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Abstract: E-waste recycling has been a hot topic in recent years. The low efficiency and high-operation
cost of recycling make it more important to build perfect e-waste recycling networks. To hedge
against the limitation of vehicle resources being often neglected in existing research, we propose a
mixed integer linear programming model of e-waste recycling by renting idle social vehicles. In the
model, both decisions made on the location selection of recycling sites and vehicle routings satisfying
all of the demand nodes over the network within time windows are required to minimize the total
operating cost. An improved genetic algorithm and heuristic algorithm are designed to solve the
model, and numerical experiments are produced to demonstrate the effectiveness of the proposed
model and algorithms.

Keywords: location-routing optimization; renting social vehicles; two-stage e-waste recycling; genetic
algorithm; heuristic algorithm

1. Introduction

With the development of sharing economies and the advent of the “Internet +” wave,
enterprises are constantly innovating new forms to figure out traditional pain points of
various industries. Sharing economies can create social value and can improve the lives of
people all over the world.

The shortened electrical and electronic product life-cycles, along with the rapid tech-
nological innovation and increased need of automated production, have made e-waste
one of the fastest-growing waste streams. The recycling of e-waste is related to environ-
ment and resources. On one hand, e-waste is called urban minerals because of a large
amount of high-value metals such as gold and copper [1]. On the other hand, it contains
harmful substances that affect human health and damage ecological environment. How to
recycle e-waste in a better way has always been a problem perplexing the industries and
the markets.

There are three fundamental weaknesses of current e-waste recycling. First, the dis-
tances between demand nodes and recycling sites so far make it such that users with
recycling demands are unwilling to discard e-waste to recycling sites by themselves. Sec-
ond, if recycling sites arrange vehicles to pick up e-waste door to door, it is unlikely that
vehicles can arrive at all of the demand nodes within their respective service time windows.
Third, in the recycling sites, there are a limited number of owned vehicles that may not be
able to satisfy recycling demands in time. On the other hand, it is uneconomic to equip
more vehicles to satisfy peak demands.

In China, sharing models such as car sharing and bicycle sharing are prevalent. In
metropolitan areas, there is a considerable degree of inefficiency in transporting trucks
due to traffic congestion, etc., and small and medium-sized trucks that transport in urban
areas, which are usually empty on the return trip. There are already companies in the
business of leasing trucks at hourly rates. Thompson et al. [2] investigated the potential of

Sustainability 2021, 13, 11879. https://doi.org/10.3390/su132111879 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-8214-2453
https://orcid.org/0000-0003-3190-5008
https://doi.org/10.3390/su132111879
https://doi.org/10.3390/su132111879
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su132111879
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su132111879?type=check_update&version=3


Sustainability 2021, 13, 11879 2 of 18

shared networks for general freight transportation in urban areas in Melbourne to reduce
congestion and to lower transportation costs, and the results show that sharing freight
makes it possible to reduce transportation costs significantly.

This study makes decisions on the selection of recycling sites for constructing efficient
e-waste recycling network, the selection of outsourcing demands to be satisfied by social
vehicles, and vehicle routing solutions for the remaining demands, aiming to minimize
the sum of the total rental cost and the total transportation cost in the recycling network.
With the assumption of customer perferred time windows of service, selecting outsourcing
demands has a great impact on the routing scheduling for the remaining demands to be
completed by owned vehicles. The two choices of completing recycling demands, i.e.,
using social or owned vehicles, makes the problem decision more complicated. A full
solution consists of deciding the locations of recycling sites, the selection of outsourcing
demands, and making a vehicle routings schedule for the remaining demands in the e-
waste recycling network. Note that selecting social vehicles causes some amount of renting
fee. To minimize the total rental cost and the total transportation cost, the selection of
which and how many demands to be served by social vehicles are closely related to the
total capacity of vehicles and the preferred service time windows of customer demands.

The main contributions of this work are as follows:

• Under the background of sharing economy, we introduce the application of social
vehicles with rental cost into the classical integrated recycling cite location and vehicle
routing problem in an e-waste recycling network. There are two stages of e-waste
collection, where in the first stage, e-waste recycling demands are processed by either
self-delivery or door-to-door pickup and, in the second stage, the collected e-wastes
are delivered to the unique processing centre.

• An MILP model is established, in which it is assumed that different recycling sites
are equipped with an unequal number of vehicles, and each vehicle shall depart from
and return to its respective recycling site in the first collection stage.

• An improved genetic algorithm and a two-stage cyclic optimization-based heuristic
algorithm are developed to solve the considered problem.

The rest of this paper is organized as follows. Section 2 reviews the relevant papers
in the literature. In Section 3, the problem is stated and formulated. Next, a genetic and a
two-stage greedy algorithm are proposed to solve the MILP model in Section 4. Section 5
reports computational experiments. Finally, the paper is concluded in Section 6.

2. Literature Review

In recent years, e-waste has become a global issue because of the quick maturation of
electronics, low recycling rate in some cases, utilization of raw materials, and pollution
effects around the globe [3,4]. Therefore, the recycling of e-waste has attracted the attention
of domestic and foreign enterprises and scholars. This section mainly reviews the current
research situation of e-waste recycling and the location-routing problem (LRP).

Guo et al. [5] raised the fact that there are many problems in the process of e-waste
recycling such as high economic cost, environmental detriment caused by improper recy-
cling, ignorance of social benefits of recycling, uncertain recycling amounts, and single
recycling channels. He et al. [6] compared soil pollution caused by heavy metals from
traditional industrial operations and e-waste recycling activities in the Pearl River Delta.
They conclude that, in view of the short development of e-waste recycling and the fact that
it is largely unregulated, cracking down on illegal e-waste recycling and strengthening
pollution control of related activities are very significant. Li et al. [1] describe the threat to
environment and human health caused by hazardous substances in e-waste all over China
as well as the management status and problems of e-waste management. At last, they
put forward controllable sources of pollution, and eco-friendly and efficient remediation
technologies to solve the problem of e-waste in China. Cao et al. [7] proposed a hierarchical
heuristic algorithm based on tabu search for the LRP problem of bio-fuel cell enterprises and
verified the effectiveness and high efficiency of the algorithm. Gamberini et al. [8] aimed
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to optimize the e-waste recycling network according to technical and environmental per-
formance criteria in a real case study from Eggio Emilia in northern Italy. They developed
simulation models to measure the performance of each feasible solution. Nowakowski [9]
solved the WEEE storage and transportation i.e., vehicle loading problem and vehicle
routing problem for a Polish e-waste recycling company, aiming at maximizing the vehicle
loading rate. He developed adaptive heuristic algorithms to solve the proposed problem.
Beneventtiet et al. [10] designed a multi-product maximum–minimum-waste LRP model,
taking into account the different impacts of waste on people, with the goal of maximizing
the minimum weighted distance between facilities and vulnerable people stations as well
as transportation routes while minimizing the total harm and cost to non-vulnerable peo-
ple. Sakti et al. [11], in order to minimize the total cost in a waste network in Yogyakarta,
Indonesia, built a model of the location-routing problem considering two types of fleets.
Finally, a greedy algorithm is designed to solve the large-scale arithmetic cases.

Zhao et al. [12] analyzed the situation of incorporating inventory risk into explosive
waste management. They developed a dual-objective model to minimize total cost and
total risk at the same time and investigated some numerical experiments using real data in
China. Dukkanci et al. [13] developed a mixed integer programming formula for GLRP and
described preprocessing rules and valid equations to enforce the formula. Different-sized
instances are solved by two heuristic algorithms designed. In order to solving the Last Mile
distribution for online shopping, Dukkanci et al. [14] proposed a novel location-routing
problem with two kinds of service options that denote home delivery and pickup. They
designed a hybrid heuristic combining GA and LS to prove that setting a reasonable scope
of customer’s acceptable distances and an optimal distance for a certain distribution system
can decrease operation costs. Ng et al. [15] introduced the multi-depot open LRP with
a heterogeneous fixed fleet in which raw materials from different suppliers coordinating
several carriers are delivered to a single delivery point. The problem was modeled to
minimize the total cost, selecting the carriers to be contracted, the vehicles to be used
from each contracted carrier, and the collection routes. An intelligent meta-heuristic which
incorporates problem-specific knowledge is proposed to handle this problem. A new
two-phase deterministic mixed-integer linear programming model is proposed to deal
with the inherent uncertainty of input data in the location and vehicle routing scheduling
problems in cross-docking distribution networks by Vandani et al. [16]. Moreover, a
meta-heuristic algorithm was designed, and various computational tests were used to
demonstrate the applicability and capability of the proposed robust two-phase model and
meta-heuristic solution approach. Kuroki et al. [17] made decisions about the timing and
location of the installation of recycling facilities by considering regional characteristics.
A simulated annealing algorithm was designed to solve the model by evaluating the
recycling and transportation costs based on the future demand for rare metals in Japan.
A trade-off between profit-oriented and service-oriented collector behavior management
models was proposed for an e-waste recycling logistics network that considers both on-call
and door-to-door demand, and the proposed model was solved using Tabu Search by
Pourhejazy et al. [18].

Abid et al. [19] conducted a literature review based on more than 50 reviewed
articles on simulation techniques in the context of reverse logistics. They conclude that
discrete event simulation and system dynamic are the most flexible and widely used
tools. Agnusdei et al. also endorsed this conclusion in [20]; in addition, they reviewed
that various methods have been applied (e.g., mixed integer linear and nonlinear models,
multi-objective models, fuzzy linear programming models, etc.), of which 73% of the cases
are deterministic models, but 19% of stochastic programming models have also been found.

We summarize some existing related research in Table 1; it can be concluded that,
though there have been abundant researches on e-waste recycling combined with location-
routing problems, most existing research considers that vehicles are sufficient and single
categories while we focus on the limited number of owned vehicles. At the same time,



Sustainability 2021, 13, 11879 4 of 18

we consider renting social idle vehicles in an e-waste recycling network when e-waste
recycling demands surge, which is also a gap in existing related research.

Table 1. Comparison of research in the location routing problem.

References Objective Vehicle Fleet Vehicle Capacity Time Window Solution Method

Cao et al. [7] min FEC & TC single - - CPLEX,TS
Nowakowski [9] min TC single X - GLSA
Zhao et al. [12] min TC, FEC & risk single X - TOPSIS

Beneventtiet et al. [10] max MWD; min THIP, FEC & TC single - - CPLEX
Dukkanci et al. [13] min FEC, FC & CO2 C single - X ILSA

Zhou et al. [14] min FEC, TC & SDC single X X HESA
Ng et al. [15] min TC single X - MA

Vandani et al. [16] min TC & IC multi X X MA
Kuroki et al. [17] min RC & TC single - - SAA

Pourhejazy et al. [18] max TP single X X TS
this study min FC & RSVC multi X X CPLEX, GA, HA

Note: TC: transportation cost; FEC: facility establishment cost; RC: recycling cost; MWD: the minimum weighted distance; THIP: the
total hazardimposed on the non-vulnerable population; FC and CO2 C: fuel and CO2 emissions cost; SDC: the second delivery cost; IC:
inventory cost; RSVC: renting social vehicles cost; TP: total profit; TS: Tabu search; GA: genetic algorithm; MA: metaheuristic algorithm;
HA: heuristic algorithm; HESA: hybrid evolution search algorithm; ILSA: iterated local search algorithm; GLSA: greedy and local search
algorithm; SAA: simulated annealing algorithm.

3. Model Formulation

This section first describes the problem under consideration together with basic
assumptions and notations. We then present a mixed integer linear programming model.

3.1. Problem Description

Figure 1 illustrates an e-waste recycling network in which there are four demand
nodes, two candidate recycling sites each are equipped with one owned vehicle, and the
single processing centre. Recycle site 1 other than recycle site 2 is selected for satisfying
the recycling demands. For the first stage delivery, the last demand node (i.e., node 4) is
processed by its own customer at the node, and there are no costs for this pick-up task. For
the other three pick-up tasks, nodes 1 and 2 are served by one own vehicle of recycle site 1,
and the delivery route is recycling site 1→ demand node 2→ demand node 1→ recycling
site 1. Demand node 3 is satisfied by one social vehicle with a pick-up route from demand
model 3 → recycling site 1, since its time window cannot be met by the single owned
vehicle in time. In the second delivery stage, all of the e-wastes collected by recycling site 1
are transported to the processing centre together (recycling site 1→ processing centre).

Without loss of generality, we consider that, in an e-waste recycling network, there are
|N| demand nodes, |M| candidate recycling sites, and one processing centre. Moreover,
there are two ways of e-waste delivery. One is to deliver the e-waste from demand nodes
to recycling sites by customers themselves, and the other way is to deliver e-wastes by
recycling site or social vehicles. For the first delivery way, the amount of e-wastes received
by one recycling site m is denoted by wm. Therefore, the recycling network only depicts
those demand nodes satisfied by the second delivery way. Demand node i has qi units of
e-waste to be recycled, and its processing time is ti. The expected service time window is
[ei, li], where ei and li denote the demand node’s earliest and latest time points of acceptable
service, respectively. We select m1 out of the |M| candidate sites for satisfying the recycling
demands. Each recycling site has a finite number of vehicles called own vehicles. On the
contrary, the available social vehicles are called outside vehicles.
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Recycling site 1

Recycling site 2

Demand node 1

Demand node 2

Demand node 3

Processing centre

Demand node 4

Figure 1. Illustration of an e-waste recycling network.

There are two stages of e-waste collection. In the first stage, the e-waste in the demand
nodes are delivered to recycling sites, and in the second stage, the collected e-waste is
transported from recycling sites to the processing centre. To differ the transportation tasks
in the two stages, we define them as pick-up and transportation tasks, respectively. The owned
vehicles in the two stages are of different capacities, i.e., pick-up tasks are served by smaller
vehicles and transportation tasks are served by larger vehicles. If pick-up tasks are satisfied
by owned vehicles, then it causes transportation costs in accordance with the respective
delivery distances. Otherwise, if pick-up tasks are satisfied by social vehicles, then it
generally has a higher delivery cost. The problem is to select a subset of recycling sites used
for collecting e-waste delivered from demand nodes, to select outsourcing demand nodes
to be served by social vehicles, and to decide detailed transportation routes for processing
remaining demand nodes by own vehicles, minimizing the total delivery cost of owned
and outside vehicles.

3.2. Assumptions

In the considered problem, the following fundamental assumptions are necessary.

• The speed of each vehicle is smooth and uniform in any transportation route. The
distance between any two nodes in the recycling network is calculated by Euclidean
distance and satisfies the triangle inequality ([21,22]).

• The capacities of recycling sites and the processing centre are infinite ([23]).
• Each own vehicle departures from and returns to its belonging recycling site ([24,25]).
• Rented vehicles and the smaller owned vehicles have the same capacity.
• If a demand node is served by an outside vehicle, the outside vehicle must meet the

recycling demand within the time window ([26,27]).
• E-waste of demand nodes that have a pickup service must be picked up at one time

by an own vehicle or an outside vehicle. implying that the demand cannot be split
and satisfied in two time points ([25,28]).

3.3. Notations

The indices, parameters, and decision variables used in the model are defined as follows:
Indices:

- i: index of demand node;
- m: index of recycling site;
- j: index of demand node and recycling site;
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- p: index of processing centre;
- v: index of vehicle;

Parameters:

- N : set of demand nodes, N = {1, 2 . . . , |N|}, where |N| is the number of demand
nodes;

- M: set of candidate recycling sites,M = {|N|+ 1, |N|+ 2 . . . , |N|+ |M|}, where |M|
is the number of candidate recycling sites;

- U : set of demand nodes and recycling sites,where U = N ∪M;
- P : set of processing centres;
- m1 : number of recycling sites selected;
- bv

m: set of own vehicles of each recycling site;
- tij, tim, tmp: time between demand node i and demand node j, between demand node

i and recycling site m, between recycling site m and processing centre p;
- Qc: capacity of vehicle which processes pick-up tasks;
- Qt: capacity of vehicle which processes transportation tasks;
- vc: uniform speed of any vehicle;
- qi: amount of e-waste at demand node i;
- c1, c2: cost of transportation per minute and renting cost per time;
- ei, li: the earliest and latest start time acceptable for serving demand node i;
- wm: amount of self-delivered e-waste received by customers at recycling site m;
- ti: processing time required by demand node i;
- M1, M2: two sufficiently large real numbers.

Decision Variables:

- αi: equals 1, if e-waste in demand node i is picked up by an outside vehicle, and 0
otherwise;

- αim: equals 1, if e-waste in demand node i is picked up by an outside vehicle to
recycling site m, and 0 otherwise;

- xij: equals 1, if an own vehicle travels from node i to node j, and 0 otherwise;
- ym: equals 1, if candidate recycling site m is selected, and 0 otherwise;
- ximv: equals 1, if e-waste in demand node i is picked up by own vehicle v of recycling

site m, and 0 otherwise;
- θimv: equals 1, if an own vehicle v of recycling site m travels form recycling site m to

demand node i, and 0 otherwise;
- γimv: equals 1, if an own vehicle v of recycling site m travels form demand node i to

recycling site m, and 0 otherwise.
- δim: equals 1, if e-waste in demand node i is picked up by an own vehicle of recycling

site m, and 0 otherwise;
- Ti: arrival time of a vehicle in demand node i;
- smv: departure time of an own vehicle v in recycling site m.
- βi: an intermediate variable, equals 1 if Ti ≥ ei, and 0 otherwise.

3.4. Mathematical Model

Based on the above parameters and variables, the following mathematical model is
established for the considered problem.

There are generic models about the location-routing problem in the literature, mainly
including flow constraints ([11,25]), capacity constraints ([25,29]), time window constraints,
and constraints about the maximum number of sites ([30]). In this study, while constructing
the MILP model, it benefits from them. Moreover, the model used in the study differs
from the existing studies by taking into account owned vehicle departures from their own
recycling sites rather than all vehicle departures from one depot ([31]). Moreover, demand
nodes served by rented outside vehicles can only be transported to recycling sites selected.

The objective is to minimize the total costs that contain three parts. The first part
is that, when e-waste of the demand nodes is collected by outside vehicles, it generates
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the outsourcing cost C1, which is composed of fixed cost of rented social vehicles and
transportation cost of the vehicles:

C1 = ∑
i∈N

αi · c2 + ∑
i∈N

∑
m∈M

αim · tim · vc · c1 (1)

The second part is the transportation cost C2 between the recycling site m and the
demand node i, the demand node i and the demand node j, and the demand node i and
the recycling site m when the recycling site’s own vehicles serve the demand nodes:

C2 = ∑
i∈N

∑
j 6=i∈N

xij · tij · vc · c1

+ ∑
i∈N

∑
m∈M

∑
v∈bmv

θimv · tmi · vc · c1

+ ∑
i∈N

∑
m∈M

∑
v∈bmv

γimv · tim · vc · c1 (2)

The third part is the transportation cost C3 caused by transporting e-waste, which is
picked up by vehicles and sent to recycling sites by customers from the recycling site m to
the recycling centre p:

C3 = ∑
m∈M

⌈
ym ·ωm + ∑i∈N (δim + αim) · qi

Qt

⌉
· tmp · vc · c1 (3)

The objective function can thereby be formulated as follows:

min W = C1 + C2 + C3 (4)

Constraints (5) and (6) indicate that the candidate recycling site is selected only when
the e-waste of demand nodes is transported to the recycling site m by its own vehicle.

δim ≤ ym ∀i ∈ N , m ∈ M (5)

∑
i∈N

δim ≥ ym ∀m ∈ M (6)

Constraints (7) and (8) ensure that the rented social vehicle may only transport e-waste
to the recycling site selected.

∑
m∈M

αim = αi ∀i ∈ N (7)

αim ≤ ym ∀i ∈ N , ∀m ∈ M (8)

Constraint (9) indicates that the e-waste in a demand node is either picked up by an
own vehicle or a rented outside vehicle.

∑
m∈M

δim + ∑
m∈M

αim = 1 ∀i ∈ N (9)

Constraint (10) indicates that the number of recycling sites selected is up to m1.

∑
m∈M

ym <= m1 (10)

Constraints (11) and (12) ensure that there is only one vehicle entering and leaving
each demand node.

∑
j∈U ,j 6=i

xji + αi = 1 ∀i ∈ N (11)
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∑
j∈U ,j 6=i

xij + αi = 1 ∀i ∈ N (12)

Constraint (13) indicates that e-waste in demand node is picked up by one and only
one vehicle.

∑
m∈M

∑
v∈bv

m

ximv + αi = 1 ∀i ∈ N (13)

Constraint (14) ensures that the e-waste picked up by one vehicle is within the capacity
of the vehicle.

∑
i∈N

ximv · qi ≤ Qc ∀m ∈ M, ∀v ∈ bv
m (14)

Constraints (15)–(17) indicate the relationship between the order of demand node i
and j that are picked up by the same vehicle.

xij ≤ M(1− ximv) + M2 · xjmv ∀i, j ∈ N , j 6= i, ∀m ∈ M, ∀v ∈ bv
m (15)

xij + xji ≤ 1 ∀i, j ∈ N , j 6= i (16)

xij ≤ (2− αi − αj)/2 ∀i, j ∈ N , j 6= i (17)

Constraint (18) indicates that the e-waste of the demand node only needs an own
vehicle to pick up at most.

∑
v∈bv

m

ximv = δim ∀i ∈ N , ∀m ∈ M (18)

Constraints (19)–(23) indicate the relevant constraints of the first demand node, which
is picked up by an own vehicle.

M · ∑
i∈N

θimv ≥ ∑
i∈N

ximv ∀m ∈ M, ∀v ∈ bv
m (19)

θimv ≤ ximv ∀i ∈ N , ∀m ∈ M, ∀v ∈ bv
m (20)

∑
i∈N

θimv ≤ 1 ∀m ∈ M, ∀v ∈ bv
m (21)

θimv ≤
U

∑
j=N+1

xji ∀i ∈ N , ∀m ∈ M, ∀v ∈ bv
m (22)

xmi ≤ δim ∀i ∈ N , ∀m ∈ M (23)

Constraints (24)–(28) indicate the relevant requirements of the last demand node that
is picked up by an own vehicle.

M · ∑
i∈N

γimv ≥ ∑
i∈N

ximv ∀m ∈ M, ∀v ∈ bv
m (24)

γimv ≤ ximv ∀i ∈ N , ∀m ∈ M, ∀v ∈ bv
m (25)

∑
i∈N

γimv ≤ 1 ∀m ∈ M, ∀v ∈ bv
m (26)

γimv ≤
U

∑
j=N+1

xij ∀i ∈ N , ∀m ∈ M, ∀v ∈ bv
m (27)

xim ≤ δim ∀i ∈ N , ∀m ∈ M (28)

Constraint (29) indicates that each own vehicle of a recycling site serves at most one
routing.

∑
i∈N

xmi = ∑
i∈N

xim ≤ bv
m ∀m ∈ M (29)
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Constraints (30)–(35) indicate the time relationship demand node between i and j that
are picked up by the same vehicle.

Ti ≥ ei −M(1− βi) ∀i ∈ N (30)

Ti ≤ ei + Mβi ∀i ∈ N (31)

Tj ≥ Ti + ti + tij −M
(
2− xij − βi

)
∀i, j ∈ N , j 6= i (32)

Tj ≤ Ti + ti + tij + M
(
2− xij − βi

)
∀i, j ∈ N , j 6= i (33)

Tj ≥ ei + ti + tij −M
(
1− xij + βi

)
∀i, j ∈ N , j 6= i (34)

Tj ≤ ei + ti + tij + M
(
1− xij + βi

)
∀i, j ∈ N , j 6= i (35)

Constraints (36)–(38) indicate the time window requirements for the vehicle to arrive
at the demand node.

Ti ≤ smv + tmi + M(1− θimv) ∀i ∈ N , ∀m ∈ M, ∀v ∈ bv
m (36)

Ti ≥ smv + tmi −M(1− θimv) ∀i ∈ N , ∀m ∈ M, ∀v ∈ bv
m (37)

Ti ≤ li ∀i ∈ N (38)

Constraint (39) is the range of starting time of each own vehicle.

smv ≥ 0 ∀m ∈ M, ∀v ∈ bv
m (39)

Finally, constraints (40) and (41) give the range of binary variables.

αi, βi, αim, xij, ym, δim ∈ {0, 1} ∀i ∈ N , j ∈ N , j 6= i, m ∈ M (40)

ximv, θimv, γimv ∈ {0, 1} ∀i ∈ N , m ∈ M, v ∈ bmv (41)

4. Solutions
4.1. Genetic Algorithm

The genetic algorithm is one of the algorithms that simulate a natural evolution process
to search for nearly optimal solutions ([32,33]).The general steps of the algorithm are as
follows: (i) generate initial population, in which each individual is called a chromosome; (ii)
iterative optimization, in which in each iteration, the population undergoes several genetic
operations, namely selection operation, crossover operation, and mutation operation, to
complete the evolutionary process of the population. In addition, infeasible solutions may
be generated in the process of iteration. In this paper, the objective value of an individual
violating the rules of chromosome generation is specified to be arbitrarily large, so that the
individual is discarded during the process of iteration. The specific steps of the algorithm
are depicted as follows.

4.1.1. Chromosome Coding

The encoding method of chromosome is integer encoding, and the number of genes
on chromosome is 2|N|, where |N| is the number of demand nodes. Gene i (i ∈ [1, N])
denotes the number of demand node, gene N + i ( i ∈ [1, N] ) denotes the number of vehicle
corresponding to the gene i. If |N| =10, |M| =3, |m1| =2, and the number of own vehicles is
2; then, ∑m∈M bm

mv = 6. The number of vehicles is 1 ∼ 6, where 1 ∼ b1
mv is the number of

vehicles in recycling site 1, b1
mv + 1 ∼ b1

mv + b2
mv is the number of vehicles in recycling site

2, etc. When there is no owned vehicle serving demand node i, the code of gene N + i is
’recycling site number + outside vehicle number’, where the outside vehicle number is set
to setov. Figure 2 illustrates a feasible chromosome.
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chromosome 1 5 2 3 4 8 9 7 6 10 1 1 2 4 3 3 3 4 4 201

Demand node Vehicle number

Gene#

Figure 2. A feasible chromosome.

The chromosome indicates that owned vehicle 1 travels from demand node 1 to
demand node 5, owned vehicle 2 travels from demand node 2 to demand node 3, etc.
Outside vehicle 01 travels from demand node 10 to recycling site 2.

4.1.2. Population Initialization

We first present two rules on the pick-up task processing sequence.
Rule(i): The sequence of genes in the first half of the chromosome is generated by

sorting the demand nodes from small to large according to the right time window li. If
the right time windows of two demand nodes are equal, then the sequence is sorted from
small to large according to the left time window ei. If the left and right time windows of
the two demand nodes are equal, they are sorted randomly.

Rule(ii): The sequence of genes in the first half of chromosome is generated by sorting
the demand nodes from small to large according to the right time window li. If the right
time windows of two demand nodes are equal, then the sequence is sorted from small to
large according to the left time window ei . If the left and right time windows of the two
demand nodes are equal, they are sorted randomly.

Below are detailed steps for generating the initial population of chromosomes.
Step 1. According to Rule (i), Rule (ii), and the random rule, different probabilities are

assigned to generate the first half of the chromosome sequence achieve better quality of the
initial solution on the premise of ensuring diversity of the population.

Step 2. For gene N+1, which denotes the number of vehicle corresponding to gene 1,
we calculate the time of all vehicles that travel to this gene and then find the vehicle set kk1
in which the elements mean that the vehicles can arrive within the time window of this
gene.

Step 3. According to the randomly selected recycling sites, the corresponding vehicle
set kk2 is generated. Find KK = kk1 ∩ kk2; if KK 6= ∅, gene N + 1 is one of the members
in KK randomly. If KK = ∅, gene N + 1 is set by ’recycling site number + outside vehicle
number’, where the recycling site number is the one closest to gene N + 1 in the selected
recycling sites, and the outside vehicle number is randomly selected in setov.

Step 4. For gene N + i (i ≥ 2) which denotes the number of vehicles corresponding to
gene i, first, we judge if vehicle v serves other genes. If vehicle v does not serve any other
genes; then, the time of arrival at gene i is the time between the recycling site to which
vehicle v belongs and gene i, and the capacity of vehicle v before it arrives is Qc. If vehicle
v serves another gene j before i; then, the time of arrival at gene i is max{Tj,ej} + tj + tij and
the capacity of vehicle v before it arrives at gene i is Qc − qj. If vehicle v serves two more
genes before gene i; then, time of arrival at gene i is max{Tj′ ,ej′ } + tj′ + tij′ , and the capacity
of vehicle v before it arrives at gene i is the capacity of vehicle v before it arrives at gene
j′ − qj′ .

Step 5. Find out the vehicle set kk3 in which vehicles can meet the capacity constraint
and time window constraint of gene i according to Step 4.

Step 6. Find KK1 = kk3 ∩ kk2; if KK1 6= ∅, gene N+i is an arbitrary member in KK1
randomly. If KK1 = ∅, gene N+ i is set by ’recycling site number + outside vehicle number’,
where the recycling site number is the one closest to gene N + i in the selected recycling
sites, and the number of outside vehicles is randomly selected in setov.

4.1.3. Calculation of Objective Value

We calculate the objective function value according to Formulae (1), (2), and (3) and
the following steps.
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Step 1. For the sequence of genes in the last half of chromosome, we find out the set
positionv, which contains the genes that the owned vehicle v serves. If positionv contains
a single element, then cost1(v) = 2 · vc · c1 · tN+locv ,positionv . If otherwise, there are two or
more elements in positionv, then h(1) = vc · c1 · tN+locv ,positionv(1), while h(1) denotes the
transportation cost generated when vehicle v travels to the first element. h(r) = h(r− 1) +
vc · c1 · tpositionv(r−1),positionv(r), where h(r) denotes the transportation cost generated when
vehicle v travels to the r element. Therefore, cost1(v) = h(end) + vc · c1 · tpositionv(r),N+locv .
The transportation cost generated by owned vehicles when they pick up e-waste is cost11 =

∑ cost1(v).
Step 2. Find out set Hset, which contains recycling sites. Outside vehicles travel to

these recycling sites. cost2(l) = vc · c1 · tH(Hset(l)),N+Hset(l), where l is the index of Hset, and
thus renting cost cost22 = ∑ cost2(v) + L · c2, where L is the number of elements in Hset.

Step 3. Find out the amount of e-waste that is picked up by owned vehicle v, and then,
calculate Q(locv), which denotes the amount of e-waste picked up in the selected recycling
site. Find out set Hset as in Step 2, and then, update the amount of e-waste of each selected
recycling site. Moreover, calculate the total amount of e-waste in each selected recycling
site by adding wm, which denotes the amount of self-delivered e-waste by customers.
Lastly, calculate the times of transportation from the recycling sites to the processing centre
and figure out cost33, which represents the transportation cost from recycling sites to the
processing centre.

Step 4. Add up the total cost of the recycling network, that is, total = cost11+ cost22+
cost33, and output the final result.

4.1.4. Fitness Function

We use the following function f it(x) to calculate the fitness value of chromosome x.

f it(x) =
1

total(x)
(42)

where total(x) is the objective value of chromosome x. Obviously, the larger the value of
f it(x), the better the chromosome.

4.1.5. Genetic Operations

In each iteration of GA, chromosomes need to perform a series of genetic operations
on the population, namely selection, crossover, and mutation. In our algorithm, we apply
the roulette method in the selection operation.

A crossover operation refers to selecting two paternal chromosomes first and then
applying a single-dot crossover approach, in which two genes from the first half of the
paired chromosomes are selected to exchange genes, and the genes in the first half of the
gene duplication are changed at last.

A crossover operation is shown in Figure 3. Gene 3 in parent 1 and gene 5 in parent 2
are crossed over; then, this gene is exchanged in offspring 1 and offspring 2. In contrast,
gene 1 in offspring 1 and gene 4 in offspring 2 are changed to 2 and 1 in order to avoid
duplication.

A mutation operation refers to the mutation of a gene in a chromosome. The mutation
rule adopted in this paper is to change some gene N + i of the chromosome, that is, the
service vehicle number. The variation range is within the vehicle number range of the
selected recycling sites, which are given by the chromosome itself. Figure 4 shows a
mutation operation, where gene 14 in parent 1 mutates. In parent 1, recycling sites 1 and 2
are selected, so the value of gene 14 in offspring 1 ranges from 1 to 4. Gene 14 in offspring
1 changes to 4 after a mutation in this instance.
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1 5 2 3 4 8 9 7 6 10 1 1 2 2 3 3 3 4 4 201

Demand node Vehicle number

Parent1

9 3 4 1 2 10 8 5 7 6 4 1 2 3 3 3 3 4 4 2

offspring1

Parent2

2 5 1 3 4 8 9 7 6 10 1 1 2 2 3 3 3 4 4 201

Demand node

9 3 4 2 1 10 8 5 7 6 4 1 2 3 3 3 3 4 4 2

Vehicle number

Demand node Vehicle number

offspring2

Demand node Vehicle number

crossover

Figure 3. Crossover operation.

1 5 2 3 4 8 9 7 6 10 1 1 2 2 3 3 3 4 4 201

Demand node Vehicle number

parent

mutation

offspring 1 5 2 3 4 8 9 7 6 10 1 1 2 4 3 3 3 4 4 201

Demand node Vehicle number

Figure 4. Mutation operation.

4.1.6. Feasibility Judgment

It is necessary to make a feasibility judgment on whether the offsprings generated after
selection, crossover, and mutation operations meet the rules of chromosome generation.
The judgment includes two aspects, that is, the capacity constraint of vehicles and the time
window constraint.

For the capacity constraint, we first find a set of demand nodes for each vehicle and
then sum up the amount of e-waste in these demand nodes. If it exceeds Qc, implying that
the offspring is infeasible, then the objective value of the offspring is set to be an infinite
real number. The offspring is eliminated in the next iteration.

For the time window constraint, it is necessary to consider owned vehicles of the sites
because outside vehicles always meet the time requirement due to the last assumption of
the problem. We calculate the vehicle arrival time at each demand node. If the arrival time
at any node exceeds its latest acceptable start time, it implies that this offspring is infeasible.
Again, the objective value of the offspring is assigned by an infinite real number, and thus,
it in eliminated in the next iteration.

4.1.7. Termination Condition

In the GA algorithm, we set two termination conditions: (i) it reaches the maximum
iteration times MAXGEN, and (ii) the objective value of the current best solution is 0. GA
terminates once either condition is met.

4.2. Heuristic Algorithm

In this section, we propose a two-stage greedy algorithm based on clustering to solve
the problem effectively. The algorithm divides and the problem into two sub-problems, i.e.,
the location sub-problem and the routing sub-problem, and solves them iteratively. In each
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iteration, the output of the location sub-problem serves as the input of the routing sub-
problem. The main ideas for solving the two sub-problems are described in the following
two subsections.

4.2.1. The Location Sub-Problem

We first calculate the central point coordinate (xii, yii) of all the demand nodes, and it
is obtained according to the K-means of Stochastic Gradient Descent ([34]). There are four
steps below to obtain the location of central point (xii, yii).

Step 1. Assign initial values to (xii, yii). Calculate the mean value of each dimension
of demand node coordinates (xi,yi), and add the random vector to the mean value, which
is the initial value of the central point.

Step 2. Calculate the distance between each demand node (xi,yi) and the central point
coordinate (xii, yii);

Step 3. Update central point. Select a demand node randomly, and the coordinate
of the central point is close to the coordinate of the demand node by delta = [(xi, yi)−
(xii, yii)] · eta, where eta is the learning rate, and the new coordinate of the central point is
(xii, yii) = (xi, yi) + delta;

Step 4. Repeat the above steps. If delta of the current iteration is smaller than that of
the previous iteration, stop and output the best solution.

Given the coordinate of central point (xii, yii) and that of each candidate recycling
site, the number of vehicles in set bv

m, and the number m1 of selected recycling sites, we
calculate dim, which denotes the distance between recycling site m and central point i
and then sequence the recycling site candidates in the non-decreasing order of dm =

dim · (1− bv
m

∑m∈M bv
m
). We then select m1 candidates with the smallest values of dm to be the

final selected recycling sites in the location sub-problem.

4.2.2. The Routing Sub-Problem

Step 1. The set of demand nodes D is sequenced in the non-decreasing order of the
latest acceptable start time li. Ties are broken by selecting the smallest ei, i.e., the earliest
acceptable start time.

Step 2. Determine the vehicle for serving each demand node as well as the routing of
each vehicle. We first calculate the potentially earliest arrival time Tiv at demand node for
each vehicle v in the m1 selected recycling sites. With the vehicle capacity constraint and
time window requirement of the demand node, the vehicle v with either the smallest Tiv or
the smallest |ei − Tiv| is selected to actually serve the demand node. If there is no owned
vehicle satisfying the above constraint, then the demand node is served by one outside
vehicle. Along with the sequence of demand nodes in D (i.e., the sequence obtained in
Step 1), the corresponding service vehicle index sequence can be produced. If the measure
of smallest Tiv is adopted, then the obtained vehicle index sequence is denoted by V1;
otherwise, if the measure of smallest |ei − Tiv| is used, then it is denoted by V2.

Step 3. Compare the total cost of the solution obtained by sequence V1 and that by
sequence V2 in the routing sub-problem, and select the sequence with the smaller cost for
the solution of the service vehicle routing sub-problem.

5. Computational Experiments

In the numerical experiments, MATLAB2014b is used on the personal computer with
Intel (R) Core (TM) i5-8500T CPU @ 2.11GHz, and Windows 10 64-bi operating system. The
exact solution obtained by solving the mathematical model is by the CPLEX12.9 solver.

5.1. Experimental Parameters

By reading the literature related to location-routing problem and reviewing the pub-
lished vehicle data of relevant companies, the following parameters are given. Otherwise,
some parameters (e.g., coordinate of demand nodes) are randomly generated within a
reasonable range.
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- speed of vehicles : vc = 1 km/min ([35]);
- cost of transporation per minute : c1 = 0.5 CNY/km ([18]);
- renting cost per time : c2 = 200 CNY/km ([36]);
- capacity of small vehicles : Qc = 1800 kg;
- capacity of large vehicles : Qt = 6000 kg;
- coordinate range of demand nodes and recycling sites : randi([10,100],|U|,2)
- coordinate range of the recycling centre: randi([110,150],1,2);
- time window of demand node i : ei=randi(300,1,|N|), chai = randi([20,70],1,|N|), and

li = ei + chai;
- processing time of demand node i : ti= randi(120, 1, |N|);
- amount of e-waste in demand node i : qi= randi([50,1000], 1, |N|);
- amount of e-waste sent by customers in m : wi = randi([2000,3000], 1, |M|);

5.2. Numerical Results

Tables 2 and 3 show the computational results of small-size and large-size instances.
The first three columns are parameters of [|N|, |M|], m1, and bv

m. Columns 4 and 5 are
results related to CPLEX. Columns 6, 7, and 8 are results related to GA. Additionally, the
last three column are results related to TSGL. Among them, Obj denotes the objective
function value of each instance, Gap1 = GA−CPLEX

CPLEX ∗ 100% and Gap2 = TSGL−GA
GA ∗ 100%,

where Avg denotes the mean value of each group that consists of seven instances.
By Table 2, it can be concluded that CPLEX can obtain optimal values in most small-

scale cases. However, for large-scale instances, CPLEX cannot output even feasible solutions
within the limited time (i.e., 2 h). When scale increases, the run time of CPLEX increases
rapidly from 1.4 s to 7200 s. The run time of GA also increases with the increase in scale,
but the feasible solution can be obtained in a short time while the time of the heuristic
algorithm is very short, and the feasible solution can be obtained in 2 s. In terms of the
quality of the solution, optimal values can be obtained, such as in the first and second
groups of examples, and Gap1 is 0. With the increase in size, the gap between the feasible
solution and the optimal solution gradually increases. It can be seen that the average
gap between GA and the exact solution obtained by CPLEX for each group of instances
is between 0% and 18.6% and that the average gap between TSGL and GA is between
8.4% and 28.9%. The average gap between GA and CPLEX is about 7.0% in total, and the
average gap between TSGL and GA algorithm is about 17.8% in total.

Table 2 shows the experimental results of large-scale instances. Since the CPLEX solver
cannot obtain the optimal value within 7200 s for the large-scale instances, the results of GA
algorithm and heuristic algorithm are only compared and analyzed. It can be seen from the
run time that GA increases gradually with the increase in the scale. The average run time
of each group is between 37.1 s and 90.4 s while the run time of the heuristic algorithm is
very stable, and the average time is between 0.9 s and 1.8 s. It can be seen that the solving
time of the heuristic algorithm is much shorter than that of the genetic algorithm. In terms
of the objective value, the average gap of large-scale instances is between 5.3% and 20.6%.
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Table 2. Computational results of small-scale instances.

Instances CPLEX GA TSGL

[|N|,|M|] m1 bv
m Obj Time Obj Time Gap1 Obj Time Gap2

1 [1,1] 584.0 1.1 584.0 9.3 0.0 584.0 0.2 0.0
2 [1,1] 259.5 1.1 259.5 9.7 0.0 267.0 0.3 2.9
1 [2,2] 208.0 1.4 208.0 10.6 0.0 216.0 0.3 3.6

[5,2] 2 [2,2] 208.0 1.4 208.0 10.6 0.0 216.0 0.3 3.6
1 [1,1] 259.5 1.1 259.5 9.7 0.0 267.0 0.3 2.9
1 [1,2] 432.5 1.3 432.5 10.7 0.0 584.0 0.3 35.0
2 [1,2] 259.5 1.3 259.5 10.3 0.0 267.0 0.3 2.9

no time windows, m1 = 1 146.5 1.5 146.5 10.4 0.0 162.5 0.3 10.9
Avg 299.9 1.3 299.9 10.2 0.0 328.1 0.4 8.4

2 [1,1,1] 1159.5 3.4 1159.5 11.1 0.0 1166.5 0.4 0.6
3 [1,1,1] 853.0 3.5 853.0 12.3 0.0 934.5 0.4 9.5
2 [2,2,2] 437.5 5.3 437.5 14.0 0.0 443.5 0.4 1.4

[10,3] 3 [2,2,2] 437.5 7.7 437.5 14.3 0.0 443.5 0.4 1.4
2 [2,1,3] 451.5 5.3 451.5 14.3 0.0 558.5 0.4 23.8
3 [2,1,3] 451.5 5.3 451.5 14.3 0.0 558.5 0.4 23.8

no time windows, m1 = 2 314.5 21.2 314.5 13.4 0.0 343.0 0.4 9.1
Avg 586.4 7.4 586.4 13.4 0.0 635.4 0.4 9.9

2 [2,2,2,2,2] 897.0 278.3 1064.5 17.9 18.7 1107.5 0.5 4.0
3 [2,2,2,2,2] 378.0 26.1 398.0 19.4 5.3 581.5 0.4 46.1
2 [3,3,3,3,3] 392.0 25.4 399.5 21.4 1.9 541.0 0.5 35.4

[15,5] 3 [3,3,3,3,3] 375.5 37.7 379.5 23.0 1.0 579.5 0.5 52.7
2 [2,3,2,3,1] 506.5 38.7 522.0 20.0 3.1 585.5 0.5 12.2
3 [2,3,2,3,1] 439.0 34.5 465.5 20.3 6.1 572.0 0.5 22.9

no time windows, m1 = 2 756.0 832.4 792.0 17.5 4.8 820.0 0.5 3.5
Avg 498.0 73.5 538.2 20.3 6.0 661.2 0.5 28.9

2 [2,2,2,2,2] 1678.5 1516.9 1977.0 19.0 17.8 2220.5 0.7 12.3
3 [2,2,2,2,2] 899.5 4639.3 1107.5 21.0 23.1 1148.5 0.7 3.7
2 [3,3,3,3,3] - - 1024.5 23.3 - 1054.5 0.7 2.9

[20,5] 3 [3,3,3,3,3] 476.0 734.5 507.5 26.5 6.6 724.5 0.6 42.8
2 [2,3,2,3,2] 930.0 1157.6 1102.5 18.5 40.1 1202.0 0.6 9.0
3 [2,3,2,3,2] 511.0 354.7 538.0 23.8 5.3 743.0 0.7 38.1

no time windows, m1 = 2 - - 834.0 37.9 - 850.5 1.5 2.0
Avg 899.0 1680.6 1013.0 24.3 18.6 1134.8 0.8 15.8

3 [2,2,2,2,2,2,2,2] - - 1285.0 24.8 - 1356.5 1.2 5.6
4 [2,2,2,2,2,2,2,2] 523.5 270.0 621.0 26.1 18.6 724.5 0.6 16.7
3 [2,2,2,2,2,2,2,2] 524.0 841.7 579.5 30.5 10.6 744.5 1.1 28.4

[20,8] 4 [2,2,2,2,2,2,2,2] 520.0 571.1 547.8 32.7 5.3 744.5 0.6 35.9
3 [2,2,2,2,2,2,2,2] 569.0 3169.2 602.0 27.5 5.8 776.5 0.6 29.0
4 [2,2,2,2,2,2,2,2] 522.0 135.8 582.0 26.7 11.5 822.5 0.6 41.3

no time windows, m1 = 2 - - 543.2 28.9 - 682.0 0.7 25.6
Avg 531.7 997.6 680.1 28.2 10.4 835.9 0.8 26.1
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Table 3. Computational results of large-scale instances.

Instances GA TSGL

[|N|,|M|] m1 bv
m Obj Time Obj Time Gap2

3 [2,2,2,2,2,2,2,2] 1616.0 34.8 1719.5 1.0 6.4
4 [2,2,2,2,2,2,2,2] 1146.3 39.8 1193.5 1.1 4.1
3 [3,3,3,3,3,3,3,3] 683.4 46.5 851.0 1.1 24.5

[25,8] 4 [3,3,3,3,3,3,3,3] 708.0 48.8 847.0 1.1 19.6
3 [3,2,2,3,2,2,2,3] 891.6 30.8 944.0 0.7 5.9
4 [3,2,2,3,2,2,2,3] 703.9 32.5 778.0 0.8 10.5

Avg 958.2 38.9 1055.5 1.0 6.1

4 [2,2,2,2,2,2,2,2,2,2] 1786.2 32.5 1872.0 1.1 4.8
5 [2,2,2,2,2,2,2,2,2,2] 1244.6 35.5 1462.5 0.9 17.5
4 [3,3,3,3,3,3,3,3,3,3] 1018.8 42.6 1218.5 0.9 19.6

[35,10] 5 [3,3,3,3,3,3,3,3,3,3] 902.6 45.2 1345.5 0.9 49.1
4 [2,2,1,2,1,3,1,2,1,2] 2504.2 30.4 2917.5 0.8 16.5
5 [2,2,1,2,1,3,1,2,1,2] 1709.0 36.5 1986.5 0.8 16.2

Avg 1527.6 37.1 1800.4 0.9 20.6

5 [2,2,2,2,2,2,2,2,2,2,2,2] 2618.6 58.9 2667.5 1.6 1.9
6 [2,2,2,2,2,2,2,2,2,2,2,2] 1669.3 66.2 1709.5 1.6 2.4
5 [3,3,3,3,3,3,3,3,3,3,3,3] 1204.6 82.1 1360.0 1.6 12.9

[45,12] 6 [3,3,3,3,3,3,3,3,3,3,3,3] 1155.4 88.9 1383.0 1.6 19.7
5 [2,3,4,2,3,2,2,2,2,3,2,3] 1256.5 75.8 1310.5 1.6 4.3
6 [2,3,4,2,3,2,2,2,2,3,2,3] 1305.5 77.8 1415.0 1.6 8.4

Avg 1535.0 75.0 1640.9 1.6 7.1

6 [2,2,2,2,2,2,2,2,2,2,2,2,2,2] 2919.0 71.4 3013.0 1.8 3.2
7 [2,2,2,2,2,2,2,2,2,2,2,2,2,2] 2118.4 77.2 2554.0 1.9 20.6
6 [3,3,3,3,3,3,3,3,3,3,3,3,3,3] 1338.3 98.0 1474.0 1.8 10.1

[50,14] 7 [3,3,3,3,3,3,3,3,3,3,3,3,3,3] 1188.4 103.5 1343.5 1.8 13.1
6 [2,3,4,3,2,3,3,3,3,3,2,3,2,3] 1377.8 96.2 1576.5 1.8 14.4
7 [2,3,4,3,2,3,3,3,3,3,2,3,2,3] 1318.1 95.9 1369.0 1.8 3.9

Avg 1710.0 90.4 1888.3 1.8 10.9

7 [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2] 3227.2 56.2 3324.0 1.3 3.0
8 [2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2] 2495.9 60.6 2514.5 1.3 0.7
7 [3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3] 1708.6 78.2 1840.5 1.4 7.7

[55,16] 8 [3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3] 1672.2 82.2 1815.0 1.5 8.5
7 [2,3,2,2,3,3,1,2,1,2,3,2,2,3,3,2] 1934.1 64.4 2054.0 1.5 6.2
8 [2,3,2,2,3,3,1,2,1,2,3,2,2,3,3,2] 1716.4 69.5 1813.5 1.2 5.7

Avg 2125.7 68.5 2226.9 1.4 5.3

6. Conclusions

This paper presents an optimization model of an e-waste recycling network when
considering renting social idle vehicles. In order to meet all of the demands of demand
nodes within their expected time windows, with a limited number of own vehicles, idle
social vehicles are allowed to be rented in the sharing economy environment to reduce the
total operating cost of the recycling logistics network. Meanwhile, both the selection of
recycling sites and the delivery routes of owned vehicles need to be determined. The genetic
and a two-stage greedy algorithm are proposed to solve the problem, and numerical results
demonstrate the effectiveness of two algorithms by small-scale and large-scale instances.

In a recycling network, the recycling sites and owned vehicles equipped need large
amounts of capital investment. As a result, it is essential to decide the locations of recycling
sites on the basis of recycling demands. Considering renting social idle vehicles when
recycling demands surge, leading to a shortage of owned vehicle, is wise and economic
because it only costs a small rental fee compared with equipping more vehicles for service.

This study is limited in that the processing time of recycling in demand nodes and
the number of demand nodes are considered deterministic. To address this limitation,
developing a random and undetermined model of the e-waste recycling location routing
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problem is a worthwhile topic for future research. Otherwise, another direction for future
research is considering multi-objective location routing problems. Last but not the least,
from a solution approach perspective, more efficient heuristic or meta-heuristic algorithms
should be developed for the considered problem.
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