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Abstract: Human industrialization has caused damage to ecosystems. In this context, researchers
have developed several methods to assess the health of various types of ecosystems. In this paper,
we evaluated the developmental history and status of ecosystem health (EH) and summarized the
concept of EH. We also reviewed ecosystem health assessment (EHA) methods and analyzed the
application of EHA methods. EHA methods are generally classified into biological indicator and
index system method. The former method is mainly based on the number of dominant species,
such as diatom, plankton, and macroinvertebrate. Results indicate that trophic diatom index (TDI),
plankton index of biotic integrity (P-IBI), and Ephemeroptera, Plecoptera, and Trichoptera (EPT)
are the most commonly used indices. The latter method combines multiple ecosystem metrics
and reflects ecosystem processes. The pressure–state–response (PSR) model most commonly uses
the index system method. For the application of EHA methods, biological indicator methods are
mostly applied in rivers/streams ecosystem, while the index system is primarily involved in urban
ecosystems. Therefore, the information presented in this review may be helpful for the modification
of EHA methods.

Keywords: ecosystem; ecosystem health assessment (EHA); indicators; index; application

1. Introduction

With the development of industrial civilization, the increase in pollution has severely
affected the natural environment [1,2]. According to the assessment results of the Millen-
nium Ecosystem Assessment project, human activities have significantly altered several
ecosystems on Earth in the last 50 years of the 20th century [3]. The status of ecosystem
health is closely related to sustainable human development [4], and natural ecosystems
provide the materials and services needed for human survival [5]. When disturbances
reduce or exceed the regulatory capacity of the system itself, the ecosystem also limits
the sustainable growth of human well-being by providing lower-quality ecosystem ser-
vices [6]. Maintaining ecosystem health is the primary factor in achieving sustainable
socio-economic development. Consequently, the assessment of the overall health of ecosys-
tems is of great significance.

The assessment of the ecosystem has helped us to understand the degree of the perse-
cution of the ecosystem, identify the pollutants flowing into the ecosystem, and prevent
contaminants from increasing pollution [7,8]. These pollutants would affect the devel-
opment of organisms in the ecosystem and lead to toxic effects on organisms that are
exposed to them [9]. For example, diatoms [10,11], planktons [12–14], and macroinver-
tebrates [15,16] can characterize heavy metals (Zn, Cu, Hg, and AS), microplastics, and
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organic pollutants in the ocean. In addition, EHA helps to understand the impact of EH
on the human living environment, which is embodied in population, economy, and social
responses [17,18]. Ecosystem services reflect the interdependent relationship between
human beings and ecosystems, which is critical for ecosystem health [19,20]. When ecosys-
tems deteriorate, ecosystem services and functions are significantly reduced, reducing
their social and economic benefits to a considerable extent [20–22]. Moreover, the health
assessment of ecosystems provides a scientific basis for managers to improve scientific
management [23], which is helpful to build sustainable livelihoods [24]. When confronted
with different types of ecosystems, decision-makers make and manage decisions according
to their goals. In natural ecosystems, the corresponding adjustment of the ecosystem is
mainly based on the pollution level [25,26]. In the urban ecosystem, decisions are based on
sustainability to maximize social and natural benefits [27,28].

This study examines the developmental history and developmental status of EH. It
summarizes the current popular keywords and studies conducted by famous scholars in the
field of research. We also reviewed the assessment methods of EH, which were classified
into two ways. One of the methods is the biological indicator method, which mostly
utilizes metrics or indexes of selected indicator organisms such as diatoms, plankton, and
macroinvertebrates to characterize the ecosystem’s health. The present study collected and
analyzed the indexes of the above three commonly used indicator organisms. The other
method is the index system method, which utilizes large-scale economic and social metrics,
combines other metrics, determines weights, and thus forms a comprehensive index to
assess the ecosystem’s health. Comparisons between the two methods are presented in
Table S1. In addition, the application of the EHA method is reviewed and analyzed.

2. The Development of Ecosystem Health
2.1. Brief History of Ecosystem Health

EH development can be divided into three periods (Figure S1). The first stage is the
ideology enlightenment. As early as 1941, Leopold put forward the concept of “Land
health” based on the idea of medical health [29]. The Soil and Health Association of New
Zealand was established in the same year, resulting in being the first academic organization
to implement EH as the research target [30]. In the 1970s, due to the development of stress
ecology, researchers studied ecosystem services and ecosystem functions [31–34], laying
the foundation for the proposal of EH.

The second stage is the proposal of concept. Researchers discussed the concept of EH
from 1980 to 1990. The general development of this stage is presented in Table S2. In the
past, researchers have mainly tried to explain the health of the ecosystem in two aspects.
From a process perspective, researchers explain the ecosystem’s stress and responsiveness
by analyzing how the ecosystem changes from a normal state to an abnormal state. From
the perspective of results, researchers pay attention to the damaged state of the ecosystem
and focus on using physiology to describe the syndrome of an unhealthy ecosystem. The
views of some representative researchers are summarized in Table S3. In addition, we give
our definition of EH: “an ecosystem that is of great biodiversity, able to resist natural and
man-made disturbances, maintain structural integrity, be self-sustaining and renewing,
meet the reasonable needs of people, and serve society”.

The third stage is the development of EH. Here, the research focus shifted to methods
of EHA. The general development of this stage is presented in Table S4. As early as
the concept stage, researchers used ecological indicators to assess ecosystem status [35].
However, early research was limited by conditions and operability, and the results have
no greater scientific significance for environmental management. For example, in an
aquatic ecosystem, when there are enough species of organisms at the same trophic level,
fluctuations in the number of a single organism at the same trophic level will not have much
impact on the entire ecosystem [36,37]. Researchers have been working on the innovation
of assessment methods for different types of ecosystems.
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2.2. Research on EHA in 21st Century

In the 21st century, researchers improved and innovated assessment methods and
conducted case studies in a wide range of ecosystems, including aquatic and terrestrial
ecosystems. In the present study, the Web of Science core database was used to perform
bibliographic retrieval on “ecosystem health assessment” in the last 20 years of the 21st
century. The retrieval results were analyzed using VosViewer (version 1.6.16). Here are the
search criteria: TS = ((“ecosystem health”) AND (evaluate* OR assess*)), database: core
collection of Web of Science, language: English, paper type: Article, time: 2000–2020. The
title, abstract, keywords, and authors of 1750 publications were recorded and reviewed.
The number of articles published each year is shown in Figure S2. In particular, the
number of articles in 2013 increased by 64% compared to the previous year. The number of
articles published in 2020 decreased compared to 2019, which may be due to the impact
of COVID-19.

The 1750 retrieval results were analyzed using the keyword co-occurrence in VosViewer.
In the data preprocessing, the occurrence frequency was set to ten to screen 9858 keywords.
A total of 268 keywords met the condition, and were cleaned according to the following
criteria: keywords with different formats but the same nouns are removed (e.g., “water
quality” and ”water-quality”); single and plural nouns are removed (e.g., ”bioindicators”,
“bioindicators”, and “biological indicators”); meaningless keywords are removed (e.g.,
“challenge”); keywords with the same meaning but different spelling were removed (e.g.,
“Estuarine” and “Estuary”). Ultimately, 231 keywords were determined. The co-occurrence
analysis results were shown in Figure 1a. As observed from the figure, the 231 keywords
were divided into five clusters, with different colors representing different clusters. The
highest occurrence frequency is “ecosystem health”, which appeared 305 times. Except
ecosystem health, the term “management” appears in the most in the publications. The
overall clustering effect is not apparent, indicating that there was no significant degree of
classification in the research in this field. Researchers mainly conduct ecological research
(such as biodiversity and management) and toxicology research (contaminant and metal).
Each cluster presents a tendency of overlapping, and the keywords are closely related,
indicating that the study in this direction is comprehensive.

The 1750 retrieval results were analyzed in VosViewer for the co-citation of authors. In
the data preprocessing, the citation frequency was set to 25 to screen 54093 authors. A total
of 165 articles met the condition. The data were cleaned as follows: the authors with the
wrong format but the same author name (such as “*EPA” and “US, EPA”) were merged;
the abbreviated names of the authors and the full names of the authors (such as “Costanza,
R” and “Costanza, Robert”) were merged. As a result, 157 results were determined, and
the co-cited analysis results are shown in Figure 1b. The 157 authors are divided into 6
clusters. The authors with the highest citation frequency are “Rapport, DJ”, whose article
has been cited 356 times in total. The authors with the closest connection are “Jorgensen,
Se” and “Xu, Fl”. At the same time, the fact that “Rapport, DJ” and “Costanza, Robert”
often collaborate academically is also proved by this figure, as the intensity of co-citation
between the two authors is 478. Five authors who have made significant contributions
to this field are visible in the figure: “Karr, JR”, “US, EPA” (US Environmental Protection
Agency), “Rapport, DJ”, “Costanza, Robert”, and “Jorgensen, Se”. These results reduce the
blindness of reading literature and provide a basis for researchers to quickly understand
the development of this field.
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Figure 1. Bibliographic analysis results. (a) Keywords co-occurrence analysis. Cluster 1 is a toxicolog-
ical cluster, clusters 2 and 5 are ecological clusters, cluster 3 and 4 are biological clusters. (b) Author
co-citation analysis.

3. EHA Methods

Researchers have developed many methods for the health assessment of various
environmental ecosystems, including aquatic and terrestrial ecosystems. Generally, two
major assessment methods exist. The first method is the biological indicator method, which
is mainly based on the number of dominant species, key species, and sensitive species in
the community to analyze the environmental changes and assess the health of the natural
ecosystem [38]. The second method is the index system method. This method integrates
a large amount of complex information. It combines biochemistry, ecology, economics,
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and other disciplines to screen out appropriate comprehensive metrics, establish an index
system, and comprehensively assess the EH [5,24,39].

3.1. Biological Indicator Method
3.1.1. Benthic Diatoms

In temperate regions, aquatic systems are formed by various communities. However,
diatom species play a vital role in these communities [40]. These species are often utilized as
water quality indicator organisms, which can significantly reflect the biological integrity of
the study area and the anthropogenic stressors affecting EH [41]. Diatoms respond quickly
to the physical and chemical characteristics of the aquatic system [42]. Herein, DO, turbidity,
nitrate, and phosphate levels were found to be significantly correlated to the diatom index
(R > 0.9) [43]. Diatoms are considered more efficient than other communities because their
production time is shorter than that of fish and macroinvertebrates [44]. Compared with
other organisms, the diatom community structure provides a time-integrated indication of
water quality composition [45]. Furthermore, the major advantage of diatoms is that most
diatom species have a wide geographic distribution and universal applicability [46–48].
In China [49], South Africa [50], Turkey [51], Brazil [45], the United Kingdom [52], and
the United States [53] there are cases of using diatoms as indicator organisms to assess
ecosystem health. The integrity of these communities provides a straightforward but not an
overall measure of the ecosystem, which further reflects the pollution of the ecosystem [54].

Owing to the diatom size and living conditions, the diatom index is widely used [55].
Diatom indices are based on ecological metrics, such as species abundance and diversity
index, and use the formula to calculate the new index [56]. Half of the published papers
about diatoms studied the diatom index [55]. Therefore, the biological diatom index is a
key point in diatom research. Table S5 presents 38 diatom indices of the studies that were
reviewed in this study. All the publications were relatively highly cited references which
were published since 2000. It can be observed from the table that the Trophic Diatom Index
(TDI) is the most commonly used, appearing 16 times in the table. It is worth noting that the
index of biological integrity based on diatoms is also often implemented by researchers. The
individual ecological index based on diatoms and IBI are two basic methods for evaluating
the environmental conditions of rivers and streams using diatoms [57]. In terms of research
areas, the diatom index has global applications. The most important application areas are
concentrated in Europe, which appears ten times in the table, along with various countries
in Europe which have applied the diatom index for EHA. China and North America are
also popular areas of research. As for metrics, species abundance is the most used metric
in the diatom index, which suggests that the biggest difference between the reference point
and the damage point was species abundance. The results are shown in Figure 2a.

3.1.2. Plankton

Plankton is utilized to assess the health of aquatic ecosystems, such as lakes, rivers,
and reservoirs. Plankton is a collection of species that mostly includes phytoplankton and
zooplankton. Phytoplanktons are the most critical aquatic organism in aquatic ecosys-
tems [58]. Phytoplanktons are at the first trophic level and absorb light energy for energy
transfer and material transformation [59]. Their biological activity affects the circulation
of several primary and trace elements, such as carbon, nitrogen, and iron [60]. However,
excessive nutrients usually accelerate the growth of phytoplankton, and excessive phyto-
plankton populations may lead to algal blooms [61,62]. In coastal zones, phytoplankton
is always a good indicator, as population growth increases the importation of nutrients
into the seawater, leading to frequent HAB accidents [63]. Zooplanktons are the primary
consumers of aquatic ecosystems and are indispensable in biochemical transformation pro-
cess [64]. The community responds quickly to environmental variables related to climate
change [65,66]. It is a vital link in the food chain and food web, and most zooplankton feed
on phytoplankton [67]. Many researchers suggest that zooplanktons should be taken as
biological quality elements of Water Framework Directive (WFD) [68–70].
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Figure 2. The most commonly used indices, metrics of indices, and where they are used
most. (a) Diatom indices: BDI: Biological Diatom Index; SPI: Specific Pollution Sensitivity Index;
TDI: Trophic Diatom Index. (b) Plankton indices: PTI: Phytoplankton Trophic Index; IBI: Index
of Biotic Integrity. (c) Macroinvertebrate indices: BMWP: Biological Monitoring Working Party;
HBI: Hilsenhoff biotic index; EPT: Ephemeroptera, Plecoptera, and Trichoptera.

The plankton-based assessment method is also mainly modified based on the Index of
Biological Integrity (IBI) and has been applied globally [71–74]. Table S6 lists 38 plankton
index studies reviewed in this study. All the publications were relatively highly cited
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references published since 2000. Among the 38 plankton indexes in Table S6, 18 were
developed or used based on the index of biological integrity (IBI). Furthermore, the next
most used are the plankton trophic index (PTI) and the water quality index (WQI), which
are utilized three times. It should be noted that an index such as the phytoplankton
community index, which is only applied in one area (the UK), also has a high frequency of
use [75,76], but it is not applicable. In terms of research areas, the most significant number
of studies were carried out in China, with 20 occurrences, followed by 11 in Europe and
3 in the United States. The most frequently used metric is species abundance, including
the abundance of each species and species combination. Ten studies selected this metric.
In addition, species biomass and chlorophyll concentration are also frequently chosen by
researchers, with frequencies of 8 and 7, respectively. The results are shown in Figure 2b.

3.1.3. Macroinvertebrate

Macroinvertebrates are mostly used to assess the health of river ecosystems. Owing to
their limited mobility in river channels, they are relatively easy to collect [77]. Macroin-
vertebrates are consumers of medium nutrient levels in aquatic ecosystems. They act as
nodes in the system and contribute to nutrient cycling, primary productivity, and material
decomposition and transfer [78]. The existence of macroinvertebrate species often alters
the physical surroundings or the flow of resources, thereby creating or modifying habitats
and influencing other organisms in the community [79]. The activities of these organisms
create dynamic sediment mosaic, effectively transport solutes into burrows, and increase
sediment oxygenation [80]. In addition, macroinvertebrates are sensitive to low concen-
trations of pollutants in water and can be utilized to detect and assess the early state of
rivers [81].

Generally, the health index of macroinvertebrates is divided into macroinvertebrate-
based biotic indices and macroinvertebrate-based multi-metric indices [82,83]. A biotic
index based on the tolerances of each observed taxa generally uses only one metric to assess
river health, and the other elements need to be idealized. In comparison, multi-metric
indices use several metrics to assess river health. Their development should consider the
complexity of river ecosystems and they provide more detailed information for decision-
makers [84]. Table S7 lists the 41 plankton index studies that were reviewed in this study.
All the publications were relatively highly cited references which had been published
since 2000. Among the 41 indexes counted, 15 studies utilized Ephemeroptera Plecoptera
Trichoptera (EPT) as the basic index, making EPT the most commonly used basic index.
Among the modifications to the EPT, most researchers added biological metrics such as
the number or percentage of Trichoptera [85,86]. This enables the modified index to better
reflect the internal conditions of the river and consider local characteristics. Assessment
research using the macroinvertebrate index is mainly concentrated in Europe, North
America, and South America. Europe and the United States are at the top level in this
field. Researchers often use the EPT as a metric to calculate new indices. In addition, they
commonly use tolerance metrics and Shannon–Wiener index. The results are displayed in
Figure 2c.

3.1.4. Other Indicators

Several other species were selected as the biological indicators. Fish have been used
as indicators of aquatic ecosystem changes mostly because of their accessible collection,
handling, identification, and sensitivity to habitat loss and other environmental stres-
sors [87–89]. According to Pérez-Domínguez [90], most studies of fish-based indices have
been carried out in streams and rivers of the United States and other temperate countries.
It is also one of the four key BQEs in the WFD [91]. Besides fish, Simone Ciadamidaro
selected the black fly (Simuliidae) as an indicator to assess the ecosystem health of streams
in urban areas because its larvae are distributed in the waters [92]. In addition, oysters [93],
marine turtles [94], seagrass [95], and many other organisms were used as indicators.
When the assessed target is a terrestrial natural ecosystem, other flora and fauna could be
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used as alternatives. Ants could perfectly reflect the health condition in a comprehensive
way [96,97]; specific species like sled dogs [98], which only live in cold zones, are a very
good choice to assess arctic ecosystem health.

3.2. Index System Method

Although the biological indicator method provides a feasible and straightforward
way to assess the health of aquatic ecosystems, limitations still exist. Thus, it can be in-
ferred that: (1) Species of different ecological levels should be taken into consideration.
(2) Species interactions are ignored. (3) The external pressure on the ecosystem is not
well-reflected. To make corrections and better reflect the actual situation, it is necessary
to establish an index system to synthesize a large amount of complex information. The
vigor (V), organization (O), and resilience (R) proposed by Costanza in the early stages are
the prototype of this method [99]. This method combines multiple metrics of the ecosystem
and reflects the process of the ecosystem, which also aims to assess ecosystem health from
the perspective of ecosystem structure, function succession process, ecological services,
and product services. The index system method emphasizes the ecosystem’s services
to humans and the evolutionary relationship between the ecosystem and the regional
environment [100]. Based on the VOR idea, researchers have developed many models and
frameworks, such as PSR, DPSR, and DPSEEA, as listed in Table S8. Small-scale metrics
help to understand the community’s pollution level and spatial distribution, while the
metric selected on the medium-scale and large-scale can be used for regional differences
but ignores specific details [101]. Multi-scale metrics of toxicology, chemistry, community
structure functions, and socio-economic factors can provide more comprehensive informa-
tion and display a more realistic level of ecosystem health. After establishing a suitable
index system, the ecosystem health index (EHI) is calculated according to the weight of
each metric. Different weighting methods lead to different ranges of the EHI.

In the large scale assessment of EH, remote sensing (RS) has potential for assessing
and monitoring ecosystem health at different temporal and spatial scales across extensive
areas with a broad extent [102,103]. The main advantage of RS tools is that they can
be used for directly detailing ecological health indictors, such as productivity, species
richness [104,105], and resilience after natural and human-induced disturbances and for
indirectly providing inputs for spatially explicit ecological process modeling [103–106]. In
addition, RS removes barriers of scales [107]. The crucial point of using RS is the relevance
of metrics that are obtained by RS to ecosystem health. An analytical framework has been
provided when using remote sensing tools in EHA [108]. It is a procedure for researchers
which can make metrics reflect the ecosystem health better. Land use/land cover is the
most commonly used RS data [109]. Based on this, landscape indices such as PD, NP, SHID,
LPI, SIDI, and MPS were calculated and widely applied in models [110–112].

3.2.1. Classification and Selection of Metrics

The establishment of the EHA index system can be conducted in two ways. The first
is the internal metric of the ecosystem, including toxicology, ecology, and biochemistry;
the second is the external metric of the ecosystem, such as the socio-economic metric
and ecosystem service metric [113]. In the health assessment of a rapidly urbanizing
urban ecosystem, ecological function and production function can be utilized as internal
metrics, and economic metrics such as GDP can be utilized as external metrics [114].
Some researchers have proposed a more comprehensive index classification framework or
model [115,116]. The “pressure-state-response” (PSR) model [117] proposed by the OECD
in 1993 has been applied by most researchers in EHA. This model classified metrics into
pressure, state, and response, which makes it easier to select metrics [118].

A more positive response generally indicates a healthier ecosystem. The selection
of metrics determines the reliability of the response. Selecting appropriate metrics such
as environmental protection investment [119] and sewage treatment capacity [120] will
influence the assessment results. It needs to be quantified if the chosen metric is not a



Sustainability 2021, 13, 11838 9 of 17

measurable variable, such as public awareness of environmental protection [121]. One
problem is that the number of metrics is uneven. It does not mean that the reliability of
the ecosystem’s health assessment results is related to the number of metrics. Zhang [120]
and Sun [122] assessed the urban ecosystem of Lanzhou City based on the PSR model. The
former selected 20 metrics, while the latter selected only 15 metrics. However, there is little
difference between the assessment results. Detailed comparisons are presented in Table S9.
The quality of the ecosystem health index is related to the quality of the selected metrics,
but not to the quantity [123].

3.2.2. Ecosystem Services

Ecosystem services (ES) are a significant metric that concerns sustainability [124]. ES,
such as soil retention, water yield, and carbon storage, are determined by natural resources
and habitats [125]. However, ES are often ignored when conducting a traditional EHA as
such an assessment focuses more on the integrity and sustainability of the actual ecosystem
itself. Therefore, it is necessary to enable a link between EH and the provision of ES,
and to determine how any ecosystem dysfunction relates to these services when making
an EHA [126]. In recent years, with the popularity of various methods to measure ES,
researchers take ES as a metric of the index system, developed the VORS framework which
combines ES with vigor, organization, and resilience [127–129]. Changes in EH directly or
indirectly affect the output of ES [130]. It is important to focus on the changes in ES to gain
a more comprehensive understanding of EH.

4. Application in Different Ecosystems

We adopted the Web of Science Core Collection Database to illustrate the application
of the two methods in different ecosystems. Here are the search criteria: database: core
collection of Web of Science, time: 1 January 2010, to 31 May 2021, paper type: Article,
language: English, TI = (“Ecosystem health” OR “Ecosystem integrity” OR “Ecosystem
quality” OR “Ecosystem status”) AND (“assess*” OR “evaluate*” OR “measure*”). In
addition, an asterisk (*) was inserted at the end of the words “assess”, “evaluate”, and
“measure” to guarantee greater search precision. Only publications with full pdf format
text were analyzed. The following data were recorded for analysis: (1) year, (2) journal,
(3) study country, (4) ecosystem type, (5) methods, and (6) title. In total, 143 articles were
found in the WOS result. After screening, a total of 127 publications belonging to 83 journals
met the criteria, which could be all retrieved from the Scopus database. As expected, the
main application methods of EHA are biological indicator and index system (Figure S3).
Almost half of the studies utilized the biological indicator method in the current study. The
index system method is also prevalent in EHA. Other methods take up nearly 10% of the
study. For the application region (Figure S4), 65 studies were carried out in China, which
is the most applied region. Applications in Asia, North America, and South America are
significant and regional, while applications in Europe are small and dispersed. Most of
the current studies were conducted in aquatic ecosystems (Figure 3a), and approximately
one-third of the studies were conducted on terrestrial ecosystems. The total number of
ecosystems was greater than the number of publications because one publication was
carried out in aquatic and terrestrial ecosystems. The aquatic ecosystem was reclassified
into lakes, reservoirs, lagoons, rivers, streams, marine coast area/Bay/Gulf, estuaries/delta,
and wetland (Figure 3b), whereas the terrestrial ecosystem was reclassified into urban,
forest, grassland, land, and desert (Figure 3c). Not surprisingly, rivers/streams were the
most concerning targets, followed by marine coast area/bay/gulf. By comparison, urban,
rivers/streams, and marine coast area/bay/gulf were at the same level; these were more
frequently assessed than others.
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Figure 3. Summary of assessed ecosystem types in the publications found in the systematic review. All studies were
classified by aquatic ecosystems and terrestrial ecosystem (a). The aquatic ecosystem (b) and terrestrial ecosystem (c) were
also classified.

Among the studies that adopted the biological indicator method (Figure 4a), the
majority of the studies were applicable to aquatic ecosystems, which accounted for 95.2%
of the total publications. Rivers/streams are the ecosystems where the biological indicator
methods were applied most frequently, followed by marine coast area/bay/gulf (Figure 4b).
The terrestrial ecosystems where the biological indicator method was adopted accounted
for 4.8% of the total publications. Wike and Bharti [97,131] both utilized the ant as a
biological indicator in the study, while Jenssen [132] used lumbricoides to assess the soil
properties. For studies that applied the index system method (Figure 5a), about 61.5% of
the studies were on terrestrial ecosystems. Aquatic ecosystems accounted for 38.5% of the
total publications. Among the studies in which the index system method was adopted with
aquatic ecosystems, the majority of the studies (7) were on the marine coast area/bay/gulf
(Figure 5b). Two studies utilized the PSR model in seven studies [119,133]. Three out of six
studies applied the PSR model in wetland ecosystems. Among the 32 studies that adopted
the index system method (Figure 5c), 24 were on urban ecosystems. Furthermore, the other
eight included forest, grassland, land, and desert areas.
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Figure 4. Summary of assessed ecosystems which adopted biological indicator method. The study was classified by aquatic
ecosystem and terrestrial ecosystem (a). The aquatic ecosystem (b) and terrestrial ecosystem (c) were also classified.
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ecosystem and terrestrial ecosystem (a). The aquatic ecosystem (b) and terrestrial ecosystem (c) were also classified.

Additionally, a few researchers have attempted to innovate the EHA method [134,135].
Commonly assessed ecosystems are rivers/streams, marine coast area/bay/gulf, and urban
areas. These ecosystems are heavily polluted and are highly associated with anthropogenic
activities. The biological indicator method was mostly applied to aquatic ecosystems. In
comparison, the index system method was applied in all kinds of ecosystems. However,
urban ecosystems are more appropriate for index system methods.

5. Discussion
5.1. Biological Indicator Method

The biological indicator method focuses on environmental pollution and reflects
impact of single factor to the ecosystem. The diatom, plankton, and macroinvertebrate
indexes discussed in this paper are site-specific, which means that the index needs to be
suitable for the conditions of the site to ensure an accurate assessment of ecosystem health.
The Hilsenhoff biotic index (HBI) is a good index of organic pollutants [85] and can also be
used as a metric of other indices [136]. However, HBI may not be applicable in other areas
because the tolerance of species to pollutants may vary from place to place depending on
the natural conditions of different habitats. The EPT index is applied to detect low levels of
degradation because Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera
(caddisflies) are sensitive [137]. Several plankton and macroinvertebrate communities also
have seasonal dynamic characteristics that would affect the community structure both
upstream and downstream.

5.2. Index System Method

The index system method represents a comprehensive result. At present, we suggest
that researchers focus on the index system method. It not only reflects pollution level but
also indicates sustainable development. It should be a trend to adopt ecosystem services as
a regular metric. A comprehensive index system should be developed as a standard [138].
Several researchers ignore the fact that the change in the ecosystem status has a certain lag,
making it impossible for government departments to implement timely prevention and
control. On the one hand, it makes it difficult for the study area to recover in a short time.
On the other hand, it will also cause residents to suffer. Consequently, time scales should be
considered based on assessment metrics. Moreover, researchers conducted the EHA, while
the government departments controlled the collection and collation of data, which led to
research inconvenience. Most of the spatial distribution of river basin ecosystems is across
administrations units. The data available to the public are often divided by administrative
unit, and the record indicators of each unit are not the same, resulting in the inability to
obtain general information about the area. So far, no researchers have used two different
methods to assess the ecosystem’s health in the same area on the same time scale. It is
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worth trying to combine the two methods to assess the same target area and compare it
with the assessment result of a single method.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/su132111838/s1, Figure S1: The development of ecosystem health. Figure S2: Number
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(b) Publications change from 2000 to 2020. Figure S3: The number and ratio of publications which
applied Biological Indicators, Index System, and Others. Figure S4: Geographic distribution of
surveys found in the systematic review. The bubble sizes refer to the number of studies. Table S1:
The comparisons between Biological Indicators Method and Index System Method. Table S2: The
concept proposal stage. Table S3: Representative opinions of different researchers on EH. Table S4:
The development stage. Table S5: List of diatom indices, origin, modifications, characteristics, appli-
cation regions, and metrics. Table S6: List of plankton indices, origin, modifications, characteristics,
application regions, and metrics. Table S7: List of macroinvertebrate indices, origin, modifications,
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