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Abstract: In recent years, cities around the world have launched various micromobility programs
to offer more convenient and efficient mobility options that make transit networks more accessible.
However, the question of whether micromobility services are accessible to and equitably distributed
amongst all populations still remains unanswered. In this study, we investigate the spatial accessi-
bility of disadvantaged communities, such as racial and ethnic minorities, low-income populations,
and transit-dependent populations, to scooter and bike services. The ultimate goal of this study is
to examine associations between the level of access to bikes and scooters and the racial and social
characteristics of communities throughout the City of Austin, Texas. To achieve this goal, first, equity
analysis with a Lorenz curve was performed to understand how bike and scooter accessibility is
distributed among the population. Then, both Ordinary Least Squares (OLS) and Geographically
Weighted Regression (GWR) models were generated to explore factors associated with bike and
scooter accessibility. The analysis of the residuals showed more consistent results in the GWR models
than in the OLS models. The equity analysis with the Lorenz curve conducted herein reveals extreme
inequity in access to micromobility services. Almost 80 percent of residents have no access to bikes
and scooters. Access is even worse for transit-dependent people when compared to the general
population. The regression models further revealed that areas with a higher proportion of Black
residents were less likely to have access to both bikes and scooters, yet positive associations were
found for both bike and scooter accessibility and low-income populations. Increased understanding
of spatial access to bikes and scooters can support ongoing efforts to deliver equitable transportation
systems, improve transportation alternatives for disadvantaged populations, and support future
policy actions related to bike and scooter services.

Keywords: micromobility; equity; scooter and bike; spatial analysis; accessibility

1. Introduction

The transportation sector generates the largest share of greenhouse gas emissions [1]
in the United States, and within the transportation sector, road transportation is the biggest
source of CO2 emissions. Urban administrators have sought to encourage the use of
micromobility as an effective means of mobility and a sustainable form of transportation to
substitute for personal car trips. Micromobility has the potential to enhance transportation
options, support urban sustainability goals, promote eco-friendly landscapes, and relieve
burdens of vehicle ownership on cities and societies. Moreover, as a more socially distanced
means of travel, micromobility has attracted attention during the global pandemic [2],
which has extremely influenced travel behavior [3]. Micromobility, therefore, presents
opportunities to address environmental, social, and economic sustainability goals.

Micromobility solutions include small-scale vehicles, such as bicycles, scooters, skate-
boards, segways, and hover-boards, can be human-powered or electric, and often cover
short-distance trips [2,4]. Shared micromobility programs, such as docked and dockless
bikes and, recently, dockless electric scooters (i.e., e-scooters), have become increasingly
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ubiquitous in cities worldwide [5]. Dockless e-scooters debuted in numerous US cities in
2018, and by the end of 2018, over 85,000 electric scooters were available for public use [6].
Scooters quickly gained popularity, offering approximately 38.5 million trips in 2018, com-
pared to 52 million rides on shared bikes [7]. These programs, by offering short-term rental
mobility devices, are potentially able to minimize the financial burden of owning and
maintaining a personal vehicle, thus increasing mobility and accessibility for those who
have fewer transportation alternatives due to a lack of access or financial limitations [5].
Moreover, the literature has widely highlighted the environmental and urban congestion
benefits of micromobility in highly dense cities [6]. Despite the benefits of micromobility
vehicles, barriers to accessibility for disabled and low-income individuals and unequal
adoption across communities have also been noted by previous studies [8].

Evaluating the level of accessibility is a key component of transportation equity stud-
ies. According to Martens and Golub [9], in an equitable transportation system, everyone
would have an adequate level of accessibility to benefits and opportunities. Accessibility is
a measure of one’s involvement in society and ability to participate in a variety of activities
given a set of constraints, including money, time, comfort, and resources [10]. Additionally,
transport equity studies have applied the capability approach to transportation systems
to measure the level of accessibility, where accessibility is considered in terms of an in-
dividual’s ability to access and use the transportation system [11–13]. Building on both
the capability approach and Marten’s framework, Dill and McNeil [5] argued that shared
vehicles can only increase accessibility if an individual is both physically close to the vehicle
and able to use it to satisfy their travel needs. Therefore, this analysis of access to shared
micromobility services is focused on these two measures: physical closeness and ability
to use.

Accessibility is a crucial requirement for participating in life-enhancing activities, such
as jobs, education, social networks, and healthcare [14]. Previous studies have situated
access to public places as the beginning point of investigating micromobility programs [2].
A substantial amount of existing work has focused on analyzing and describing the wide
disparities in accessibility across various groups as defined by gender, ethnicity, income,
and mode availability [10,15–17]. Unequitable access to shared micromobility services
may limit these advantages for unprivileged populations, therefore exacerbating inequities
within a community. Although there have been studies investigating the concept of equity
in bike accessibility, no study, to our knowledge, has analyzed the equity in electric scooter
accessibility, as dockless e-scooter services have only recently been introduced to U.S.
cities [5]. There is, therefore, a need to thoroughly analyze the spatial equity of these
new systems and to compare them to other existing modes, such as docked and dockless
bike-sharing systems.

This study investigates how scooters are spatially accessible across various socially
disadvantaged populations. The ultimate goal of this study is to explore associations
between bike and scooter accessibility and the racial and social characteristics of com-
munities where these services are located. The research methodology takes advantage
of publicly available micromobility data to calculate the level of accessibility across the
City of Austin, Texas. Shared electric micromobility has operated in the City of Austin
for the past two years. At one point, eight licensed micromobility companies operated
approximately 15,000 shared electric scooters in Austin [18]. In this study, equity analysis
with a Lorenz curve was performed to first understand how accessibility is distributed
among the population. Then, a spatial autocorrelation analysis was conducted, where
the spatial correlation of scooter accessibility distribution was evaluated by determining
Moran’s Index. Finally, both Ordinary Least Squares (OLS) and Geographically Weighted
Regression (GWR) models were generated to explore the association between bike and
scooter accessibility and the social equity characteristics of the residents.

The research findings contribute to the existing literature in several ways. Very limited
research, to date, has considered dockless micromobility vehicles and compared both
scooter and bike accessibility. Although the transportation literature has addressed equity
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in bike accessibility, still little is known about the equity in shared scooters. Moreover, very
few studies have compared OLS and GWR models in transportation studies. This paper is
structured as follows: The next section provides a literature review of related and previous
work. Next, the analysis methods are discussed. Then, the results are presented, followed
by a discussion. Finally, concluding remarks are provided.

2. Literature Review
2.1. Spatial Equity

Specifically, equality, in a social context, emphasizes uniformity and sameness in
burdens and opportunities experienced across populations. On the other hand, equity
emphasizes fairness based on need in the allocation of resources and treatment of out-
comes [19]. However, it is often not practical or efficient to provide the same level of
accessibility to all residents in a city. Therefore, it becomes more crucial for local gov-
ernments to find the most optimal allocation strategies to provide opportunities to those
who cannot afford to access services or are from specific demographic communities with
unique needs (i.e., equity). Tsou et al. [20] recommended a spatial analysis perspective
for examining how appropriate public infrastructures and facilities have been distributed
among inhabitants of the city. Hence, in the framework of public facility planning, spatial
proximity—or spatial accessibility—can act as an indicator of equity [21]. Generally, spatial
equity deals with the “reduction of spatial disparities” [22,23]. Spatial equity is particularly
defined as addressing the benefits and opportunities at a level that is equitable or fair
throughout a geographical space [24].

2.2. Accessibility of Micromobility Services

Following the introduction of micromobility services, their benefits for cities and
contributions to the transportation network were broadly investigated [25]. However,
many studies have focused on examining travel behavior [18,26–28], environmental im-
pacts [29–31], interaction with public transit [32,33], social impacts [34,35], and public
safety concerns [30,36–41].

Zakhem and Smith-Colin explored various methods for analyzing micromobility park-
ing and high-used corridors [42]. Concerning travel behavior, several studies have revealed
that dockless micromobility options are used for neither last-mile trips [43] nor commuting
trips [27,44]. Jiao and Bai [18] showed that the usage of shared e-scooters in Austin, TX is
correlated to different factors, such as high population density, higher educational attain-
ment areas [45], recreational areas, and areas with lower income. However, studies have
not shown the same correlation with income in other cities (e.g., in Minneapolis [26] or
Washington D.C. [27]). In another study, Caspi et al. [25] used spatial regression techniques
to explore how different factors affect scooter trip generation. They found out that areas
with high student populations were associated with high scooter usage.

An additional factor to consider for sustainable mobility is gender equity. Although it
has been shown that there are significant differences between the mobility demands and
behaviors of women and men [46] in terms of mode choice, daily commutes, and journey
planning [45], to name a few, still little is known about the impact of gender on micromobil-
ity riding behavior or choosing scooters or bikes over other modes of transportation. In this
regard, Gonzalez-Sanchez et al. explored the challenges and strategies for gender equity
and sustainable mobility. Moreover, Aman et al. utilized user-generated online reviews
to identify the impact of gender on user perceptions toward scooters [47] and Mobility as
a Service (MaaS) [48]. The findings showed that women were more satisfied and showed
more positive sentiments toward the scooter-riding experience, although scooters were
still a male-dominated mode of transportation. In yet another study, Nikiforiadis et al.
conducted a survey to understand users’ and non-users’ opinions toward scooter services,
and the results showed that men were more likely to use electric scooters [49]. In another
study, Galvic et al. assessed individuals’ preferences for shifting to scooters for different
scenarios. The findings indicated that available infrastructure has a great influence on user
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willingness to switch to scooters [50]. In this regard, Campisi et al. conducted a survey and
investigated the socio-eco-friendly performance of electric scooters.

Qian and Niemeier quantitatively assessed the potential for docked bike-sharing sys-
tems to ensure disadvantaged communities’ better access to essential services and jobs [51].
By developing a spatial index, this study concluded that the accessibility to jobs and es-
sential services increases by locating bike stations near disadvantaged communities. Qian
and Jaller’s work focusing on docked bike-sharing system utilization in underprivileged
communities used a binomial regression model to estimate ridership [52]. They found that
two-thirds of the annual bike-sharing trips were generated in disadvantaged communities
across all stations. Moreover, ridership increases with an increased employment rate in
disadvantaged areas [51]. One of the first studies examining spatial equity in access to
dockless bike-sharing systems was by Mooney et al. They found that more bikes were
available in neighborhoods with higher incomes, higher educational attainment, and local
community resources. Similarly, to previous docked bike-sharing system studies, they
noted modest access inequality across sociodemographic lines [53]. Despite numerous
studies on bike-sharing systems, there has been limited analysis of shared e-scooter sys-
tems and equity. Table 1 summarizes the findings and sociodemographic and economic
indicators used in previous studies.

Table 1. Sociodemographic and economic indicators used and findings.
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(Qian, Niemeier) [51] + + + - -

- A well-planned bike-sharing system can enhance accessibility for
disadvantaged neighborhoods more than a similarly designed sys-
tem would for other populations.

- The placement of stations in disadvantaged communities has the
potential to boost household access to jobs and key services.

(Mooney et al.) [53] + + - + -
- More bikes were found in communities with relatively higher incomes

and a higher proportion of college-educated residents, while no in-
equalities by racial composition were discovered.

(Qian, Jaller) [52] + + - - +

- Bikeshare stations in disadvantaged neighborhoods produce about
two-thirds of the average yearly trips among all stations.

- The employment rate is critical in promoting bike-sharing ridership,
particularly in disadvantaged regions.

(Caspi, Smart & Noland) [25] - + - + +

- The use of e-scooters is connected with high employment rates.
- People utilize e-scooter sharing regardless of the neighborhood’s

affluence, while less affluent regions with high usage rates have
significant student concentrations.

(Ferenchak, Marshall) [54] + + - - -

- Inequalities in biking infrastructure installation are observed in regions
with a high proportion of people of color, who have the lowest rates of
total facility installation.

- Bike lanes were mostly installed in low-income neighborhoods.

‘+’ = used in the study; ‘-’ = not used in the study.

3. Methodology

In this study, a Lorenz curve was utilized to first understand how accessibility is
distributed among different population groups. Then, a spatial autocorrelation analysis
was conducted, where the spatial correlation of scooter and bike accessibility distribution
was evaluated using Moran’s Index. Finally, both Ordinary Least Squares (OLS) and Geo-
graphically Weighted Regression (GWR) models were generated to explore the association
between bike and scooter accessibility and the social characteristics of different areas within
the city.
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3.1. Accessibility

As mentioned earlier, building on both the capability approach and Marten’s frame-
work, shared vehicles can only be called accessible if individuals are both physically close
to the vehicle and able to use it to satisfy their travel needs [5]. In other words, it would
be misleading to only consider the geographical proximity of micromobility vehicles as
an accessibility indicator. In this study, analysis of accessibility for shared micromobility
services is focused on two measures—physical closeness and ability to use. To capture
these two measures, the average number of scooter and bike trips in each census tract
during the time that micromobility vehicles were available and utilized in the area were
used as a proxy for accessibility. Trip history not only showed that scooters were physically
available for riders, but also that riders were able to overcome the barriers of renting mi-
cromobility vehicles. In other words, when a trip was made, it showed that vehicles were
available, that the individual could afford to pay the fees by providing a credit or debit
card for collateral, was physically and mentally able to ride, and had sufficient knowledge,
skill, and ability to rent the vehicle using the mobile app technology.

The City of Austin’s open data platform provides daily trip data for different types
of shared micromobility vehicles [55]. In this paper, we were interested in comparing
two micromobility modes: e-scooters and bikes (both docked and dockless bikes). Thus,
the authors extracted 5,725,436 e-scooter trips and 494,895 dockless bike trips, as well as
1,048,575 docked bike trips. As docked bikes were only available in very few census tracts,
in this study, docked and dockless bike datasets were combined and were not analyzed
separately. Trip data available beyond February 2020 were not used for the analysis due
to travel irregularities resulting from the COVID-19 outbreak. The extracted dataset was
cleaned by removing all out-of-bounds trips. Second, trips with a false start or with a very
short duration (<2 min), a very short distance (<0.02 min.), long duration (>90 min), or
long distance (>10 min.) were removed [44,45]. After cleaning, the final e-scooter dataset
had 4,938,050 e-scooter trips, or 86.25% of the raw dataset. The final bike dataset (dockless
and docked) had 1,427,761 bike trips, or 92.50% of the raw dataset. Table 2 provides the
descriptive statistics for the two major performance measures: trip duration and distance
traveled for bike and e-scooter vehicles. This table shows that the duration and distance
traveled by bikes were higher than the duration and distance traveled by e-scooter vehicles.
For example, the average duration for bike trips was 14.46 min, while the average duration
for e-scooter trips was 11.02 min. The average distance for bike trips was 1.60 miles,
whereas the average distance for e-scooter trips was 1.02 miles.

Table 2. Descriptive statistics for the duration and distance of e-scooter and bike trips.

Mode Min. 1st Qu. Median Mean 3rd Qu. Max.

Trip Duration (min.)
Bike 2.00 6.18 10.22 14.46 17.32 90.00

E-scooter 2.00 4.60 7.37 11.02 13.03 90.00

Trip Distance (min.)
Bike 0.02 0.69 1.19 1.60 2.09 10.00

E-scooter 0.02 0.42 0.74 1.02 1.28 10.00
(Min. = minimum; Max. = maximum; Qu. = quartile).

3.2. Social Characteristics

To identify socially disadvantaged groups across the city, census-tract-level datasets
from the US Census Bureau were used (Figure 1). The percentage of the total population of
socially disadvantaged groups living in each census tract was calculated and presented
as a social equity indicator. The calculated percentages were grouped by quartiles. Tracts
with the highest concentration of each social characteristic are shown in Figure 1 (Black,
Asian, and Hispanic in Figure 1a, and transit dependents and low-income population in
Figure 1b). As can be seen, Black individuals mostly reside in the eastern part of the city.
Asians live mostly in the west. Transit-dependent residents are mostly located in the central
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part of the city. Low-income individuals are sliggfhtly more dispersed and are located in
the east and the city center.
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3.3. Lorenz Curve

An equity analysis with the Lorenz curve was used to further capture inequities that
exist within the city in micromobility allocation. In the context of economic studies, the
Lorenz curve is utilized to visually present the cumulative distribution of resources among
people [56]. Various studies have adopted the Lorenz curve to depict the distribution of
transportation infrastructure across the population (e.g., [19,57,58]). The graph expresses
the percentiles of the residents in terms of wealth or resources on its horizontal and vertical
axis, respectively. The straight diagonal line shows perfect equality, while the Lorenz curve,
which is beneath the equality line, presents the existing distribution of resources. When the
Lorenz curve overlaps with the equality line (i.e., the area between them is zero), complete
equality happens, showing that wealth is evenly distributed.

3.4. Spatial Autocorrelation

The transportation literature has frequently utilized spatial autocorrelation analysis to
evaluate spatial distribution (e.g., [59–61]). The spatial correlation of scooter accessibility
was evaluated by determining Moran’s Index (I). Moran’s Index examines the significance
level of spatial autocorrelation. The range of Moran’s Index is from −1 to 1. Values below
zero indicate a negative spatial correlation, i.e., the neighboring census tracts tend to be
dissimilar (concentration of high values with low values). The higher the Moran value (or
lower for negative values), the higher the correlation. A Moran value of zero shows that
census tracts are randomly distributed throughout the city. On the other hand, if the Moran
value is positive, similar census tracts tend to be located close to each other (i.e., low values
with low values and high values with high values) [62].

3.5. Regression Models

To understand the relationship between scooter accessibility and the social characteris-
tics of the residents, two different models were generated. Various studies in transportation
have generated GWR and OLS models, compared the results, and often reported that GWR
models yield better-fitting results than those of OLS models (e.g., [63]). An Ordinary Least
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Squares (OLS) regression model was developed first. In this model, we assume that residu-
als are independently distributed. This assumption can be tested using Moran’s Index.

y = β0 + x1β1 + x2β2 + . . . + xnβn + ε (1)

where:
y: dependent variable (scooter accessibility),
β0: intercept,
xi: social characteristics,
β0: regression coefficient of social characteristic i, and
ε: error term.
If Moran’s Index reveals a significant spatial autocorrelation in the residuals, a Geo-

graphically Weighted Regression (GWR) model should be implemented to avoid violating
the independence assumption. In the case of the GWR, while generating a model, there is
a need to consider the autocorrelation of the observations, which is the nature of spatial
data. GWR takes into consideration the spatial aspect of a dataset. Unlike traditional
statistical models, GWR provides a different coefficient for each social characteristic in
different locations as defined by its coordinates (ui, vi). The dependent variable is estimated
according to Equation (2):

y = β0 + x1β1(u1, v1) + x2β2(u2, v2) + . . . + xnβn(un, vn) + ε (2)

Cardozo et al. highlighted the advantages of the GWR models as follows: (1) GWR
models are more detailed and accurate, (2) they help researchers investigate local spatial
patterns, and (3) estimation errors are often lower than in models generated using OLS [64].

4. Results

Figure 2 shows the distribution of scooter, dockless bike, and docked bike accessibility
in the City of Austin. As can be seen, micromobility services are more accessible in the
central parts of the city (as represented by the lighter color shading).
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4.1. Equity Analysis

As discussed above, in the economics literature, Lorenz curves are a graphical state-
ment of the cumulative allocation function of wealth/resources in a population. The
distribution of scooter and bike accessibility across populations of different demographics
is depicted using the Lorenz curve (Figures 3 and 4). The lines in Figures 3 and 4 indicate
an inequitable distribution of bike and scooter accessibility. As can be seen, approximately
80 percent of the total population, shown by the black line, has almost zero (less than
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5 percent of resources) access to scooters. The fact that the majority of the population
lives in rural areas and scooters can hardly be found in places other than the inner parts
of the city can be the reason behind this. The findings also show that scooters have been
distributed slightly more equitably than bikes. Although there is no huge difference be-
tween the distributions of accessibility according to the various social characteristics of
residents, Asians and low-income populations have the highest accessibility, and transit-
dependent and Black populations have the lowest accessibility comparing to the others.
Although micromobility is claimed to work as a feeder for transit services, public-transit-
dependent populations receive the lowest accessibility to the services compared to other
population groups.
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4.2. Regression Analysis

Scooter accessibility was modeled using both OLS and GWR. For modeling purposes,
the ArcGIS Modeling Spatial Relationships Toolset was utilized. Models with various
combinations of social characteristics were examined. Ultimately, the OLS model with the
strongest explanatory power was selected. The selected model contains two different social
characteristics for predicting scooter accessibility; a GWR model was also developed with
the same social characteristics.
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To examine if the variables were geographically independent, Moran’s Index was
estimated (Table 3). All variables showed values of Moran’s Index that were higher than
expected (E(I)); therefore, positive geographical autocorrelation is shown. The variables
were all clustered. As mentioned before, a higher Moran value indicates a stronger spatial
correlation. Thus, the Black, Hispanic, and low-income populations have the highest
autocorrelations amongst all variables.

Table 3. Moran’s Index test for spatial autocorrelation.

Variable Moran Index Expected I Pattern z-Score p-Value

Scooter Accessibility 0.169 −0.0048 Clustered 14.1392 0.00

Bike Accessibility 0.262725 −0.004608 Clustered 15.007489 0.00

Population 0.079803 −0.005025 Clustered 3.872871 0.00

Black 0.369221 −0.005051 Clustered 16.984959 0.00

Asian 0.281576 −0.005051 Clustered 12.918870 0.00

Hispanic 0.496380 −0.005051 Clustered 22.459347 0.00

Transit dependent 0.258411 −0.00505 Clustered 12.025398 0.00

Low income 0.322373 −0.005051 Clustered 15.191888 0.00

The bivariate correlation between the potential candidates for the regression analysis
was estimated to examine the multicollinearity among the variables (Table 4). There
was a strong positive correlation between the transit-dependent population and scooter
accessibility (0.43), as well as between the low-income population and accessibility (0.27)
and Asian residents and the total population (0.26). In addition, Asian and low-income
residents both had a statistically positive significant correlation with bike accessibility.
Scooter and bike accessibility also showed a significant correlation. On the other hand,
there was a negative correlation between Hispanic and Asian residents (−0.46). Therefore,
all correlation coefficients were lower than the “danger level” of 0.70 [65].

Table 4. Correlation analysis related to social characteristics and accessibility.

Hispanic Black Asian Transit Dependent Low Income Average Trips
Per Day Total Population

Hispanic 1

Black 0.31 *** 1

Asian −0.46 *** −0.17 ** 1

Transit Dependent 0.11 0.14 ** −0.03 1

Low Income 0.11 0.17 ** 0.07 0.43 *** 1

Scooter Accessibility −0.09 −0.04 0.053 0.05 0.27 *** 1

Bike Accessibility −0.9 −0.04 0.14 * 0.03 0.22 ** 0.84 ***

Total population 0.06 −0.03 0.26 *** −0.16 ** −0.152** −0.02 1

*, ** and ***: The levels of significance are 10% (0.1) *, 5% (0.05) **, and 1% (0.01) ***.

The goal of the generation of the models was to resolve a high descriptive capability
with a low number of easily attained social characteristics in order to predict micromo-
bility accessibility. The final model for the scooters featured two significant independent
variables, of which one was race-related (Black) and the other represented low-income
populations (Table 5). The VIFs that indicated redundancy among variables were all less
than two, showing no multicollinearity issues among the variables (VIFs around 7.5 or
higher are problematic). The F-statistic values and associated p-values showed the high sta-
tistical significance of the model. The Koenker statistic indicated unbiased standard errors.
The statistically significant Jarque–Bera statistic revealed that the residuals deviated from
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a normal theoretical distribution. Diagnostics from the OLS model’s prediction suggest
that the model cannot be trusted.

Table 5. Summary and diagnosis of the OLS model coefficients for scooters.

Variable Coefficient StdError t-Statistic Pr Robust SE t PR VIF

Intercept 38.77 64.03 0.61 0.54 58.05 0.67 0.5 ..

Hispanic −1.73 1.22 −1.42 0.16 1.67 −1.03 0.30 1.38

Black −1.8 2.34 −0.76 0.45 0.76 −2.32 0.02 * 1.13

Asian −1.9 4.4 −0.04 0.67 5.1 −0.38 0.71 1.30

Transit −8.27 8.80 −0.94 0.35 4.32 −1.91 0.06 1.24

Low income 28.33 6.74 4.20 0.00 * 12.30 2.30 0.02 1.27

Number of Observations 196

R-Squared 0.08

Adjusted R-Squared 0.07

Akaike’s Information Criterion (AICc) 2833

Joint F-Statistic 4.04 Prob(>F), (5190) degrees of freedom: 0.000 *

Joint Wald Statistic 21.69 Prob(>chi-squared), (2) degrees of freedom: 0.000 *

Koenker (BP) Statistic 5.49 Prob(>chi-squared), (2) degrees of freedom: 0.189262

Jarque–Bera Statistic 157,810 Prob(>chi-squared), (2) degrees of freedom: 0.000 *

*: p < 0.01

An OLS model was also developed for bikes (Table 6). The regression model shows
that only Black and low-income residents had a significant explanatory effect on bike
accessibility. The VIF was also computed for all variables, and the results showed no
redundancy. The Jarque–Bera statistic shows when a model is biased and there is a need to
perform GWR.

Table 6. Summary and diagnosis of the OLS model coefficients for bikes.

Variable Coefficient StdError t-Statistic Pr Robust SE t PR VIF

Intercept 0.52 7.64 0.07 0.94 7.06 0.7 0.94 −

Hispanic −0.10 0.15 −0.67 0.48 0.16 −0.61 0.54 1.39

Black −0.21 0.28 −0.75 0.45 0.10 −2.05 0.04* 1.14

Asian 0.58 0.52 1.10 0.27 1.08 0.53 0.59 1.29

Transit −0.87 1.06 −0.8 0.4 0.57 −1.53 0.12 1.24

Low income 2.73 0.81 3.35 0.00 1.26 2.15 0.032 * 1.27

Number of Observations 199

R-Squared 0.08

Adjusted R-Squared 0.06

Akaike’s Information Criterion (AICc) 2035

Joint F-Statistic 3.22 Prob(>F), (5190) degrees of freedom: 0.000 *

Joint Wald Statistic 14.37 Prob(>chi-squared), (2) degrees of freedom: 0.000 *

Koenker (BP) Statistic 4.5 Prob(>chi-squared), (2) degrees of freedom: 0.189

Jarque–Bera Statistic 42,037 Prob(>chi-squared), (2) degrees of freedom: 0.000 *

*: p < 0.01

To avoid spatial heterogeneity, a GWR model was generated by forecasting the scooter
and bike accessibility (Table 7). As can be seen in Table 7, the effective number value
for the scooter model was 6.01 (23.5 for bikes), which was associated with the kernel
bandwidth. The GWR models were compared based on their AIC values. In this study, the
AIC value for the OLS model was 272.897, while for the GWR model, it was 197.861. So,



Sustainability 2021, 13, 11856 11 of 15

there was a difference of 75.036, which is strong evidence for the improvement in the results
based on the local model (GWR) relative to the global model (OLS). In the bike model,
the improved value of R square based on the GWR model was 0.20, which was two times
higher than that of the OLS model. The AIC values for the two models slightly differed
by more than three; therefore, the GWR model resulted in a better fit than the OLS model.
Moreover, the residual analysis revealed more consistent results in the GWR model than in
the OLS model. As can be seen, there were positive associations between the low-income
population and accessibility; however, the coefficient for the bike model was considerably
higher than the one in the scooter model. Both Hispanic and transit-dependent populations
showed a negative correlation with accessibility in both models. In the bike model, Black
populations had both negative and positive associations with accessibility across the city.
It should be noted that GWR models generate different coefficients for different parts of
a geographic area while taking local characteristics into consideration.

Table 7. Summary and diagnosis of the GWR model coefficients for scooters and bikes.

Scooter Bike

Coefficient Coefficient

Min Max Mean Standard Deviation Min Max Mean Standard Deviation

Intercept 4.58 23.71 2.14 5.47 38.727 40.911 39.818 1.031

Black 0.38 0.60 −0.06 0.15 −1.732 0.730 −1.220 0.525

Hispanic −0.36 −0.01 −0.09 0.06 −1.770 0.955 −0.669 0.632

Asian 0.03 3.95 1.64 1.23 −1.8982 2.8954 −1.2969 1.033

Transit Dependent −2.90 0.37 −1.39 0.84 −8.28149 −6.271 −7.2762 1.202

Low Income 1.10 3.31 2.09 0.53 28.322 31.3358 29.328 3.003

Bandwidth 0.092 3.67

Residual Squares 260,177 20,227,034

Effective Number 23.5 6.01

Sigma 38.50 326.28

AIC 2032 2833

R2 0.20 0.10

R2 Adjusted 0.10 0.07

5. Discussion

Cities across the United States have launched various micromobility programs to
promote active modes of transportation and restore their public transit services. However,
several organizations have complained about the “lack of ethnic and/or income diversity”
among riders [66]. Although there have been some studies that investigate equity in
bike accessibility, no study, to our knowledge, has assessed the equity of electric scooter
accessibility. In this study, the ultimate goal was to explore if there was any association
between bike and scooter accessibility and race/ethnicity (Black, Asian, and Hispanic), low-
income residents, or the transit-dependent population. Another significant contribution of
this paper is that it compares scooter and bike accessibility in one city.

The results show that although the number of micromobility devices has grown rapidly
across the city, the majority of the population has no access to these services. The equity
analysis revealed that almost 80 percent of residents had no access to bikes or scooters.
Both bikes and scooters were disproportionally more accessible in the central census tracts,
where downtown and the University of Texas at Austin’s main campus are located. Within
these areas, less racial and ethnic diversity can be seen, as minorities tend to be clustered in
peripheral areas (mostly south and east) of the city. It is understood that different areas in
terms of land use (e.g., residential, commercial, and entertainment, to name a few) have
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different spatial and temporal micromobility demands. However, the lack of access among
underprivileged populations only highlights inequities for these communities.

Moderate evidence of differences in access to bikes and scooters by race at the census
tract level was detected across the City of Austin. The regression models revealed that
census tracts with a higher proportion of Black residents were less likely to have access
to both bikes and scooters. As the literature has shown that the perceived value of micro-
mobility vehicles can vary with socio-cultural aspects and community characteristics [67],
differences in findings by race are not unexpected. Furthermore, bikes are frequently con-
sidered a potential mode of transportation for either very low-income or very high-income
families [68]. The regression results support this, as positive associations for both bike and
scooter accessibility amongst low-income populations were observed. Supporting these
regression findings are Lorenz curve findings showing that Asians had a slightly higher
level of accessibility to bikes and scooters than those of other social equity categories. It
should be noted that the sociodemographic analysis also showed that Asians also resided
in more affluent areas of the city. The correlation analysis also showed negative associations
between the Asian population and the Hispanic and Black populations. Moreover, the
Hispanic and Black populations often resided in less affluent areas.

Micromobility services were meant to act as a feeder for public transit and were
intended to further address transit deserts [69]. Various studies have shown that, unlike
private car users, public transit users are more likely to rent electric bikes or switch to
e-bikes from public transit [70–72]. However, this equity analysis showed that 95 percent of
transit-dependent populations had access to only 10 percent of the available micromobility
services. As micromobility services and public transit systems are designed and managed
by different organizations, a “consistent operation mechanism” between bike/scooter
companies and public transportation organizations should be implemented and guided by
local policy [73] to ensure access for transit-dependent users. For instance, Bieliński et al.
proved that placing bikes close to public transportation stations is an effective strategy for
increasing ridership [70].

6. Conclusions

Shared micromobility programs offer great promise for bridging the gap in first-
mile/last-mile transportation needs and for expanding transportation options. However,
bike and scooter allocation and planning programs seem to result in inequitable access
across disadvantaged populations. A review of the literature showed that very few studies
have explored the equity aspects of access to micromobility services. To fill this gap, in this
study, we examined the associations between bike and scooter accessibility and the racial
and social characteristics of communities where these services are located. The research
findings contribute to the existing literature in several ways. Very limited research, to date,
has considered dockless micromobility vehicles, including both scooter and bike accessibil-
ity, amongst disadvantaged populations. Moreover, very few studies have compared OLS
and GWR models in transportation studies.

In the case of the City of Austin, although the number of micromobility devices
has grown rapidly within the city, a large percentage of the population has no access to
micromobility services. Both bikes and scooters are disproportionally more accessible in the
central census tracts of the city, where downtown and the University of Texas at Austin’s
main campus are located. Moderate evidence of inequity in access to bikes and scooters by
race at the census tract level was found across the City of Austin. The findings show that
census tracts with a higher proportion of Black residents are less likely to have access to
both bikes and scooters. Moreover, the Lorenz curves showed that Asian residents, who
tend to live in more affluent areas of the city, have a slightly higher level of access to bikes
and scooters when compared to populations represented by other groups.

From the methodological perspective, this study showed that micromobility vehicles
and social characteristics share significant spatial autocorrelation. Therefore, GWR models
work better than OLS models in the prediction of bike/scooter accessibility. The GWR
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models revealed stronger relationships between social characteristics and accessibility in
the central part of the city.

Despite its merits and contributions to micromobility accessibility research, this study
includes limitations that must be considered. Assessment of bike/scooter accessibility is a
very complex task, and various factors other than social equity characteristics influence
the level of accessibility. Multi-source and more fine-grained datasets may improve the
quality of the findings. Unfortunately, the City of Austin only provides census-tract-level
bike and scooter trip information. Finally, the models used in this study were both linear
regression models and only considered linear interpolation. Therefore, they reflect certain
limitations. In future work, investigating the impact of other social factors, such as gender,
education level, and built environment, on micromobility ridership might prove important.
In addition, other aspects of equity in micromobility ridership, such as digital literacy
and disability, might prove to be an important area for future research. Moreover, this
study considered trip information prior to the COVID-19 pandemic; future research could
examine the impact of the pandemic on micromobility ridership and, more specifically, the
impacts on disadvantaged areas during the pandemic.
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