<@ sustainability

Article

Effect of Aggregate and Binder Type on the Functional and
Durability Parameters of Lightweight Repair Mortars

Martina Zaleska !

check for

updates
Citation: Zéleska, M.; Pavlikova, M.;
Vysvaiil, M.; Pavlik, Z. Effect of
Aggregate and Binder Type on the
Functional and Durability Parameters
of Lightweight Repair Mortars.
Sustainability 2021, 13, 11780. https://
doi.org/10.3390/su132111780

Academic Editors: Nelson Soares and

Luisa Dias Pereira

Received: 7 October 2021
Accepted: 22 October 2021
Published: 25 October 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Milena Pavlikova !

, Martin Vysvaftil 20 and Zby3sek Pavlik -

Department of Materials Engineering and Chemistry, Faculty of Civil Engineering,

Czech Technical University in Prague, Thakurova 7, 166 29 Prague, Czech Republic;
martina.zaleska@fsv.cvut.cz (M.Z.); milena.pavlikova@fsv.cvut.cz (M.P.)

Institute of Chemistry, Faculty of Civil Engineering, Brno University of Technology, Zizkova 17,
602 00 Brno, Czech Republic; vysvaril. m@fce.vutbr.cz

*  Correspondence: pavlikz@fsv.cvut.cz; Tel.: +420-224-354-371

Abstract: The subject matter of the work presented here is the development and evaluation of
novel lightweight mortars that meet the functional and technical criteria imposed on repair mortars.
In a broad experimental campaign, lime, natural hydraulic lime, and lime—-cement mortars were
designed and tested. Lightweight aggregate, expanded perlite, granules from expanded glass and
zeolite were used as full replacements for quartz sand. The hardened mortars were tested at the
ages of 28 days and 90 days. The conducted tests and analyses were focused on the assessment
of structural, mechanical, hygric and thermal parameters. The salt crystallization resistance and
effect of salt presence on the hygroscopicity of the investigated mortars were also investigated.
The use of lightweight aggregates in the composition of mortars resulted in their high porosity, low
density, satisfactory mechanical parameters, improved water vapor transmission capability and water
absorption. The mortars with expanded perlite and glass granulate were ranked among thermal
insulation mortars of classes T1 and T2, respectively. The use of lightweight aggregates enabled the
development of mortars with great durability in terms of salt action, which was almost independent
of binder type. The ability to accommodate water vapor was increased by the effect, i.e., the use
of lightweight aggregates and the presence of salt in mortars increased porous space. Taking into
account the compatibility, functional, and technical criteria, lime- and natural hydraulic lime-based
lightweight mortarswere classified as repair mortars, providing improved thermal performance. The
lime—cement lightweight plasters can be recommended only for repair of building structures where
cement and lime-cement materials were original applied.

Keywords: repair mortars; lightweight aggregate; hygrothermal performance; energy efficiency
enhancement; salt crystallization resistance

1. Introduction

In Europe, housing and building stocks are considered highly unique as well as
diverse; however, most of buildings are old and not energy-efficient. The heating and
cooling of buildings is responsible for almost 40% of the total energy consumption in
European Union (EU). EU achievement of its energy and climate targets is associated with
its ambition to renovate building stock, giving priority to energy efficiency. At present, the
renovation treatments and procedures in the EU address energy performance of existing
stock of building only very rarely, with the weighted annual energy renovation rate at
about 1% [1,2].

Great potential in terms of energy use reduction can be found in the renovation of
cultural heritage buildings. Generally, the simplest and most frequently-used solution for
improving the envelope of buildings is the External Thermal Insulation Composite System
(ETICS) [3]. However, despite its unquestionable advantages, in the case of many older
and historical buildings ETICS is often banned by the cultural heritage authorities due
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the emphasis on protection and preservation of the original architectural style and inbuilt
materials [4]. The improvement of hygrothermal performance of building envelopes can
also be solved by using thermal insulation rendering and plastering mortars, which are an
important means of dealing with energy efficiency issues in the building field, especially in
repair and renovation processes [5].

The main requirements for repair plasters include in particular high porosity, limited
water absorption, high water vapor permeability, high flexibility, good adhesion, durability,
and compatibility with the substrate [6,7]. The selection of materials compatible with
historical structures is therefore very important and needs a complex solution. The binders
most frequently used in restoration are air lime and natural hydraulic lime [8-10]; never-
theless, lime—cement mortars can be also considered for this application [11] taking into
consideration the nature of originally applied materials. The basic functional requirements
imposed on repair mortars are introduced in the EN 998-1 [12]; however, the required
parameters are summarized in more detail in the WTA directive 2-9-04/D [13]. According
to the WTA (International Association for Science and Technology of Building Maintenance
and Monuments Preservation), the repair mortars should have a compressive strength
fc in the range of 1.5-5 MPa, water vapor diffusion resistance factor y < 12, 24-h water
absorption W, > 0.3 kg:m~2, and porosity ¢ > 40%.

Taking into account the aforementioned problems with high energy demand for
operation of historical and heritage buildings, the important characteristics of renovation
mortars should also include their thermal insulation parameters. In the literature there are
many papers aiming to the use different insulating materials as aggregate or fibers in plaster
composition in order to reduce thermal conductivity and thus improve thermal insulation
performance [4,7,14-23]. It has been reported that the use of lightweight aggregates or
fibers leads to a decrease in thermal conductivity and mechanical resistance and an increase
in the porosity of hardened mortars. The improvement of both water vapor permeability
and sorption parameters was also referenced. Let us note that in the case of thermal
properties, emphasis must also be placed on their dependence on moisture content [7]
which is substantial, especially for materials applied on damp substrates or subjected
directly to moisture sources.

For repair mortars, longtime performance and maintenance of functional qualities,
i.e., durability issues, are of particular importance. The durability of plasters is closely
related to their resistance to water, freezing, and water-soluble salts, as salt crystallization
is one of the most common causes of damage to inbuilt materials in historical and heritage
buildings. The cyclic crystallization and dissolution of salts occurs in the pores; therefore,
the high porosity of mortars positively affects their ability to absorb pressures linked with
salt crystal growth [24-26]. However, it is not only overall porosity that has an important
role in the susceptibility of mortars to salt decay, but also pore size distribution [25].

As requirements for repair mortars in terms of their functional, durability and sustain-
ability parameters are still increasing, continuous research and development is necessary.
Given the reasons above, and taking into account the need for thermal insulation repair
renders and plasters, this research is aimed at the assessment of both binder type and
lightweight aggregate type on the functional and durability parameters of repair mortars.
On the basis of our review of the literature, the air lime, natural hydraulic lime and lime-
cement blend were chosen as binders, and expanded perlite and zeolite as lightweight
aggregate. A new commercially-delivered expanded glass granulate (Liaver) was tested as
a prospective durable and thermal insulation filler. Comprehensive analysis of the macro-
and micro-structural, mechanical, transport and storage thermal and hygric properties of
the prepared mortars was conducted, together with assessment of their durability in terms
of salt crystallization resistance. Among the conducted tests and analyses, measurement
of water vapor adsorption isotherms for mortars that were subjected to salt crystalliza-
tion represents quite crucial and unique information for the application of the developed
materials in salt-laden masonry.
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2. Materials and Methods
2.1. Materials

Mortar specimens were cast from three types of binders: hydrated lime CL 90-S (Cer-
tovy Schody, Inc., Tmari, Czech Republic, member of the Lhoist group), natural hydraulic
lime (NHL 3.5, Zement- und Kalkwerke Otterbein GmbH & Co. KG, Grofienliider-Miis,
Germany), and Portland cement CEM I 42.5 R (Ceskomoravsky cement, Inc., Radotin,
Czech Republic, member of the HeidelbergCement Group). Washed quartz sand (the
fine fraction 0/2 mm from Filtra¢ni pisky, Ltd., Chlum u Doks, Czech Republic), non-
hydrophobized expanded perlite (EP 150 PB, fraction 0/2 mm from PERLIT PRAHA, Ltd.,
Prague, Czech Republic), expanded glass (Liaver, fraction 0/2 mm from Liaver GmbH &
Co. KG, Ilmenaou, Germany), and natural zeolite (fraction 0/2 mm from Zeocem, Inc.,
Bystré, Slovakia) were applied as fine-grained aggregates.

2.2. Chemical Composition and Phase Analysis of Initial Materials

The chemical composition of initial materials presented in oxide form is introduced
in Table 1. It was assessed with an Axios X-ray Fluorescence (XRF) spectrometer with
2.4 kW (Malvern Panalytical, Malvern, UK) and SuperQ V4.0 software. The mineralogical
composition of materials (Table 2) was obtained by Empyrean X-ray Diffraction (XRD)
spectrometer (Malvern Panalytical, UK). The quantitative phase analysis was performed
according to the Rietveld method using the fundamental parameters approach. The internal
standard (CaF,) method was used to determine the amorphous phase content in the initial
materials. Data evaluation was executed by the HighScore Plus software version 4.8
(Malvern Panalytical, UK). The acquired data show the hydrated lime was, as usual, fully
crystalline with little MgO contamination. In contrast, NHL 3.5 and cement, with a typical
representation of siliceous and aluminum minerals, contained a significant amount of
amorphous phases. The basic physical properties and parameters of the used binders
can be found in the authors’ previous work [27]. The applied silica sand was highly pure
without any clay or feldspathic contaminants. The chemical composition of expanded
perlite (EP), expanded glass (EG), and natural zeolite (ZEO) showed a high content of SiO,
and Al,O3 supplemented by the expected higher content of Na,O and CaO in the case of
EG. The lightweight aggregates contained large amounts of hydraulic oxides (SiO,, Al,O3,
Fe;,O3)—EP 86%, EG 73%, ZEO 80% respectively, which together with their high content
of amorphous phase (90.8%, 97.7% 30.2%) creates a very strong presumption in favor of
pozzolanic reactivity.

2.3. Physical Properties of Ligweight Aggregates

The chosen physical properties of the lightweight aggregates used, as imparted by
the manufacturers, are summarized in Table 3. The low powder (loose bulk) density and
the thermal conductivity of EP and EG represent good prerequisites for the design and
development of highly porous thermal insulation mortars.

Table 1. Chemical composition of initial materials (wt.%).

Si02 A1203 F9203 CaO MgO Kzo NazO P205 TiOZ 503 LOI 1

Lime 0.92 0.71 0.39 68.09 1.33 0.48 0.11 0.05 0.10 0.19 27.94
NHL 3.5 12.76 4.12 1.47 59.87 2.79 1.13 0.09 0.15 0.05 0.15 15.28
Cement 21.26 5.08 3.64 61.48 0.86 091 0.12 0.08 0.29 2.42 4.17
Quartz sand 98.50 0.38 0.15 0.01 0.03 0.09 0.01 0.04 0.09 0.02 0.12
EP 68.02 16.04 1.91 4.54 0.41 2.50 4.62 0.14 0.10 0.02 0.33

EG 70.27 2.16 0.49 9.43 2.11 0.84 13.82 0.12 0.18 0.21 0.13
ZEO 67.46 11.73 1.37 2.84 0.73 3.02 0.50 0.03 0.17 0.01 11.57

! Loss on ignition.
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Table 2. Minerals forming the initial materials (wt.%).

Mineral Lime NHL 3.5 Cement Quartz Sand EP EG ZEO

Alite - - 50.6 - - - -
Albite — - - - 1.9 - 2.6
Aluminate — 2.7 3.9 - — - -
Anorthite — - - - 3.2 - -
Biotite — - - - 2.8 - 1.9
Brownmillerite - 14 8.6 - - - -
Brucite 0.5 - - - - - -
Calcite 1.8 6.2 - - — - -
Clinoptilolite - - - - - - 50.5
Cristobalite - - - - - - 9.3
Gypsum - - 3.8 - - - -
Illite - -
Larnite - 22.5 49 - - - -
Portlandite 97.1 41.3 -
Quartz — -
Sanidine — - - - 0.6 - -
Staurolite — - - 1.5 — - -

Amorphous -~ 25.1 284 - 90.8 977 30.2
phases

Table 3. Selected parameters of used aggregates imparted by producers.

Property EP EG ZEO

Loose bulk density (kg-m*S) 179 310 1020

Water absorption (I-m~3) 348 25 270

Thermal conductivity (W-m~1.K=1) 0.04 0.07 0.16
Thermal stability (°C) 900 750 450
Water vapor diffusion resistance factor, p-value (-) 3 5 -
Capillary evaporation (g-h~1) 0.36 - -
Compressive strength (MPa) 0.3 3 30

pH (-) 7 7 7-8

2.4. Assessment of Pozzolanic Activity of the Applied Aggregates

Pozzolanic activity of the aggregates (Table 4) was tested by a modified Chapelle test
method according to the standard NF P 18-513 [28]. The limit of consumed Ca(OH); for
the consideration of the material as pozzolana active (650 mg-g~! [29]) was exceeded after
2-3 days of treatment in the case of EP; EG was the most pozzolana active of the three
examined aggregates, and ZEO did not meet the condition of pozzolanicity even after
5 days of treatment. It was seen that the pozzolanic reaction of the aggregates evolved
over time.

Table 4. Pozzolanic activity of used aggregates.

Pozzolanic Reaction Time Pozzolanic Activity
(Days) (mg Ca(OH),/g)

EP EG ZEO
1 259 676 409
2 468 972 428
3 997 1077 453
4 1072 1172 601
5 1137 1234 646
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2.5. Particle Size Distribution Analysis

The particle size distribution of lightweight aggregates (Figure 1) was determined by
Mastersizer 2000 laser particle analyzer (Malvern Panalytical, UK). To prevent segregation
of aggregate particles, they were dispersed in acetone solution.

12 -
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Figure 1. Particle size distribution of sand and lightweight aggregates.

2.6. Microstructure of Aggregates

The microstructure of aggregate particles (Figure 2) was investigated using scanning
electron microscope (SEM) Tescan Mira3 (TESCAN Brno, Ltd., Brno, Czech Republic).
Aggregate grains were embedded with epoxy resin, and after hardening, a sample with a
fracture surface was obtained by breaking the material. EP and EG aggregate were very
porous, with more massive partitions between the pores in the EG. The pore walls in
the EP microstructure were thin and easily damaged. In contrast, the microstructure of
ZEO was dense, composed of leaf sharp-edged crystals. The shape of EG particles was
spherical, unlike EP and ZEO which had an irregular asymmetrical shape. The loose bulk
density of particular lightweight aggregates (Table 3) completely reflected the differences
in their microstructure.

2.7. Sample Preparation and Curing

The mortar specimens (40 mm x 40 mm X 160 mm prisms and circular plate samples
with a diameter of 120 mm and thickness of 30 mm) were prepared with a constant binder-
to-aggregate volume ratio of 1:1.15. The binder/aggregate ratio of 1:1.15 was chosen
after conversion of the 1:4 weight ratio in the reference lime mortar. This weight ratio is
commonly used in the preparation of lime renders in research and practice. The dosage of
mixing water was adjusted to main the normal consistency and similar workability of the
mortars (flow 160 £ 5 mm; measured by the flow table test in accordance with standard
EN 1015-3 [30]). Natural zeolite was not treated with water before the preparation of
mortar samples, which resulted in higher amounts of mixing water necessary to achieve
the required fresh mortar consistency. The weight composition of the designed mortars is
given in Table 5. Hardened mortar specimens were demolded after 48 h and then cured
in a wet chamber at temperature T = (22 £ 3) °C and a relative humidity RH = (95 &+ 5)%
for 26 days. The samples were then stored under laboratory conditions at T = (22 + 3) °C,
RH = (50 = 5)%. During the entire ageing period, the samples were placed on plastic grids
to make their surface as accessible as possible for carbonation. The planned tests were
performed for samples aged 28 and 90 days, respectively. In the particular test, a minimum
of five samples were tested.
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Figure 2. Microstructure of used aggregates taken by SEM. (a) EP, magnification 150x; (b) EG
magnification 150 x; (c¢) ZEO magnification 150 x; (d) detail of EP, magnification 5000 (e) detail of
EG, magnification 5000 x; (f) detail of ZEO, magnification 5000 x.

Table 5. Proportioning of mortar mixtures.

Lime(g) NHL3.5(g) Cement(g) Quartz Sand (g) EP (g) EG (g) ZEO (g) H;0 (mL)

LQ 100 - - 400 - - - 120
LEP 100 - - - 142 - - 35
LEG 100 - - - - 74 - 125

LZEO 100 - - - - - 246 153
NHLQ - 100 - 340 - - - 75
NHLEP - 100 - - 120 - - 5
NHLEG - 100 - - - 62 - 75
NHLZEO - 100 - - - - 208 115
LCQ 50 - 50 280 - - - 72
LCEP 50 - 50 - 100 - - 18
LCEG 50 - 50 - - 52 - 75
LCZEO 50 - 50 - - - 173 105

2.8. Testing of Hardened Mortars

As basic macro-structural parameters, bulk and specific density, and total open poros-
ity were determined. The dry bulk density pp, (kg'm ) measurement was arranged in
compliance with the European standard EN 1015-10 [31]. Firstly, the samples were vacuum
dried (Vacucell, BMT, Brno, Czech Republic) at 60 °C until achieving of their mass equi-
librium (sample mass difference was <0.1%). The helium pycnometer Pycnomatic ATC
(Porotec, Hotheim, Germany) was used to explore the specific density ps (kg-m~3). The
known values of bulk and specific density of a given sample were employed for the total
open porosity ¢ (-) calculation [32]. The expanded combined uncertainties of the bulk den-
sity, specific density, and porosity determination were 1.4%, 1.2%, and 2.0%, respectively.

For the characterization of mechanical parameters, the testing of flexural and compres-
sive strength together with the dynamic modulus of elasticity was performed according to
the standard EN 1015-11 [33]. At first, the cured prisms with dimensions of (40 x 40 x 160)
mm were loaded with 50 N-s ! in the three-point bending test to determine the flexural
strength f (MPa). The sample fragments sizes of (40 x 40) mm were used for the compres-
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sive strength f. (MPa) measurement. The used uniaxial compression force (100 N-s~!) was
applied on the cross section of the specimens. To specify the dynamic modulus of elasticity
Eq4 (GPa), the Vikasonic apparatus (Schleinbinger Geréte, Buchbach, Germany) was em-
ployed. The expanded combined uncertainties of the mechanical parameters assessment
were 1.4%, 1.4%, and 2.3% for fi, f., and Eq4, respectively. For the measurement of f; and
Eq, 5 standard prisms were used. In the compressive strength test, eight halves of broken
prisms from the flexural strength measurement were examined.

The water and water vapor transport properties of the tested mortars were described
with the apparent moisture diffusivity and the water vapor resistance factor. The one-
dimensional water suction experiment was performed on the 40 mm cubes according to
the EN 1015-18 [34] to assess the water absorption coefficient Ay, (kg-m~2-s~1/2). This
value, together with the known saturated moisture content, was used for the apparent
moisture diffusivity kapp (m?-s1) calculation according to the original procedure proposed
by Kumaran [35]. The expanded combined uncertainty of the water absorption tests was
1.2%, and that of the apparent moisture diffusivity was 2.9%.

According to the EN ISO 12572 [36], the experiment of water vapor transport was
arranged to determine the water vapor resistance factor y (-) [36]. The circular samples
of 120 mm in diameter and 30 mm of thickness were sealed to the cups and placed in the
climatic chamber. In the case of the dry-cup experiment, the cup contained activated silica
gel to ensure (5 £ 2)% relative humidity. In the wet-cup test, the cup was filled using
a saturated KNOj solution to achieve (93 + 2)% relative humidity. The corresponding
relative humidity in the climatic chamber was 50%. The expanded combined uncertainty
of the water vapor resistance factor assessment was 2.8%.

The thermal analyzer ISOMET 2114 (Applied Precision, Bratislava, Slovakia), operat-
ing on the transient impulse technique principle, was employed to research the heat trans-
port and storage parameters of the tested mortars [37]. For the measurement of the thermal
conductivity A (W-m~! -K~1) and the volumetric heat capacity cy (J-m~3.K~1), the surface
probe was placed on the horizontal sample surface with the dimensions (70 x 70 x 70) mm.
The expanded combined uncertainty of the thermal conductivity and volumetric heat ca-
pacity measurement was 3%.

The standard EN 12370 [38] was followed in order to assess the salt crystallization
resistance of the investigated mortars. The real salinization of masonry materials was
simulated by sodium chloride (NaCl) and sodium sulfate (anhydrous NaySOy) salt solu-
tions, and with respect to standard recommendations, the concentration of each salt was
chosen to be 2% (weight salt/weight dry specimen). Oven-dried 90-day specimens having
dimensions of (40 x 40 x 40) mm were exposed to 10 crystallization cycles; each cycle was
comprised of sample immersion into salt solution for 2 h and subsequent drying in an oven
at 70 °C for at least 16 h. After that, specimens were removed from the oven and cooled for
2 h. Each sample was placed in its own polypropylene powder jar which was water and
water vapor proof sealed. For the evaluation of the salt crystallization effect, loss or gain
of salt exposed specimens was determined after 10 crystallization cycles followed by 24 h
sample leaching in 200 mL of distilled water at 80 °C, followed by drying in an oven.

The sorption isotherms were investigated for the 90-day mortars after the crystalliza-
tion test, where the total immersion time in distilled water or in a NaCl/Na;SOy solution
with a concentration of 2 wt.%/weight of sample was 20 h. To characterize the water
vapor adsorption capacity, the sorption isotherms were determined. The measurement was
carried out on oven-dried fragments of samples which were placed in a climatic chamber
at a temperature of (23 & 1) °C. The desiccator test method was performed according to
the ISO 12571 [39]. The equilibrium relative humidity of 11%, 43%, 75%, 85%, and 98%
was maintained with the use of saturated solutions of LiCl, K,COj3;, NaCl, KCl, and K,SOy4,
respectively. Samples were periodically weighed until they achieved a constant mass and
the gravimetric moisture content u (kg-kg~!), and the dependence of relative humidity
was calculated.
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3. Results and Discussion

Where applicable, the acquired structural, mechanical, hygric, and thermal data
measured for 28-days and 90-days mortars was evaluated as specified in the EN 998-1 [12]
and the WTA directive 2-9-04/D [13].

3.1. Structural Parameters

The macro-structural parameters of the investigated mortars are introduced in Table 6.
The lightening effect of the used alternative aggregates was quite apparent. Among the
control mortars, lime-cement mortar exhibited the lowest porosity in both examined curing
ages. The porosity of LQ mortar was only slightly higher than that of natural hydraulic
lime-based mortar. Quantitatively, all lightened mortars yielded porosity >40.0%, which is
the limit imposed on repair mortars by WTA directive 2-9-04/D [13]. Similarly, the bulk
density of mortars with incorporated lightweight aggregates was well below 1400 kg-m 3.
This criterion is also introduced in WTA directive 2-9-04/D [13]. The drop in bulk density
was in compliance with the increase in the porosity, whereas these two parameters were
results of two combined effects: (i) low loose bulk density of lightweight aggregates,
i.e., their high porosity, and (ii) structural changes in the mortars due to the incorporation
of lightweight aggregates. In general, application of lightweight aggregates gave less dense
mortars meeting the demands for repair mortars. In respect to the presumed application of
the developed mortars in salt and moisture laden masonry, their high porosity will enable
safe salt accumulation and evaporation of stored water.

Table 6. The fundamental structural parameters of the hardened mortars.

. Pb Pb Ps Ps ¥ ¥
Material 40 m=3)  Ggm=3)  (kgm?  (kgmd) (%) (%)
28 Days 90 Days 28 Days 90 Days 28 Days 90 Days
LQ 1749 +£21 1779 +25  2589+31 2599+31 324406 316406
LEP 612+ 9 64149 1378 £17  1419+17 556+11 549+1.1
LEG 616 + 9 633 4+ 9 1593+19 1661 +20 613+12 607+ 12

LZEO 1139 + 16 1147 £ 16 2237 £ 27 2248 + 27 491+1.0 489 £1.0
NHLQ 1757 £25 1809 +£ 25 2584 + 31 2601 £ 31 32.0£ 0.6 30.5£0.6
NHLEP 588 + 8 608 £9 1519 £18 1523 + 18 61.3+£1.2 60.3 +£1.2
NHLEG 682 + 10 701 £ 10 1658 £ 20 1672 + 20 589 £1.2 58.1+1.2

NHLZEO 1161 £ 16 1179 £17 2120 + 25 2123 £ 25 452 £ 0.9 445+ 09

LCQ 1815 £ 25 1851 £ 26 2521 + 30 2529 + 30 28.0 £ 0.6 26.8 £ 0.5
LCEP 635+ 9 707 £ 10 1618 £ 19 1726 £+ 21 608 £1.2 59.0£1.2
LCEG 758 £11 778 £11 1628 £ 20 1636 £ 20 534 +1.1 525+1.1

LCZEO 1231 £ 17 1240 £ 17 2109 + 25 2110 £ 25 416 £0.8 412 +08

3.2. Mechanical Parameters

In Table 7, the results of the testing of the mechanical parameters of the hardened
mortars are introduced. The values of the expanded combined uncertainty are too low to
be presented. The improvement in the mechanical strength and stiffness with the curing
age is well apparent for all tested mortars. The highest strength and stiffness were recorded
for the reference lime-cement mortar LCQ. According to the EN 998-1 [12], it is ranked in
category CS IV. The lightened lime—cement mortars LCEG and LCZO belong to category
CS 111, and LCEP was classified into strength class CS II. Natural hydraulic lime mortars
are classified in category CS II and lime mortars in class CS I. Both the European standard
EN 998-1 [12] and WTA directive 2-9-04/D [13] prescribe for repair mortars strength class
CE II, which criterion was safely met by NHL mortars. In respect to the mechanical
strength, cement-lime mortars except LCEP cannot be recommended for application as
repair mortars due to their incompatibility with original materials of historical masonry.
However, they can find use in repair and restoration of those buildings where cement-lime
mortars were originally used. This is in agreement with the prevailing opinion of the
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cultural heritage authorities and those interested in renewal and conservation of older and
historical building stock [40—42]. Since ancient times, mortars of different composition and
structure have been used and these have been strongly influenced by the function and
availability of local raw materials [43]. Among them, lime mortars enriched by various
mineral admixtures and aggregates have been used since before Roman times in most
construction and under different environmental conditions. Therefore, in order to meet
compatibility requirements for the mortar taking into consideration the structural, historical,
and environmental context [44-46], development of the lime-based repair mortars is of
particular importance. Usually, the compressive strength of lime mortars does not comply
with the requirements of the CS II category; however, there are many examples based
on analysis of historical masonry where much lower compressive strength values are
recommended for the repair of traditional lime rendering and plastering mortars. For
example, Nogueira et al. [47] recommended for repair purposes mortars with a 90-day
compressive strength in the range of 0.4-2.5 MPa. Similar compressive strength values
were also adopted by Veiga at al. [48]. To this effect, the developed lime mortars can be
considered efficient for restoration purposes, especially in restoring of lime-based mortar
constructed buildings.

Table 7. The mechanical properties of the hardened mortars.

. f f c c Ed Ed
Material i b P (GPa) (GPa)
28 Days 90 Days 28 Days 90 Days 28 Days 90 Days
LQ 1.1 1.5 14 2.0 4.4 4.8
LEP 0.4 0.5 0.5 0.8 0.7 1.0
LEG 0.6 0.8 0.7 1.0 1.8 2.8
LZEO 0.7 0.8 1.1 1.7 34 3.6
NHLQ 1.2 1.9 42 5.3 4.6 5.2
NHLEP 0.9 1.8 31 40 1.3 1.9
NHLEG 1.0 1.8 3.3 4.6 4.0 4.4
NHLZEO 1.1 1.9 43 5.5 3.9 4.8
LCQ 25 2.8 7.8 8.9 10.9 11.2
LCEP 1.2 2.0 2.9 3.7 1.8 2.3
LCEG 1.7 1.9 5.3 7.3 3.8 5.0
LCZEO 1.6 1.9 5.2 5.7 42 4.8

The criterion for the modulus of elasticity of mortars intended to be used in repair
applications is not introduced in either the EN 998-1 [12] or WTA directive 2-9-04/D [13].
This problem was addressed, e.g., by Papayianni [49], who has suggested a repair mortars
modulus of elasticity in the range 2—-6 GPa. This was safely met by all the studied mortars
except material LEP, whose stiffness was too low, and the reference lime—cement mortar
LCQ, which was too rigid for repair applications. Similar E4 values were also reported by
Torres at al. [50], who achieved, for natural hydraulic lime mortars with ceramic residues
used as pozzolan and/or aggregate, a dynamic elasticity modulus from 1.5 GPa to 7.7 GPa.
Accordingly, Garijo et al. [51] and Grilo at al. [52] obtained for natural hydraulic lime
mortars a dynamic elasticity modulus of 4.7 GPa and 4.1 GPa respectively. Moreover,
Garijo et al. [51] have also analyzed aerial lime mortar with an elasticity modulus of
approx. 2.4 GPa.

3.3. Hygric Properties

The values of the water vapor resistance factor obtained in the wet-cup and dry-
cup tests are introduced in Table 8. The differences in the water vapor resistance factor
obtained for the 28-day and 90-day mortars are small, mostly in the range of the expanded
combined uncertainty. In the wet-cup arrangement of the test, water vapor transmission
was accelerated, which is typical of the performance of porous building materials [53,54].
As the surface of the pores is partially or fully occupied by water molecules, i.e., surface



Sustainability 2021, 13, 11780

10 of 17

bonding of transmitted water vapor molecules is reduced, the water vapor flux is bigger
than in the case of free pore sites in the dry-cup test.

Table 8. The water vapor resistance factor of the hardened mortar samples.

Material Dry-Cup Wet-Cup
u ()

28 Days 90 Days 28 Days 90 Days
LQ 11.0 £ 0.3 10.9 £ 0.3 10.7 £ 0.3 105+ 0.3
LEP 92+03 99 +03 73+£02 81+02
LEG 9.3+03 9.6 £ 0.3 87+£02 8.8 +£0.2
LZEO 9.6 0.3 9.3 +0.3 9.2+£0.3 8.7+£0.2
NHLQ 124+0.3 11.3 £ 0.3 10.7 £ 0.3 9.5+ 0.3
NHLEP 8.8 +£0.2 8.9 +02 72+£02 75+£02
NHLEG 10.3 £0.3 10.2 £ 0.3 9.0 £0.3 9.0 £ 0.3
NHLZEO 11.3 £ 0.3 11.2 £ 0.3 9.7 £0.3 9.8 +£0.3
LCQ 223 +£0.6 209 £0.6 21.0£0.6 19.6 £ 0.5
LCEP 139+ 04 126 + 0.4 9.4 £03 84+02
LCEG 184 +05 171+ 05 171+ 05 16.5+ 0.5
LCZEO 19.3+05 184+ 05 193+ 05 189+05

In compliance with the WTA directive 2-9-04/D [13] and the EN 998-1 [12], the water
vapor resistance factor of repair mortars is prescribed to be <12 or <15, respectively. In
Table 8, u values lower than WTA limit are marked in bold. Based on analysis of acquired
data, mortars based on lime hydrate and natural hydraulic lime were found to be highly
permeable for water vapor, and their permeability was significantly increased by the use of
lightweight aggregates. These mortars are thus well applicable in damp masonry, where
they will enable the drying of contained moisture and improve the hygric performance
of the treated structure. Similar high water vapor permeability of lime and hydraulic
lime-based mortars has been reported, e.g., Silva et al. [55], Gonzalez-Sanches et al. [56],
Barnat-Hunek et al. [57], and Torres et al. [58]. On the contrary, the lime-cement mortars
yielded u values higher than required for repair mortars. However, the improvement in
water vapor permeability with the use of lightweight aggregates was also visible for these
materials. In the case of wet-cup test results, LCEP mortar even met the limit required by
WTA directive 2-9-04/D [13]. Therefore, these mortars can be recommended for repair of
masonry built from cement-lime mortars or in the construction of new buildings.

The ability to transport water in its liquid phase was characterized by the assessment
of the water absorption coefficient Ay, and the apparent moisture diffusivity xapp. The
measured data are presented in Table 9. In comparison with the reference mortars, the
use of lightweight aggregates accelerated liquid water transport, which is in agreement
with the porosity data and results of the water vapor transmission test. As introduced
in the EN 998-1 [12], mortars for repair purposes must have A, >0.3 kg-m~2-min~1/2
(0.038 kg-m~2.s71/2). This criterion was safely fulfilled by all lightweight mortars. In light
of these results, the developed lightweight mortars are well applicable for moisture and
salt laden masonry, where they can contribute to the transport of water and salt solution to
the evaporating zone in the mortar layer and thus mitigate the presence of water, with its
contained pollutants, in the repaired masonry.

3.4. Heat Transport and Storage Properties

Thermal conductivity and volumetric heat capacity plotted as functions of saturation
rate are introduced in Figures 3 and 4. As the differences in both investigated thermal
parameters measured for the 28-day and 90-day samples were small, only the results
obtained for 90-day samples are presented. With increasing moisture content, both the
thermal conductivity and volumetric heat capacity were greatly enhanced due to the high
thermal conductivity and specific heat of water, which penetrated the pores of the examined
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mortars. In practical application of these materials in repair of damp masonry, this material
behavior must be taken into consideration, as the moisture presence may deteriorate overall
hygrothermal performance of the treated structure. The use of lightweight aggregates
in mortar composition led to a large decrease in both thermal parameters due to the
higher porosity of these aggregates compared to the reference quartz sand, and to the
high porosity of the lightweight mortars themselves. In the dry state, the lowest thermal
conductivity among control materials was exhibited by natural hydraulic lime-based
mortar; the thermal conductivity of lime mortar was slightly higher, and the highest value
of the thermal conductivity was yielded by lime—cement mortar, which had the lowest
porosity. On the contrary, the saturated thermal conductivity was the lowest for lime
mortar LQ. The differences in the dry thermal conductivity of lightweight mortars were
lower. The best thermal insulation performance was recorded for mortars with EP and
EG aggregates, whose dry thermal conductivity varied in the range 0.1-0.16 W-m~1.K~1.
Such low thermal conductivity was reported, e.g., for expanded polystyrene particle
mortars [59], and later for closed expanded perlite and vitrified bead mortars containing
natural fibers [60]. According to the EN 998-1 [12], this ranked these mortars among
thermal insulation mortars in category T1 or T2, respectively. In the present technical
standards and directives, there are no requirements for the thermal parameters of repair
mortars; however, their low thermal conductivity can bring further benefits in terms of
the thermal efficiency of refurbished buildings. The biggest drop in dry volumetric heat
capacity was observed in lime and natural hydraulic lime mortars lightened with EP and
EG. The use of zeolite reduced the volumetric heat capacity to a lower extent, i.e., 15.8%
for LZEO, 7.9% for NHLZEO, and 15.2% in case of LCZEO mortar, respectively. Rather
than the aggregate type, the prevailing factor affecting the volumetric heat capacity of
moistened samples was the saturation ratio. For the fully water saturated samples, the
increase in the volumetric capacity varied in the range of 24.7-251.2% for lime mortars,
20.7-250% for NHL mortars, and 15.7-178.9% for lime—cement mortars, respectively.

3.5. Salt Crystallization Resistance

The mass loss of samples evoked by processes taking place within salt crystallization
in the porous space of the hardened mortars is summarized in Table 10. The contribution of
the applied lightweight aggregates to the overall resistance of the examined mortars against
harmful salt action is well apparent. Due to the high porosity of the tested materials, which
was enhanced by the porosity of lightweight fillers, high salt crystallization resistance was
achieved. This finding is highly favorable for the intended application of the lightened
mortars in repair works, including in structures where the presence of salt is expected.

Table 9. The water transport parameters of the hardened mortars.

K
Material (kg~mé;v- s-172) (mZ‘;‘il)
28 Days 90 Days 28 Days 90 Days

LQ 0.30 0.29 8.61 x 10~7 7.32 x 1077
LEP 0.33 0.31 1.41 x 107° 1.23 x 10~°
LEG 0.32 0.31 1.27 x 10~° 1.19 x 10~°
LZEO 0.37 0.35 211 x 10 1.98 x 10~°
NHLQ 0.29 0.24 8.40 x 1077 5.01 x 1077
NHLEP 0.52 0.51 2.01 x 10~° 1.98 x 10~°
NHLEG 0.30 0.27 1.35 x 107° 1.11 x 10~°
NHLZEO 0.34 0.33 2.35 x 10° 221 x 107
LCQ 0.12 0.11 3.96 x 1077 3.63 x 1077
LCEP 0.18 0.15 248 x 107 1.84 x 1077
LCEG 0.14 0.13 3.32 x 1077 298 x 1077

LCZEO 0.25 0.23 5.70 x 1077 4.84 x 1077
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Figure 3. Thermal conductivity of the hardened mortars.
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Figure 4. Volumetric heat capacity of the hardened mortars.

3.6. Sorption Isotherms

The sorption isotherms measured by the desiccator method of the water vapor storage
assessment are plotted in Figures 5-7. In this case, the effect of the binder type was not
dominant in affecting the water vapor storage. Typically, the use of lightweight aggregate
increased the rate of water vapor accumulation, whereas the highest tendency to absorb wa-
ter vapor was exhibited by mortars with zeolite. This is likely due to the high open porosity
of zeolite particles and their complicated morphology with free binding sites for water
molecules (see Figure 2). Mortar samples that did not undergo salt crystallization testing
show the lowest values of adsorbed moisture; the shape of adsorption isotherms was almost
linear, up to approximately 70% of RH. After that, the capillary condensation phenomenon
prevailed over multilayer adsorption, resulting in increased water vapor adsorption and
finally in hygroscopic moisture content of the particular investigated materials.
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Table 10. Mass loss (wt.%) of the hardened mortar samples incurred by salt crystallization.

Mortar Mass Loss (wt.%)
NaCl Na2804
LQ 0.44 0.18
LEP 0.25 0.30
LEG 0.29 0.16
LZEO 0.35 0.31
NHLQ 0.23 0.16
NHLEP 0.08 0.07
NHLEG 0.19 0.13
NHLZEO 0.20 0.18
LCQ 0.29 0.16
LCEP 0.08 0.11
LCEG 0.12 0.14
LCZEO 0.14 0.11
14 M ) T I 1
13 L —O—LEP w ’_
-@® LEP NaCl 494
121 & -LEPNa,SO, e
e Mt —O—LEG w —7 .
= 10f -@ LEG NaCl I o]
c - @ - LEG Na,SO, / AR e
Q N ol =7 ]
= sl —O—LZEO w , @ h
o —@®- LZEO NaCl 778 ¢
o 7L - @ LZEONa,SO, AR sad 1
g 6 —o—-LQw /¢ 2°y
5 sl -®- LQ NaCl Pl A
‘5 - @ LQNa,SO, P o]
3 -
2
1
0

Relative humidity (%)

Figure 5. Sorption isotherms of lime mortars.
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Figure 6. Sorption isotherms of natural hydraulic lime mortars.
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Figure 7. Sorption isotherms of lime—cement mortars.

The rate of water vapor accumulation was greatly enhanced by the presence of NaCl in
the porous space of examined samples. In addition, Na;SO; increased the moisture content
values of the adsorption isotherms; however, in this case the differences in the accumulated
moisture were much lower compared to that of NaCl. Nevertheless, it must always be con-
sidered that the hygroscopic behavior of inbuilt materials affects the overall hygrothermal
building performance, and thus energy consumption. Therefore, for buildings exposed to
salt action, e.g., in marine atmospheric zones, or older buildings suffering from inorganic
salt presence coming from underground water, construction materials themselves, housing
of farm animals, winter maintenance of roads and pavements, etc., it is necessary to study
the impact of salts on the hygroscopic performance of repair mortars [61]. In this respect,
the acquired sorption isotherms represent valuable and unique information for materials
research and construction practice. The water vapor sorption capacity of salt laden mortars
corresponds with the efflorescence (crystallization) and deliquescence relative humidity
of NaySOy4 and NaCl, respectively [62]. As introduced in the literature, deliquescence of
NaySO4 and NaCl is at ~84% and 75%, respectively. The crystallization of these salts is
reported at ~57% and 43% [63,64]. The referred specific relative humidities were well
identified in the measured adsorption isotherms, and resulted in the great water vapor
sorption capacity of these materials.

4. Conclusions

The effect of binder and aggregate type on the technical, functional, and durability
characteristics of newly developed lightweight mortars was investigated. The broad
experimental campaign comprised assessment of the structural, thermal, hygric, and
mechanical parameters of the hardened mortars. Specific attention was paid to evaluation
of the durability of the examined mortars against salt crystallization and analysis of the
effect of salts on their hygroscopicity. The following results and findings can be highlighted:

(i) Application of lightweight aggregates enabled the development of highly porous and
low-density materials meeting the requirements imposed on repair mortars.

(ii) With respect to mechanical performance, the lime and natural hydraulic lime-based
mortars were found applicable for repair purposes even in historical masonry, where
compatibility and functional criteria must be always attentively considered. Lime—
cement mortars were too rigid and dense for such purposes.

(iii) Lime and natural hydraulic lime mortars were well permeable for water vapor and
the use of lightweight aggregate even accelerated water vapor transport. These
materials are therefore proper for application in damp masonry, where they can
ensure drying of the contained water and thus improve the overall hygrothermal
performance of the treated structure. As lime-cement mortar with expanded perlite
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met the requirements for water vapor resistance factor introduced in WTA directive
2-9-04/D, the lightweight lime—cement materials can be recommended for repair of
masonry built with cement-lime mortar as well in the construction of new buildings.

(iv) For the lightweight mortars, water absorption was greatly increased, and based on the
water absorption coefficient values, these can be classified as repair mortars applicable
in the repair of damp buildings.

(v) The use of EP and EG resulted in the great improvement of thermal conductivity. Mor-
tars with these types of aggregate were therefore ranked among thermal insulation
mortars in class T1 or T2, respectively.

(vi) Independently of the binder type, all lightweight mortars have shown excellent
resistance against salt crystallization, which is favorable for their presumed use in
repair and restoration works.

(vii) The water vapor adsorption capacity of the reference mortars was enhanced by two
effects: (a) incorporation of lightweight aggregates (the highest hygroscopicity was
measured for zeolite-modified mortars), and (b) presence of NaCl and Na;SOy4. The
effect of salination on the overall water vapor adsorption rate and the hygrothermal
function of materials must always be considered, especially when repairing older
buildings, where salts can be present and originate from several sources.

With a view to the above highlighted findings, the following conclusion was drawn:
The lime- and natural hydraulic lime-based mortars lightened with expanded perlite,
expanded glass or zeolite can be classified as repair mortars meeting the functional and
technical criteria of WTA directive 2-9-04/D and EN 998-1. Moreover, these mortars can
help to improve the thermal insulation function of buildings, and are sufficiently resistant
to be applicable in repair and renovation of salt laden structures.
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