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Abstract: Thermoelectric generators (TEGs) are equipment for transforming thermal power into
electricity via the Seebeck effect. These modules have gained increasing interest in research fields
related to sustainable energy. The harvested energy is mostly reliant on the differential temperature
between the hot and cold areas of the TEGs. Hence, a reliable maximum power point tracker is
necessary to operate TEGs too close to their maximum power point (MPP) under an operational and
climate variation. In this paper, an optimized fractional incremental resistance tracker (OF-INRT)
is suggested to enhance the output performance of a TEG. The introduced tracker is based on the
fractional-order PIλDµ control concepts. The optimal parameters of the OF-INRT are determined us-
ing a population-based sine cosine algorithm (SCA). To confirm the optimality of the introduced SCA,
experiments were conducted and the results compared with those of particle swarm optimization
(PSO) and whale optimization algorithm (WOA) based techniques. The key goal of the suggested
OF-INRT is to overcome the two main issues in conventional trackers, i.e., the slow dynamics of
traditional incremental resistance trackers (INRT) and the high steady-state fluctuation around the
MPP in the prevalent perturb and observe trackers (POTs). The main findings prove the superiority
of the OF-INRT in comparison with the INRT and POT, for both dynamic and steady-state responses.

Keywords: sine cosine algorithm; fractional PIλDµ control; thermoelectric generator; MPPT

1. Introduction

In recent decades, thermal energy has become one of the renewable energies abun-
dantly available in several industrial and civil sectors, namely, in powering electronic
devices, driving electric vehicles, and in pumping applications [1,2]. Thermoelectric gener-
ators (TEGs), used in thermal energy conversion systems, are a type of active equipment
that transform thermal power into electricity via the Seebeck effect [3,4]. These thermal
devices have received increasing focus due to their capability to directly transform waste
heat into electricity. Made up of different thermocouples, joined electrically in series and
thermally in parallel, these heat modules are extensively utilized in various areas and
domains, thanks to their attractive merits in terms of their power efficiency, the absence
of moving parts and pollution, silent operation, free maintenance, and a long service
life [1,2,5,6]. These thermal converters have gained increasing interest in the research fields
concerned with their modeling, control, and optimization in various real-world applica-
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tions. Therefore, characterized, maximum power point tracking (MPPT) approaches are
mainly used to maximize the power harvested from TEG converters.

In all renewable energy converters, tracking the maximum power point (MPP) is vital
to extracting the most power under varying environmental conditions. Various studies
from the literature have reported on the MPPT control design and the implementation of
TEG systems. The authors of [7] combined a TEG device with a photovoltaic (PV) module
within a hybrid PV–TEG architecture in a pumping application for rural areas. A control
approach for a synchronous reluctance motor-based drive train was investigated in the
context of a perturb and observe (P&O) MPPT scheme. The motor output energy and pump
flow rate of such a hybrid PV–TEG converter are significantly increased in comparison
with those adopting only a PV array. The authors of [8] used a hybrid PV–TEG energy
source and a dynamic voltage restorer (DVR) for disturbance compensation in a three-
phase distribution grid; an intelligent MPPT strategy, based on an advanced variable factor
adaptive fuzzy logic controller (VFAFLC), was introduced to obtain the optimal available
power from the PV–TEG module. Energy converters, such as the one proposed, efficiently
compensate for load disturbances when in the energy conservation mode. The authors
of [9] proposed and considered an extremum seeking control (ESC) algorithm-based MPPT
approach for a TEG converter. The efficiency of the ESC method has been compared with
the P&O method under the same circumstances; the demonstrative results report that the
ESC-based MPPT approach captured more energy than the P&O-based one. The authors
of [10] present a digital polynomial controller for an automotive TEG system to enhance a
vehicle’s power supply, in which the maximum power point tracking is achieved with a
gradient method and input current control; an adaptive step-size method was proposed
to reduce the conversion time of the MPPT algorithm. The authors of [11] proposed a
novel MPPT-control approach, based on indirect open-circuit voltage detection and short-
circuit current estimation techniques for a TEG system. The authors investigated P&O
strategies which best adjusted for the poor performance of transient MPP states during
rapid variations of the temperature gradient across the constructor. They introduced a
voltage-sensing technique to decrease the number of voltage sensors used to supervise the
battery output or load voltages. The authors of [12] proposed an easy and valuable analog
MPPT control resolution for a TEG heat converter which sought the peak gain point of the
used DC–DC boost converter. The main characteristic of such a control method is that the
duty ratio of the input clock pulse moves in the direction of the maximum power point of
the TEG by finding the peak point of the voltage conversion gain of the boost converter.
An MPPT algorithm, based on open-circuit voltage, is proposed in [13] as the most suitable
technique for optimizing the linear electrical properties of TEGs. The study’s results, using
commercial TEG devices, confirmed that their converter precisely tracked the MPP during
thermal transients, with a tracking efficiency of 99.85%.

Recently, an enormous set of MPPT approaches has been introduced in the literature,
of which hill climbing (HC) [14], P and O [7,11,15], incremental conductance (INC), and/or
incremental resistance (INR) [14,16–18] are the most widely investigated. As is known, the
HC-based MPPT approach introduces a disturbance in the duty cycle of the converter [14].
However, the P&O technique introduces a disturbance in the operative voltages of energy
converters [14,15]. Thus, in the two discussed MPPT approaches, a tradeoff should be
considered in selecting the amount by which to augment the control law, i.e., the PWM
duty cycle or reference voltage, is updated; large values decrease the MPP steady-state due
to the huge disturbances around it, while lesser values decrease the dynamic action under
a rapid variation in the operational conditions or load. The INR- or INC-based MPPT
methods leverage the tendency of power to flow in the opposite direction when the voltage
at the MPP is zero [16–18]. These MPPT algorithms have been suggested to reinforce the
tracking precision and dynamic efficiency of energy converters in the presence of rapidly
varying conditions, whereby the steady-state fluctuations, characterizing the HC and P&O
methods, are dampened more, or even eliminated, since the derivative of the power of the
voltage/current disappears at the MPP. Other techniques such as a short-circuit current
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and open-circuit voltage-based MPPT block diagrams have been proposed to obtain the
peak power of the renewable energy converters [11,13,19].

From the cited MPPT methods, the INR-based method is the most adopted for TEG
systems at present. These MPPT algorithms are extensively employed and perform well
due to their easy and low-cost implementation as well as for their high tracking accuracy.
Since the conventional algorithm of INR trackers (INRTs) utilizes a settled iteration step size,
such an effective control parameter is determined by a tradeoff between the accuracy at a
steady-state and tracking speed condition. The design must correctly process the dilemma
between tracking dynamics and steady-state oscillations. To overcome this design problem
and further improve the steady-state performance of INRTs, many updated methods
from the original method have been introduced in the literature. Some improvement
strategies propose to consider a variable step size instead of a fixed one, which are called
Variable Step-Size Incremental Resistance (VSS-INRT) Tracking strategies [20–24]. The
step-size parameter is updated according to the inherent characteristics of the TEG systems.
If the operating point is far from the MPP, the VSS-INR tracker increases the step size,
enabling a fast-tracking capability. Otherwise, if the operating point is near the MPP, the
step size becomes so very small that the steady-state oscillations become well dampened,
improving the VSS-INR tracker’s efficiency in terms of the steady-state accuracy and
tracking response fastness [20,21]. Other enhancement methods use the concepts of MPPT
based on the fractional order control and calculus [25–28]. The authors of [25,26] introduced
an enhanced Fractional Order Fuzzy Logic Controller (FOFLC)-based MPPT method
for TEG and PV–TEG hybrid energy devices to efficiently harvest the maximum power.
The fractional-order term used in the INC/INR MPPT algorithms is a supporting fuzzy
inference system for the precise tracking of the MPP and to modify the constant output
after attaining the MPP. The authors of [27] used a similar fractional fuzzy MPPT approach
for a PV system. The fractional-order factor is chosen based on the dynamic range of the
fuzzy controller. A large value is first accorded to extend the fuzzy range and minimize
the time of checking for the MPP. When reached, the FOFLC algorithm adopts a smaller
value of the fractional factor to contract the fuzzy domain and eliminate the oscillations
at the MPP. The authors of [28] proposed an interesting INC MPPT technique based on
a Fractional-Order Integrator (FOI) for a PV device under climate variations. A Radial
Movement Optimization (RMO) algorithm is adopted for attaining the fine gains of the
variable step-size FOI-based INC MPPT.

In the fractional-order MPPT techniques, the error signal that defines the INC/INR of
the energy converter is used as an input to the integrator. The gain of such an integrator
is the scaling factor to tune the step size of the MPP tracker. The drawback of this VSS
MPPT method is the slow dynamic response and poor tracking especially when there are
fast changes in the load. To outperform this problem and improve the dynamic response
of the INR/INC trackers, an Optimized Fractional INR Tracker (OF-INRT) using a PIλ

instead of a conventional integrator is proposed in this paper. The use of more efficient
metaheuristics tools to determine all values of the OF-INRT’s design parameters, i.e.,
proportional gain, integral gain, and fractional order, could improve the effectiveness
of the proposed MPPT strategy. Further, in this work, a systematic and straightforward
INR-based MPPT methodology using a fractional-order PIλ controller is proposed and
successfully applied to a TEG device. A Sine Cosine Algorithm (SCA), as an efficient
and parameter-free metaheuristic, is investigated for the optimal design of the fractional
PIλ-based INRT. The major contributions for this research work are summarized as: (1) An
efficient fractional VSS-INR-based MPPT approach for a TEG module is proposed to deal
with the steady-state oscillations and lower accuracy of classical MPPT methods for TEG
systems such as the PandO and HC techniques. (2) An advanced sine cosine metaheuristic
is investigated to deal with the tedious and time-consuming trials-errors based procedures
that often lead to local solutions for the problem. (3) ANOVA statistical tests are proposed
for a fair comparison of the proposed SCA-INRT with all reported solvers as well as with
other similar MPPT techniques, i.e., P&O and conventional INR.
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The remainder of the paper is arranged as follows: In Section 2, the mathematical
representation of the studied TEG is presented. In Section 3, a brief overview of MPPT
approaches for TEGs is described. The conventional perturb and observe, integer control-
and fractional-based incremental resistance methods are particularly investigated. In
Section 4, the tuning of all effective control parameters of the PIλ-based OF-INRT is
reformulated as a constrained optimization problem. Metaheuristics proposed to solve
such a hard optimization problem are described in Section 5. In Section 6, demonstrative
results and ANOVA tests are presented and explained for the proposed SCA-INRT’s tuning
approach. Section 7 states the conclusion and future works.

2. Modeling of the Thermoelectric Generator

The overview of the TEG module is shown in Figure 1a. The fundamental element
is a thermocouple that contains p-type and n-type semiconductors [1–6,25,26]. These
conductors were electrically interconnected in series using a metal strip. To build a TEG
module, several p-type and n-type pellets were interconnected together to increase the
required rating of the output power as presented in Figure 1b. They were electrically linked
in series to boost the voltage potential, and thermally in parallel to decrease the thermal
resistance [26,29–31]. The couples were inserted between two parallel ceramic sheets to
form a hot side and a cold side. When there was a temperature variation between the hot
part and the cold part, a direct current flowed in the load as presented in Figure 1c.
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N-type pellets, and (c) TEG circuit.

The core idea of TEG modules is built according to the Seebeck impact [1–4]. The
open-circuit voltage of a TEG can be estimated by applying the following formula [7,8,26]:

Voc = α(Th − Tc) = α∆T (1)

where Th and Tc are the temperatures at the hot and cold parts of the TEG device, respec-
tively, ∆T indicates the temperature variation between these two sides, and α denotes the
Seebeck coefficient.

Considering the steady-state power balance at both parts of the TEG, the absorbed
heat generated by the thermal load and the heat passed by the heat sink can be formulated
as follows [7,8,26]:

Qh = αITh − Ktc∆T − 0.5I2Rteg (2)

Qc = αITc − Ktc∆T + 0.5I2Rteg (3)

where Ktc indicates the thermal conductivity, Rteg is the inner resistance of the TEG, and I
is the TEG operating current.

The output power of the TEG can be calculated considering the variation between the
heat flows at the hot and cold parts as follows:

Pteg = Qh −Qc = α(Th − Tc)I − I2Rteg =
(
α∆T − IRteg

)
I = Vteg I (4)

where Vteg = Voc − IRteg denotes the TEG terminal voltage output.
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Based on the concept of maximum power transfer [5–8], the most obtainable power of
the TEG could be reached when the load resistance was similar to the inner resistance of
the TEG.

3. Brief Overviews on MPPT Approaches

Three MPPT techniques were studied in this paper: perturb and observe, the incremen-
tal resistance method based on an integer control, and optimized incremental resistance
based on a fractional-order PIλ control. In the following subsections, a brief preview of the
major MPPT methods used for TEG systems is provided. The P&O and INR techniques
were particularly considered. The synoptic scheme for any MPPT control approach of TEG
systems is presented in Figure 2.
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3.1. Perturb and Observe MPPT Method

In the MPPT formalism, P&O is considered the most frequently adopted method
to track the MPP in TEG systems with a more simple structure and less algorithm com-
plexity [7,11,14,15]. As shown in Figure 3, the P&O algorithm periodically introduces a
perturbation ∆ in the operating current of TEG and contrasts the output power with that of
the prior MPPT period [7,11]. A variation in the operating power was noted. As a result,
if the operating current of the TEG module changed and the power increased, the P&O
MPPT tracker shifted the operative point in that orientation. Otherwise, this operating
point was switched in the reversed orientation.

On the other hand, the size of the perturbation ∆ is crucial in the design of a con-
ventional P&O tracker. One can observe that the larger the value of perturbation, the
faster the P&O tracker’s convergence and vice versa. Unfortunately, this perturbation size
increase could lead to large fluctuations and oscillations in the output power and drive to a
considerable lack of energy. Once the neighborhood of the MPP was reached, the operating
point went back and forth around the MPP. Then, the P&O tracker did not precisely attain
the MPP, but it fluctuated around that point undefined. To remedy this common problem,
several improved P&O-based MPPT methods have been proposed in the literature for
several renewable energy converters [32,33].
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3.2. Incremental Resistance MPPT Technique

Among all the MPPT methods for TEG systems, incremental resistance techniques
have been broadly adopted because of the high steady-state tracking precise and oscillations
damping/reduction [7,8]. The basic concept of the INR technique is built around the truth
that the derivative of the TEG power related to the TEG current (dP/dI) is zero at the
MPP [20,25,26]. The slope of the TEG power characteristics is zero at the MPP, positive
for values located on the left side of the MPP (amounts of output current smaller than
the current at MPP) and negative for amounts located on the right side (values of output
current larger than the current at the MPP). Accordingly, the error signal used by the
INR-based tracker is formulated as follows:

dP
dI

=
d(V ∗ I)

dI
= V + I

dV
dI

= 0⇔ dV
dI

+
V
I
=

V(t)−V(t− 1)
I(t)− I(t− 1)

+
V(t)
I(t)

= 0 (5)

e(t) =
V(t)−V(t− 1)
I(t)− I(t− 1)

+
V(t)
I(t)

(6)

where V and I are the instantaneous voltage and current of the energy converter, respec-
tively, and t denotes the increment time. The measures voltage and current are used to
estimate the instantaneous power.

The maximum power output from a TEG system can be achieved by maintaining
the duty cycle D (%) of the DC–DC boost converter, as the power moderator between the
TEG module and the load (battery) [25,26]. The modification of such a control parameter
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is usually performed by the MPPT tracking algorithms to catch the most power from the
TEG. A flowchart for the INR-based tracker of a TEG device is depicted in Figure 4.
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Since the error signal e(.) of Equation (6) was very small around the MPP, the step
size of the INR method was updated based on the value of the error signal. To achieve
this and to model the INR approach, integer-order control approaches, i.e., mainly such
as PID controllers and variants, were widely used in this formalism. To further improve
the INR-based MPPT approach in terms of fastness response and steady-state accuracy,
the techniques based on VSS-INR trackers have been proposed in the literature. In this
case, the step-size parameter was directly proportional to the error signal. Therefore, the
step size became small as the error was very small around the MPP. The preciseness of
the VSS-INR tracking approach was further improved in the steady-state [20–24]. The
VSS-INRT can be presented by a normal discrete integrator with the error signal as the
input and a tuned gain.

4. Fractional INRT Design Problem Formulation
4.1. Preliminaries

To improve the dynamic response of the conventional incremental resistance method,
a fractional-order PIλDµ-based control was adopted [34–36]. The fractional INRT utilizes
a fractional PIλ controller instead of an integer integrator. The fractional-order control
has been investigated previously in different engineering fields and showed remarkable
superiority over the conventional PID approaches. Such a control structure contains a non-
integer order that has several advantages such as flexibility in design and high robustness.
The fractional-order PIλ transfer function can be defined as [34,35]:

C(s) = Kp + Kis−λ (7)
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where Kp is the proportional gain, Ki is the integral gain of the fractional PIλ controller,
and λ indicates the non-integer order of PIλ.

4.2. Tuning Problem Formulation

The selection of fine values for the gains of the PIλ controller of Equation (7) for
the OF-INRT of TEGs is often conducted by time-consuming and tedious trial–error-
based procedures. This adjusting problem turned into a hard task without a systematic
approach and regarding the complexity of the TEG operating conditions. To deal with these
difficulties and drawbacks of classical tuning methods, the determination of these effective
control parameters through an optimization program remained a promising idea. During
the optimization process, the decision variables, i.e., proportional gain Kp ∈ R+, integration
gain Ki ∈ R+, and fractional- order λ ∈ R+, were used to maximize the harvested energy
from the TEG, shown as the objective function of the following formulated optimization
problem: 

Maximize
x∈
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=
{

x =
(
Kp, Ki, λ

)
∈ R3

+; xmin ≤ x ≤ xmax
}

is the initial search space, which is consid-
ered to include targeted design gains, and hi : R3

+ → R and gj : R3
+ → R are the problem’s

constraints with equality and inequality types, respectively.
Finally, the implemented MATLAB/Simulink model of the optimized fractional-

order INRT-based MPPT strategy for the studied TEG device is shown in Figure 5. The
population-based SCA metaheuristic, as well as others used as comparison tools, was
proposed to solve such a formulated problem. A description of all these reported algorithms
is given in the following Section.
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5. Algorithms for Fractional INRT Design
5.1. Sine Cosine Algorithm

The sine cosine algorithm (SCA) is a random population-based metaheuristic built
based on the concepts of trigonometric functions, namely, the sine and cosine functions.
Proposed by S. Mirjalili [37], the SCA metaheuristic uses these mathematical functions to
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detect the best solution for a given optimization issue [38,39]. Similar to other population-
based metaheuristics, the SCA begins with a group of random candidate solutions, and
then evaluates them frequently by an objective function and a group of motion standards.
In SCA formalism, the position updating equations for both exploration and exploitation
phases are given as follows:

xi
k+1 = xi

k + r1 sin(r2)
∣∣∣r3pi

k − xi
k

∣∣∣, r4 < 0.5 (9)

xi
k+1 = xi

k + r1 cos(r2)
∣∣∣r3pi

k − xi
k

∣∣∣, r4 ≥ 0.5 (10)

where xi
k =

(
xi,1

k , xi,2
k , . . . , xi,d

k

)
is the current placement of the ith candidate solution at the

actual iteration k and dimension d, pi
k =

(
pi,1

k , pi,2
k , . . . , pi,d

k

)
is the position of the destination

point, and r1, r2, r3, and r4 ∈ U{0, 1} are random numbers uniformly distributed in the
adequate intervals, where (i, k, d) ∈

[
1, np

]
× [1, kmax]× [1, dmax].

In the SCA’s motion Equations (9) and (10), four main control parameters were intro-
duced [37–39]. The first effective design parameter r1 dictates the movement direction, i.e.,
information about the next placement areas. Such an orientation could either be inside the
area between the current solution and the aim or out of it. The second design parameter
r2 ∈ [0, 2π] determines how far the solution’s motion should be towards or outwards the
target. The third coefficient r3 defines random weights for the destination to randomly
assure (r3 > 1) or deemphasize (r3 < 1) the impact of the desalination in determining the
distance. The fourth design parameter r4 equally turns between the sine and cosine parts
in the SCA’s motion Equations (9) and (10).

Finding the favorable areas of the search space with a non-premature convergence
to the global optimum needs a best equilibrium between the exploration and exploitation
phases. To optimally balance these two capabilities of the SCA, the range of the sine
and cosine in Equations (9) and (10), given by the control parameter r1, were adaptively
updated as follows:

r1 = β− βk/kmax (11)

where k is the current iteration, kmax is the maximum number of iterations, and β is a
constant parameter.

5.2. Particle Swarm Optimization

The particle swarm optimization (PSO) method is a global metaheuristic that uses a
population of np particles, randomly dispersed within an initially bounded search space,
to detect an optimal solution for a given optimization problem [40,41]. Each particle in
the swarm was titled with a vector of positions xi

k =
(

xi,1
k , xi,2

k , . . . , xi,d
k

)
and a vector of

velocities vi
k =

(
vi,1

k , vi,2
k , . . . , vi,d

k

)
.

At the current iteration, the positions and velocities of particles changed depending
on the following motion equations [41]:

xi
k+1 = xi

k + vi
k+1 (12)

vi
k+1 = wvi

k + c1ri
1,k

(
pi

k − xi
k

)
+ c2ri

2,k

(
pg

k − xi
k

)
(13)

where w indicates the inertia factor, c1 and c2 define the cognitive and the social scaling
parameters, ri

1,k and ri
2,k denote two random values uniformly scatted within the domain
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k are the best placements previously gained by the ith particle and the whole
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The exploration and exploitation mechanisms of the PSO method can be further
reinforced when adopting a linear evolution technique of the inertia factor [40,41]. Such a
design parameter of PSO technique was updated over iterations as follows:

wk+1 = wmax − (wmax − wmin)k/kmax (14)

where wmax and wmin denote the maximum and minimum values of the time-varying
inertia factor typically set to 0.9 and 0.4, respectively.

5.3. Whale Optimization Algorithm

The whale optimization algorithm (WOA) is a population-based metaheuristic pro-
posed by S. Mirjalili and A. Lewis [42]. It is a nature-inspired global algorithm which simu-
lates the hunting behavior of humpback whales in finding and hunting their prey [42,43].
Humpback whales try to hunt and attack herds of small fish or krill that are near to the
surface. This is performed by generating specific bubbles in a spiral or nine shaped paths
around the prey. The WOA mimicked the bubble-net hunting mechanism to achieve the
optimization. The mathematical modeling of each phase in the WOA is detailed in the
following parts.

5.3.1. Encircling Prey

Whales can recognize the prey’s location in the search space and encircle them. In
the WOA formalism, the position of the optimal solution is not known a priori. The
algorithm assumes that the current best candidate solution is the target prey or is near to
the optimum. After the best search agent is defined, the other agents try to update their
positions towards the best one. Such a behavior is modeled at the current iteration by the
following motion equations: {

xi
k+1 = pi

k − ∆i
k

∣∣2ri
kpi

k − xi
k

∣∣
∆i

k = 2ai
kri

k − ai
k

(15)

where xi
k denotes the position’s vector of humpback whales in the d-dimensional search

space, pi
k is the position’s vector of the best solution obtained so far, ri

k are random numbers
in the interval (0, 1), and ai

k is a real coefficient linearly decreased vector from 2 to 0 over
the course of iterations.

5.3.2. Bubble-Net Hunting

This phase presents the exploitation mechanism of WOA. It can be divided into
two parts: the shrinking encircling of the prey, and the spiral upward encirclement and
suppression [42,43]. The shrinking behavior is performed by reducing the value of ai

k in
Equation (15). The spiral updating position mimics the behavior of a humpback whale
around its prey in a spiral movement according to the following equation:

xi
k+1 =

{
pi

k − ∆i
k

∣∣2ri
kpi

k − xi
k

∣∣, ρ < 0.5
δi

kebl cos(2πl) + pi
k, ρ ≥ 0.5

(16)

where δi
k =

∣∣pi
k − xi

k

∣∣ denotes the distance of the ith humpback whale to the prey, i.e., the
best solution found so far, b is a constant to define the form of the logarithmic spiral, l and
ρ are random numbers uniformly distributed in the ranges (−1, 1) and (0, 1), respectively.

5.3.3. Search for Prey

The humpback whales explore randomly for their prey in accordance with the position
of each other. Dissimilar to the exploitation technique, the updated position of a search
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agent was performed based on a randomly chosen search candidate rather than the best
search one captured yet. This exploration technique is modeled as:{

xi
k+1 = xrand

k − ∆i
k

∣∣∣2ri
kxrand

k − xi
k

∣∣∣
∆i

k = 2ai
kri

k − ai
k

(17)

where xrand
k is a random position vector, i.e., a random whale, selected from the current

population of size np.

6. Results and Discussion

Firstly, for examining and analyzing the output characteristics of the studied TEG
device with varying temperature differences, a MATLAB code was designated. In the
current study, a TEG (12611-6.0) module was considered. Table 1 presents the operational
characteristics and specifications of the studied TEG.

Table 1. Specifications of the TEG (12611-6.0).

Characteristics Specification

Hot side temperature 300 ◦C
Cold side temperature 30 ◦C
Open-circuit voltage 8.4 V

Matched load resistance 1.2 Ω
Matched load voltage 4.2 V
Matched load current 3.4 A
Matched load power 14.6 W

Figure 6 illustrates the TEG’s power versus its operating current under a variation
of the hot side temperature. In this design, the cold side temperature was fixed at 30 ◦C.
Based on these demonstrative results, one can observe that there was a good agreement
between the simulated data (blue line) and the manufacturing data (yellow points).
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Three optimizers were stratified to evaluate the optimal gains of the introduced PIλ-
based OF-INRT. These population-based metaheuristics were SCA, PSO, and WOA. In this
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design, the proportional gain Kp, integration gain Ki, and fractional order coefficient λ of
the PIλ controller were treated as the decision variables of the formulated optimization
problem. The objective function to be maximized one was the amount of the harvested
energy of the TEG. For a fair comparison, the population size and the maximum number
of iterations for all reported optimizers were set to 10 and 25, respectively. To validate
the reliability of the reported algorithms, every optimizer was executed independently
30 times. The best parameters of the OF-INRT found for the design problem (8) applying
SCA, PSO, and WOA are presented in Tables 2 and 3. The statistical assessment of the
considered optimizers is also demonstrated, i.e., results of Table 2.

Table 2. Optimal gains of the OF-INRT and statistical evaluations (30 runs).

PSO WOA SCA

K∗p 0.03346 0.0332 0.03765
K∗i 06.6776 5.47598 8.43451
λ∗ 0.98458 00.9425 1.01008

Best 01.3757 1.36972 1.34877
Worst 0.57694 0.70707 1.26059

Average 1.10599 1.16222 1.32868
Median 1.32888 00.2287 0.01591
Variance 0.10465 1.31844 1.33071

STD 0.32349 00.0523 0.00025
Efficiency (%) 80.3339 84.4638 96.5610

Table 3. Details of 30 runs using the considered optimizers.

Run PSO WOA SCA Run PSO WOA SCA

1 0.7275 1.04516 1.34397 16 1.36184 0.71506 1.32962
2 1.32642 1.36731 1.30919 17 0.60096 1.31844 1.33071
3 1.36623 1.33082 1.32548 18 1.34176 1.35291 1.33043
4 1.32796 1.21181 1.32965 19 0.68507 1.32879 1.32971
5 1.36341 1.36972 1.30332 20 1.37222 0.70707 1.33192
6 0.78113 1.33076 1.26059 21 1.31299 1.03375 1.31771
7 1.3757 1.34959 1.33083 22 0.70488 1.33196 1.33343
8 1.33915 0.83358 1.33339 23 1.37224 1.03113 1.34716
9 1.36749 1.30094 1.34877 24 1.34435 1.03126 1.33854

10 1.33397 1.36757 1.32855 25 0.68323 1.32933 1.33411
11 0.71208 1.03375 1.31771 26 1.35098 0.71506 1.32962
12 1.32979 1.33196 1.33343 27 0.61278 1.31844 1.33071
13 0.57694 1.03113 1.34716 28 1.36042 1.35291 1.33043
14 1.33174 1.03126 1.33854 29 0.73653 1.32879 1.32971
15 0.79199 1.32933 1.33411 30 1.28803 0.70707 1.33192

Referring to Table 2, the average cost function values varied between 1.10599 W and
1.32868 W. The maximum value was achieved by the proposed SCA. The standard deviation
(STD) values changed between 0.32349 and 0.00025. The minimum STD’ value was also
achieved by the SCA technique. Concerning the efficiency, the maximum efficiency of
96.56% was achieved by the SCA metaheuristic, whereas the lowest efficiency of 80.33%
was attained by the PSO one.

On the other hand, an analysis of the variance test (ANOVA, [44,45]) was conducted
to verify the consistency of the SCA in determining the parameters of OF-INRT. ANOVA
test results are presented in Table 4, and the distribution of the observations through the
number of runs is presented in Figure 7. From these results, the p-value was much higher
than the F value, which confirmed the difference between the provided performances. As
illustrated in Figure 7, the SCA could provide the best results in terms of the mean fitness.
Moreover, it had the lowest variation range where the fitness function varied from 1.26059
to 1.34877. Accordingly, the results demonstrated the SCA’s robustness and consistency.
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Table 4. ANOVA test results.

Source SS df MS F p-Value > F

Columns 0.78479 2 0.3924 7.65 0.001
Error 4.36282 84 0.05194
Total 5.14761 86
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After identifying the best gains of the proposed PIλ-based OF-INRT, the tracking
performance of the SCA-based MPPT, i.e., SCA-MPPT, was examined and assessed by
numerical MATLAB simulations under a changing temperature and load demand. The
idea of changing the operating conditions was to investigate the tracking ability of the
SCA-MPPT tracker. The scheme diagram of the system is presented in Figure 5. It includes
one TEG module, DC–DC converter operating in a continuous conducted current mode
with a switching frequency of 30 kHz, an input inductance of 1 mH, and an output capacitor
of 47 µF. The load value was 10 Ω. At a time of 0.6 s, an extra resistance of 10 Ω was added
in parallel to the load. The cold side temperature of the TEG raised from 30 ◦C to 50 ◦C at
a time of 0.3 s, whereas the hot side temperature was reduced from 300 ◦C to 250 ◦C at a
time of 0.3 s and then returned to 300 ◦C at a time of 0.9 s.

To confirm the superiority of the optimized fractional SCA-MPPT controller, the
tracking ability was compared with the classical INR and P&O techniques as shown in
Figures 8–11. For the conventional INR approach, the gain of the discrete integrator was
assumed to be 0.8. However, for the SCA-MPPT, the fractional PIλ controller’s parameters
were 0.03765, 8.43451, and 1.01008 for the proportional gain, integral gain, and fractional-
order coefficient, respectively, as summarized in Table 2. Figure 8 presents the TEG power
for the three reported MPPT strategies with changing operating conditions, load, and
temperature variations. Based on these conducted results, it can be noted that the SCA-
MPPT reached the MPP of 14.6 W faster compared to the traditional INR and P&O MPPT
techniques. The classical INR MPPT still needed more time to catch up to the MPP due
to the slow dynamic response of the INR tracker. The fluctuations around the MPP were
removed thanks to the SCA-based PIλ compared with the basic P&O approach. At the
time of 0.3 s, the temperature difference was reduced from 270 ◦C to 200 ◦C. Therefore,
the maximum output power was reduced from 14.6 W to 9.4 W. At the time of 0.6 s, the
load demand deceased from 10 Ω to 5 Ω. The SCA-MPPT rapidly came back to the MPP,
whereas the P&O and INR required extra time to modify the duty cycle value to attain the
MPP as presented in Figure 11. In addition, at the time of 0.9 s, the difference temperature
increased from 200 to 250 ◦C. Hence, the output power increased from 9.4 W to 12.11 W.
The tracking performance of the SCA-MPPT was better than those of the INR and P&O
techniques. The detailed variations of the TEG current, TEG voltage, and PWM duty cycle
are presented in Figures 9–11, respectively.
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7. Conclusions

To improve the dynamic response of the conventional incremental resistance (INR)
MPPT approach and remove the steady-state variations of the P&O MPPT technique, in
this paper, an Optimized Fractional INR Tracker (OF-INRT) was proposed based on an
SCA-tuned PIλ controller to rise the energy harvested from the thermoelectric generator
(TEG). First, the best effective gains of the proposed OF-INRT were identified using a
stochastic and parameter-free SCA. To demonstrate the superiority of the SCA optimizer,
demonstrative results were carried out and compared with those obtained by the particle
swarm optimization (PSO) and whale optimization algorithm (WOA)-based techniques.
The results confirmed the superiority of the proposed SCA in terms of the fastness of the
non-premature convergence and solution optimality. The average cost function values
varied between 1.10599 W and 1.32868 W. The maximum value was achieved by the SCA
tool. The STD values changed between 0.32349 and 0.00025. The minimum STD was also
achieved by the SCA optimizer. Concerning the efficiency, the maximum efficiency of
96.56% has been achieved by SCA, whereas the lowest efficiency of 80.33%was is attained
by PSO. In sum, the optimized fractional MPPT method succeeded to increase the dy-
namic response and eliminate the steady-state oscillations compared with the incremental
resistance (INR) and perturb and observe (P&O) MPPT methods, respectively.
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A future works process should mainly include the real-world implementation and pro-
totyping of the introduced SCA-MPPT strategy for the studied TEG using a dSPACE board
associated with the MATLAB/Simulink software toolkit. The formulation of the fractional-
order INRT design problem in an online optimization framework was also investigated.
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