspective, becomes a very important issue (see [1]). The number
of insurers who actively take into account different green factors in their risk assessment
process is growing. The problem of including these factors in the prediction of different
characteristics such as the total number of claims (e.g., [2]), crash severity (e.g., [3]) and
accident risk (e.g., [4]) can play the crucial role from this perspective. A very basic feature
of the non-life insurance portfolio of policies is its heterogeneity, which means that policies
generate different values of claims. Consequently, charging each policy with the same pure
premium (flat rate) is both unjust and uncompetitive. The pure premium is understood as
the part of the gross premium intended to cover the current insurance risk of the policy.
Therefore, insurers classify the portfolio into risk classes, and in each class the same value
of pure premium is assigned to the grouped risks. In such a classification, various kinds
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of criteria are considered, simply referred to as risk factors. The nature of risk factors is
important as they can be observable or unobservable. Observable factors (while signing
an insurance contract) are described by the policyholder, e.g., the subject of the insurance,
the policyholder and the geographical area. To be more precise, observable risk factors are
categorical variables with a number of levels which divide the portfolio into risk classes
(e.g., risks grouped by the age of the driver in automobile insurance). When it comes to
unobservable factors, they describe items such as driving skills, drinking habits or the
safety of the district in which the insured property is located. Unobservable factors can be
approximated by observable factors. The area where the car is driven (unobservable) is
usually assumed as the area where the car is registered (observable). A more complicated
issue is to take into account the behavioral unobservable factors that reflect the inner traits
or abilities of an individual policyholder.

This type of situation can be observed in (but of course is not limited to) real life
problems resulting from taking into account new and ‘green’ technologies in the motor
and property insurance. From our point of view, it is important for an insurance company
to have a tool to deal with this kinds of problems in the age of climate change. In the era
of sustainable development, new challenges arise related to green risk factors taken into
account in the premium calculation (pricing) process. This can be broadly related to the
guidelines included in the Principle of Sustainable Insurance document [5] presented for
the first time in 2012. This global guide explains how to manage environmental, social
and governance risks in the process of evaluating, defining and pricing non-life insurance
risks. One of the problems is, in particular, the analysis of green risk factors which were
not present in the premium calculation process before. For example—the engine type,
which is the basic factor in automobile insurance. Currently, insurers reward hybrid or
electric cars, which are considered more environmentally friendly. Another example is
property insurance and the type of home heating. Therefore, there is a problem of the
inclusion of the indicated risk factors in statistical models without historical data. Hence,
we will propose the specific way to take into account this situation in the process of pure
premium prediction.

In order to calculate the pure premium for the single policy in heterogenous portfolio,
traditionally the credibility theory is applied, first proposed in [6]. In that theory, the pure
premium for single ith policy, corresponding to the value of claims or the number of claims,
is predicted for the next period taking the data from previous periods (the history of claims).
The classic Bühlmann model from [6] defines so-called credibility predictor as the weighted
average of prior portfolio mean (µ) and the mean of claim experience for each ith policy (Z̄i):
ziZ̄i + (1− zi)µ, where zi ∈ [0, 1] denotes the credibility factor. The strong assumption is
that the number of policies is constant in each period of the analysis. The Bühlmann–Straub
model proposed in [7] allows for the variability of the number of policies over time. In
both models the pure premium is viewed as the random variable being a function of a
random parameter Θ representing the unobservable risk factor of the individual policy
and the distribution of Θ describes the variation of this factor across the whole portfolio.
The models presented in both papers were then generalized in many different ways,
e.g., [8]. This article considers the development of the Bühlmann–Straub model towards
a regression approach, where risk factors are included in the credibility predictor. In [9]
the author proposes the linear trend credibility model. As the parameter Θ is regarded
as the random variable the mixed models approach to credibility prediction is adopted.
In [10] authors provide examples of the credibility predictor by the use of Hierarchical
Generalised Linear Models (HGLMs), further developed in e.g., [11,12] or [13]. In turn, the
paper [14] provides the detailed derivation of the exact formula of predictors corresponding
to different credibility models, including Bühlmann–Straub model, under particular linear
mixed models (LMMs). The other topics connected with mixed models which belong to the
GLMM class are studied in [15]. Authors present the so-called limited fluctuation credibility,
where the predictor strongly depends on the sample size, the distribution of covariates and
the link function. The GLMM is also considered in [16], where its application is presented
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for an analysis of longitudinal claims data by generalizing the normal assumption in
Bühlmann–Straub model to Poisson and negative binomial distributions. The Poisson
claim frequency, but in the form of Poisson mixtures (not as the GLMM), is also discussed
in [17] assuming time-varying random effects and the frequency risks dependent on the
latent individual factor corresponding to, e.g., the behavioral risk factors. These behavioral
factors in credibility prediction can be analyzed in the case of the access to telematic data
too. Then, the premium is calculated in the usage-based system, for instance in automobile
insurance (by using GPS tracking in the car). The Poisson frequency claim models are
discussed in this context by several authors, see [18–20]. Typically, in credibility models
of frequency the accuracy of prediction is measured by the mean squared error (MSE),
see [21]. There is also an alternative of using an expectation of a loss function measuring the
discrepancy between real and predicted values (as considered in [22]) but in this case the
loss function corresponds to the specific assumed distribution of the variable of interest. In
this paper we will propose using different accuracy measures applicable for any prediction
problem and its bootstrap estimator.

The aims of the paper cover the following issues. We will propose:

• The procedure in premium prediction taking into account some completely new risk
factors (for which realizations of the response variable are not observed);

• Use of two accuracy measures applicable for any prediction problem based on the
quantiles of absolute prediction errors;

• The parametric bootstrap estimators of the accuracy measures of the considered
credibility predictor.

This paper is organized as follows. Section 2 presents the theoretical foundations of
the credibility theory, in particular—the credibility predictor with emphasis on so far not
observed risk factors which can result from sustainable insurance principles. In Section 3,
a case is discussed of the claim frequency credibility predictor in the GLMM approach.
Section 4 proposes estimators of the measures of accuracy in claim frequency prediction
together with a full parametric bootstrap algorithm. The application of the method based
on real data is presented in Section 5. The paper ends with a discussion.

2. The Background of Bühlmann–Straub Model

Generally, longitudinal data allows to take into account not only the spatial correla-
tion between observations and the spatial correlation between the considered variables
(observed in the case of cross-sectional data) but also changes in time of the variable
of interest and then prediction for future periods. In credibility theory, which in under
consideration, the idea is to predict the future premium (understood here as the future
number of claims) for the single policy taking into account the historical data. That is
why we will model the longitudinal data: it gives the possibility to take into account both
dimensions—time and space—and increase the prediction accuracy due to the complex
information on the phenomenon.

Let the population size of all policies (covering all combinations of risk factors, in-
cluding green ones, of the insurer’s interest) be denoted by K. Let the size of the set of
policies present in the current insurer’s portfolio be denoted by n, where n ≤ K. Let us
also assume that longitudinal data on the policies from periods t = 1, . . . , T are available
but not necessarily balanced—it is not assumed that the data for the particular policy are
observed in all T periods. Hence, the number of all observations is smaller than or equal to
nT. What is important is that the insurer can be interested in the prediction for the future
period and the policy covering the combinations of risk factors, including green ones, not
observed in the available dataset.

In such a case the credibility theory could be applied, see [6,21]. The pure premium
for the ith policy is defined there as the conditional mean:

¶i(Θi) = E[Zi,T+1|Θi], (1)
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where Θi is the random variable representing the individual unobservable risk factor—the
risk profile. In turn, Zi,T+1 corresponding to the ith individual policy (i = 1, . . . , K) in
period T + 1 is the aggregate value of claims. It is assumed that these values are observed
in periods t = 1, . . . , T but not necessarily in all of them (unbalanced longitudinal data are
considered), which makes it possible to measure the individual factor Θi but for i = 1, . . . n.
However, in the insurance practice both ¶i(Θi) and Θi are unknown, so there is a need to

predict the value of ¶i(Θi). Let the predictor of ¶i(Θi) be denoted by ¶̂i(Θi). Nowadays,
in lines of businesses such as automobile or homeowner insurance, insurers collect mass
portfolios of risks. In their databases, detailed information is stored about the policies. This
can be cross-sectional data, but often longitudinal data are available. This means that the
portfolio of policies is observed during several periods, mostly on a yearly basis. Because
of the fact that each policy can be renewed (usually on an annual basis), it is possible to
analyze the claim history for each risk and apply the statistical model to compute the value

of ¶̂i(Θi).
Let us start from the fundamental Bühlmann–Straub model presented in [7] and as-

sume for the current portfolio (of size n) and for T periods. Let us assume that conditionally,
for a given Θi, random variables Zi,t are independent and

E(Zi,t|Θi) = µ(Θi), (2)

Var(Zi,t|Θi) = σ2(Θi), (3)

where µ(Θi) is the individual risk premium, σ2(Θi) is the variance within an individual
risk, i = 1, . . . , n and t = 1, . . . , T + 1. Let us consider the following predictor of (1), which
is a linear combination of past observations of the aggregate value of claims (c.f. [21]):

¶̂i(Θi) = ai0 +
T

∑
t=1

aitZi,t. (4)

Let the parameters ai0, . . . , aiT , as discussed in [16], be estimated by minimizing the
quadratic loss function: L = E[(¶i(Θi)− ai0−∑T

t=1 aitZit)
2]. Then, the credibility predictor

(4) takes the following form:

¶̂i(Θi) = ziZ̄i + (1− zi)µ, (5)

where zi is the unknown credibility factor zi ranging from 0 to 1, Z̄i = T−1∑T
t=1 Zi,t is

the average of historical claims for a single ith risk and µ is the overall mean in the
current portfolio.

Predictor (5) is a function of the model unknown parameters. To obtain its empirical
(estimated) version, the parameters must be replaced by their estimates. In the actuarial
practice, the parameters of the Bühlmann–Straub model are usually estimated using the
method of moments. However, in [14] the authors develop the link between the general
formula of the Bühlmann–Straub model and the LMM for longitudinal data with fixed
effects corresponding to the observable risk factors and random effects representing the
individual risk profile. This makes it possible to estimate the model parameters using the
maximum likelihood and the restricted maximum likelihood methods, which are usually
used in this class of models. A drawback of using the LMM is the normality assumption
of the response variable. Considering insurance data, which are usually right-skewed or
discrete (claim frequency), a specific LMM has to be extended to the GLMM, see [23]. The
GLMM no longer requires the normality assumption and can be adapted to distributions
from the exponential family, such as the Poisson and the Gamma distributions. What is
more, the approach presented in this section does not cover the case of prediction for new
(including green) risk factors which the insurer would like to take into account, but which
are not observed in the current portfolio.
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3. Credibility Predictor of Claim Frequency

Claim frequency plays an important role in the calculation of the pure premium or,
e.g., in motor insurance for the bonus-malus systems, see [24–26]. In frequency modeling it
is usually assumed that the number of claims Nit, i = 1, . . . , n, t = 1, . . . , T + 1 follows a
conditional Poisson distribution, where n is the size of the observed risk portfolio. This
is why the credibility premium understood as E[Ni,T+1|Θi] is often under consideration.
In [16] the authors extend the LMM approach from [14] to the GLMM for the case of the
Poisson distribution and derive a new formula of the credibility predictor (5) but for the
observed ith risk factor. Consequently, the results presented below take additional account
of new, including green, risk factors which were not present in the premium calculation
process before (i.e., for policies indexed by i = n + 1, . . . , K). It is of special importance
in the case of challenges resulting from the sustainable approach in the management in
insurance companies.

Considering the claim frequency credibility predictor, let the number of claims be
expressed as:

Nit|Θi ∼ Poisson(λ0Θi), (6)

where i = 1, . . . , K (for all risk factors, including those not present in the current portfolio),
t = 1, . . . , T + 1 (for all periods including the future one), λ0 is an unknown parameter and
Θi is an unobservable risk factor. The GLMM corresponding to Bühlmann–Straub model is
described as follows:

E[Nit|Θi] = exp (β0 + ui), (7)

where β0 is the unknown fixed effect in the portfolio (the same for all policies) and ui
represents normally distributed random effects with E[ui] = 0 and Var[ui] = σ2

u . Hence,
considering (7), λ0 and Θi in (6) can be written as λ0 = exp(β0) and Θi = exp(ui),
respectively. Under the GLMM, the credibility predictor will be given by:

¶̂i(Θi) = N̂i,T+1 =

{
zi N̄i + (1− zi)λ0 f or i = 1, . . . , n

λ0 f or i = n + 1, . . . , K.
(8)

The credibility factor here is zi = T
1
ν̂i
+T

, where νi = Var(exp(ui)). Using the

moment-generating function of the number of claims N for Poisson distribution
MN(x) = E[exp(xN)] = exp(λ(exp(x)− 1), it is possible to compute νi = exp(2σ2

u)−
exp(σ2

u). Of course it is possible to consider different distribution than the conditional Pois-
son distribution assumed in in (6), e.g., zero-inflated Poisson (ZIP) or negative-binomial
and different model than (7), but then it will not correspond to the classic Bühlmann–Straub
model but rather to its modification. On the other hand, in the case of a misspecification of
the model the predictor can be biased and it can influence its accuracy as well.

Like predictor (8), predictor (5) depends on the model unknown parameters. To obtain
the empirical (estimated) version of (8) they should be replaced by their estimates. The
analysis presented herein makes use of the restricted maximum likelihood method, which
is widely used in the case of the GLMM. What is also important, using the empirical version
of (8) for policies not present in the current risk portfolio (i.e., for i = n + 1, . . . , K), the
unpredictable random effects are not taken into account.

4. Bootstrap Estimators of Prediction Accuracy Measures for Claim Frequency

This section deals with the problem of prediction accuracy estimation, which is not
considered in [16]. Although random effects for the risk factors not present in the insurer’s
current portfolio, including those resulting from the emergence of green technologies,
cannot be taken into consideration at the prediction stage (see (8)), their variability can be
taken into account in the estimation of prediction accuracy. Let the prediction error for
the ith policy, where i = 1, 2, . . . , K, be denoted by Ui,T+1 = N̂i,T+1 − Ni,T+1. What is more,
the new prediction accuracy measures (given by (11) and (12)) are proposed as alternative
to the MSE, and their estimators (see (16) and (17)) are presented. The statement seems
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justified that their usage should be preferred to the MSE, because the MSE is the mean of
squared prediction errors whose distribution is strongly, positively skewed (see Figure 1).
Let us consider the following prediction accuracy measures.

Figure 1. Distributions of absolute bootstrap errors for 6 arbitrary selected (out of 24) risk factors
with Q̂APEp(.) of orders p = {0.5, 0.75, 0.9, 0.95, 0.99} denoted by green circles, R̂MSE(.) denoted
by blue square, and the value of the predictor denoted by red rhombus (all outliers are included).

Firstly, the Mean Squared Error (MSE) is defined as

MSE(N̂i,T+1) = E(U2
i,T+1) (9)

and the Root Mean Squared Error (RMSE) is given by:

RMSE(N̂i,T+1) =
√

MSE(N̂i,T+1). (10)

Secondly, for the problem under consideration, the Quantile of Absolute Prediction
Errors (QAPE), originally proposed in [27] for small area prediction problems under the
LMM and then used in [28] for the problem of prediction of the total loss reserve under the
Hierarchical General Linear Model (HGLM), can be modified to the following form:

QAPEp(N̂i,T+1) = in f {x : P(|Ui,T+1| ≤ x) ≤ p}. (11)

This means that (11) is the quantile of order p of absolute prediction errors. It also
means that at least p100% of realizations of absolute prediction errors for the ith risk factor
are smaller than or equal to QAPEp(N̂i,T+1).
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Thirdly, for the problem under consideration, the Quantile of a Mixture of Absolute
Prediction Errors (QMAPE), originally proposed in [27] for small area prediction problems
under the LMM, can be written as follows:

QMAPEp((N̂i,T+1)
K
i=1) = in f {x :

K

∑
i=1

P(|Ui,T+1| ≤ x) ≤ Kp}. (12)

Hence, it is the pth quantile of the distribution of a mixture of absolute prediction
errors |Ui,T+1| with equal weights, where i = 1, 2, . . . , K. This means that at least p100%
of realizations of absolute prediction errors for all risk factors are smaller than or equal to
QMAPEp((N̂i,T+1)

K
i=1).

Let us introduce Algorithm 1, see [28–30], which will be used to estimate the prediction
accuracy for the considered model, where the variability of random effects will be taken
into account also for the risk factors not observed in the considered dataset.

Algorithm 1 The parametric bootstrap algorithm

1: Based on observations of Ni,t and the grouping variable defining the risk factors
(i = 1, 2, . . . , n; t = 1, 2, . . . , T), estimate parameters of model (6) given by β0 and σ2

u to
obtain β̂0 and σ̂2

u .
2: for b = 1 to B do
3: generate realizations N∗(b)i,t of Ni,t (t = 1, 2, . . . , T + 1; i = 1, 2, . . . , K) under model

(6) where β0 and σ2
u are replaced by β̂0 and σ̂2

u ,

4: obtain estimates β̂
∗(b)
0 and σ̂

2∗(b)
u using N∗(b)i,t (i = 1, 2, . . . , n; t = 1, 2, . . . , T),

5: compute a bootstrap realization of the predictor N̂i,T+1, see (8), denoted by N̂∗(b)i,T+1,

where i = 1, . . . , K and parameters β0 and σ2
u are replaced with estimates β̂

∗(b)
0 and

σ̂
2∗(b)
u ,

6: compute bootstrap realizations of prediction error Ui,T+1 denoted by u∗i,T+1 and for
the bth iteration given by:

u∗(b)i,T+1 = N̂∗(b)i,T+1 − N∗(b)i,T+1, (13)

where i = 1, 2, . . . , K.
7: end for
8: Compute the parametric bootstrap estimators of prediction accuracy measures:

M̂SE(N̂i,T+1) = B−1
B

∑
b=1

u∗(b)
2

i,T+1, (14)

R̂MSE(N̂i,T+1) =

√
M̂SE(N̂i,T+1), (15)

Q̂APEp(N̂i,T+1) = Qp

(
(|u∗(b)i,T+1|)

B
b=1

)
, (16)

̂QMAPEp

(
(N̂i,T+1)

K
i=1

)
= Qp

(
((|u∗(b)i,T+1|)

B
b=1)

K
i=1

)
, (17)

where Qp(.) is the quantile of order p.

If the considered predictor is based on a different distribution and different model
than that assumed in (6) and (7), then the bootstrap algorithm presented in this section
should be modified taking into account the appropriate new assumptions.
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5. The Case Study Based on Longitudinal Portfolio

The aim of this section is to apply the presented methodology to real data problem
resulting from the sustainable insurance principles—the prediction of the number of claims
and the estimation of accuracy for a green factor not present in the current portfolio.
Considerations are based on a motorcycle dataset taken from a Polish insurance company.
The data have a longitudinal structure and contain information from years 2007–2010 on
24 different risk factors. Every risk factor describes the insured vehicle according to:

• The type of the engine—benzine (BEN), diesel (DIE), hybrid (HYBRID);
• The power range—0–60, 61–80, 81–100, 101–120, 121–140, 141–160, 160+;
• The type of payment—cash, transfer.

One unobserved green factor is assumed—HYBRIDtrans f er, which means that we
are interested in a policy paid by bank transfer for a motorcycle with a hybrid engine. Of
course additional unobserved factors could be considered as well, for example hybrid type
of engine for a policy paid by cash, but the methodology to be used will remain the same.

The variable of response is the number of claims of a single policy observed in every
year. Relevant information is given in Figure 2. The empirical distribution presented in
Table 1 clearly demonstrates a strong positive asymmetry.

Figure 2. The number of claims for every risk factor in years 2007–2010 presented as points. The size
of points demonstrates the value of the number of claims from 0 to 7 on an increasing scale.

Table 1. Empirical distribution of the number of claims in the portfolio.

Number of Claims 0 1 2 3 4 5 6 7

number of policies 41 23 11 5 2 1 1 1
fraction of policies 0.482 0.271 0.128 0.059 0.024 0.012 0.012 0.012

The aim is to compute the values of predictors for the year 2011, based on (8), and
assess the prediction accuracy, based on (15) and our proposals: (16) and (17), mainly
for HYBRIDtrans f er, for which no past data are available but also for other risk factors.
What is important is that the presentation of the results will not be limited to the values
of the predictors and estimates of accuracy measures. The distributions of the parametric
bootstrap absolute errors (see (13)) will also be presented, which is especially important
due to the strong positive asymmetry of prediction errors and to the fact that the values
of the variable of interest are natural (not real) numbers. The results will be presented
using violin plots including the density function estimator with a mirror effect. The violin
plot is more informative than a boxplot, e.g., because it makes it possible to show the
multimodality of data and, additionally, to present outliers more clearly than in the case of
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a histogram. Showing the multimodality of the distribution may be important especially
in the considered case of prediction errors computed as differences between the forecasts
(which are real numbers) and the realizations of the variable of interest (which are natural
numbers). What is more, the multimodality of the distribution is the additional argument
in favor of using the quantiles (i.e., the QAPE and QMAPE) instead of the mean (i.e., the
MSE) to describe the distribution of prediction errors or at least its central tendency.

In the first step of the analysis, the values of the predictors of the number of claims are
computed separately for all risk factors—they vary from 0.26 to 3.73 (see Table 2) including
the predicted value for the HYBRIDtrans f er risk factor of 0.65 (see Table 3). Then, the
bootstrap algorithm is run for all risk factors for the year 2011. The distributions of the
bootstrap absolute prediction errors for six arbitrarily chosen risk factors (out of 24) are
presented in Figure 1. Estimates of RMSE (see (15)) for all risk factors are between 1.06
and 1.50 (see Table 2) including the value for the HYBRIDtrans f er risk factor of 1.50 (see
Table 3). However, all of the distributions have a very strong positive asymmetry with
many outliers-the highest value of the absolute bootstrap error, ca. 19, is observed for
the HYBRIDtrans f er risk factor. The strong positive asymmetry implies that the mean of
squared errors (i.e., the MSE) and the RMSE should be replaced with different accuracy
measures. The proposal is to use the QAPE estimators denoted by green circles in Figure 1.
For example, the QAPE estimate for order p = 0.99 for the HYBRIDtrans f er risk factor
(the right bottom corner of Figure 1, see also Table 3) equals 5.69. Hence, it is estimated that
at least 99% of absolute prediction errors for the HYBRIDtrans f er risk factor are smaller
than or equal to 5.69 and at least 1% of absolute prediction errors for the HYBRIDtrans f er
risk factor are greater than or equal to 5.69. It is the highest value of the QAPE estimate of
order p = 0.99 for the risk factors presented in Figure 1.

In the second step of the analysis all the absolute bootstrap errors computed for all of
the 24 risk factors (not only the six risk factors presented in Figure 1) are taken into account.
These values are presented in Figure 3. Hence, the distribution can be interpreted as the
distribution of a mixture of the bootstrap absolute prediction errors for all risk factors with
equal weights. Then, quantiles of these values are computed, as defined in (17), denoted
by green lines in Figure 3. For example, the estimate of QMAPE for order p = 0.99 equals
3.92 (see also Table 2). Hence, it is estimated that at least 99% of absolute prediction errors
for all risk factors are smaller than or equal to 3.92 and at least 1% of absolute prediction
errors for all risk factors are greater than or equal to 3.92.

Figure 3. Joint distribution of absolute bootstrap errors for all risk factors with ̂QMAPEp(.) of orders
p = {0.5, 0.75, 0.9, 0.95, 0.99} denoted by green lines (all outliers are included).
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In the last step of the analysis, the estimates of QAPEs-quantiles of bootstrap absolute
prediction errors for the HYBRIDtrans f er risk factor are compared to the estimates of
QMAPEs-quantiles of bootstrap absolute prediction errors for all risk factors. In Figure 4
estimates of QAPEs are presented as green circles, while the estimated QMAPEs are repre-
sented by green lines; these results are also presented in Tables 2 and 3. What is important,
for the same order of the quantile, QAPEs are greater than respective QMAPEs. For exam-
ple, it is estimated that the median of absolute prediction errors for the HYBRIDtrans f er
risk factor equals 0.89, while for all risk factors it is 0.60. It is not surprising because QAPEs
are estimated for the unobserved green risk factor HYBRIDtrans f er, while the QMAPE is
computed for all risk factors, only one of which has not been observed.

Table 2. Values of the predictors and estimators of prediction accuracy measures for all risk factors.

Statistic Value

mini=1,...,K N̂i,T+1 −maxi=1,...,K N̂i,T+1 0.26–3.73
mini=1,...,K R̂MSE(N̂i,T+1))−maxi=1,...,K R̂MSE(N̂i,T+1) 1.06–1.50

̂QMAPE0.5
(
(N̂i,T+1)

K
i=1
)

0.60
̂QMAPE0.75

(
(N̂i,T+1)

K
i=1
)

1.01
̂QMAPE0.9

(
(N̂i,T+1)

K
i=1
)

1.66
̂QMAPE0.95

(
(N̂i,T+1)

K
i=1
)

2.27
̂QMAPE0.99

(
(N̂i,T+1)

K
i=1
)

3.92

Table 3. Values of the predictor and estimators of prediction accuracy measures for HYBRIDtrans f er
risk factor.

Statistic Value

N̂i,T+1 0.65
R̂MSE(N̂i,T+1) 1.50

Q̂APE0.5(N̂i,T+1) 0.89
Q̂APE0.75(N̂i,T+1) 1.18
Q̂APE0.9(N̂i,T+1) 1.86
Q̂APE0.95(N̂i,T+1) 2.92
Q̂APE0.99(N̂i,T+1) 5.69

Summing up, the presented methodology enables prediction of claim counts and
estimation of the prediction accuracy for risk factors even not present in the current
portfolio. It is crucial due to the necessity of extending the decision-making process
in the insurance company to so far not taken into account information on new green
technologies (in our case: hybrid motorcycle engine). In addition, it makes it possible to
compare the prediction accuracy with other individual risk factors and also with the whole
risk portfolio.
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Figure 4. Distribution of absolute bootstrap errors for HYBRIDtransfer risk factor with Q̂APEp(.)

of orders p = {0.5, 0.75, 0.9, 0.95, 0.99} denoted by green circles, R̂MSE(.) denoted by blue
square, the value of the predictor denoted by red rhombus, and ̂QMAPEp(.)s of orders p =

{0.5, 0.75, 0.9, 0.95, 0.99} denoted by green lines (less than 1% of outliers are excluded, the maxi-
mum value not shown in the figure equals ca. 19).

6. Discussion

The development of sustainable insurance leads to new challenges which influence
management processes in insurance companies. The paper deals with the problem of
taking account of new risk factors resulting from the emergence of green technologies
in the premium pricing process, cf. [4]. The GLMM extension of the commonly used
Bühlmann–Straub model is studied. The problem of the prediction of the number of claims
is extended, comparing with [16], by estimation of the prediction accuracy. New measures
are presented too—they make it possible not only to assess the prediction accuracy but
also to compare the prediction accuracy for new green risk factors with the accuracy of the
whole risk portfolio. They are also not limited to the assessment of the average prediction
accuracy but enable a description of the whole distribution of absolute prediction errors.
The authors believe that the considered issue of assessing the prediction accuracy for risk
factors currently not present in the portfolio is crucial for the effective conduct of the
insurance business in accordance with the principles of sustainable development. The
theoretical considerations presented herein are supported by an application based on a real
longitudinal dataset of policies sold by a Polish insurance company.

Of course the proposed bootstrap estimation procedure is not limited to just dealing
with new risk factors classified as “green”. The presented methodology can be used for
any new risk factors including new distribution channels, regions or customer groups. In
practice, a large percentage of changes in (non-life) insurance data concerns information
related to the climate change and the premium level adaptation to new technologies.
Basically, incorporating “green” risk factors in modeling is not the same as reducing the
pure premium in terms of data prediction. It is only the premium better adjustment for the
future along with an increase in the number of observed periods in the sample. What is
more, based on our results insurers can take into account not only the value of the predictor
but also the distribution of the predictions errors, which can lead to more effective business
decisions. Generally, values of the predictors and higher estimated prediction errors in the
case of unobserved risk factors do not have to justify the reduction of the premium at least
until new observations of claims are available. However, the insurers can take into account
not only their own historical data but also wider information from the entire market.
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