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Abstract: Since energy efficiency has become the main priority in the design of buildings, load-
bearing walls in modern masonry constructions nowadays include thermal break elements at the
floor–wall junction to mitigate thermal bridges. The structural stability of these bearing walls is
consequently affected. In the present paper, a numerical study of the resistance and stability of
such composite masonry walls, including AAC thermal break layers, is presented. A finite element
mesoscopic model is successfully calibrated with respect to recent experimental results at small and
medium scale, in terms of resistance and stiffness under vertical load with or without eccentricity.
The model is then used to extend the numerical models to larger-scale masonry walls made of
composite masonry, with the aim of investigating the consequences of thermal elements on global
resistance and stability. The results confirm that the resistance of composite walls is governed by
the masonry layer with the lowest resistance value, except for walls with very large slenderness
and loaded eccentrically: composite walls with low slenderness or loaded by a vertical load with
limited eccentricities are failing due to the crushing of the AAC layer, while the walls characterized
by large slenderness ratios and loaded eccentrically tend to experience buckling failure in the main
clay masonry layer.

Keywords: AAC; composite masonry; load-bearing resistance; mesoscopic finite element model

1. Introduction

The latest environmental concerns lead to significant changes in the construction of
buildings, particularly for residential projects. Energy efficiency is now one of the main
priorities in the conceptual design of a building. In order to improve the thermal performance of
buildings, the heat losses are minimized through the integration of insulating layers. However,
these materials affect the building structure as they may introduce mechanical discontinuities.
In the particular case of masonry construction, the traditional monolithic wall has been replaced
by a cavity wall consisting of several leaves (Figure 1a). In addition, more recently, thermal
break elements have been introduced in, for instance, the inner leaf of such a cavity wall
in order to eliminate thermal bridges and reduce the heat loss at several places around the
buildings, particularly at the wall–floor junction, as shown in Figure 1b. In such a composite
masonry wall, Aerated Autoclaved Concrete units (AAC), one of the most common thermal
elements designed to replace the first layer of a load-bearing wall, are used in our study. AAC
is a light building material made from lime, cement and sand [1–3] and is characterized by a
low compressive strength up to 4.5 MPa [4].
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Figure 1. (a) Cavity wall, adapted from WTCB (2016) [5]; (b) masonry wall composed with a thermal
break layer at the bottom, reprinted from XELLA (2016) [6].

Only a few studies have investigated the structural behavior of such composite ma-
sonry walls [7–10]. An experimental campaign by the authors [11] encompassed tests on
small and medium-scale homogeneous and composite walls in order to understand their
behavior and investigate the influence of the interaction between thermal and masonry
elements on the local resistance. Results pointed out that the failure of composite specimens
is always governed by the failure of the AAC material, which thus represents the weakest
material. However, for larger composite walls, where buckling failure becomes more criti-
cal, there is a complete lack of experimental or numerical studies on how the presence of an
AAC layer at the bottom would alter the boundary conditions and stiffness of the wall and
consequently influence the buckling behavior. The available research results are essentially
concerning the bearing resistance and stability of classical homogeneous masonry walls,
i.e., built from one material [12–20]. The analytical solutions with regard to the stability of
masonry walls and columns have been firstly investigated by Chapman and Slatford [21],
Yokel [22], and Frish-Fay [23] based on equations for members under lateral deflection
developed by Royen [24] and Angervo [25], assuming the members to behave linearly up
to the failure, where tensile strength is not taken into account. Other studies [26–34] have
improved the simulation of masonry behavior under critical load by including the material
non-linearity, where it has been shown to better estimate the ultimate resistance and failure
mechanism. Nonetheless, no literature is available on numerical studies concerning the
behavior of large composite masonry walls.

In such a context, an extensive numerical study is conducted in this paper to explore
the behavior of full-scale composite masonry walls incorporating a bottom layer consisting
of AAC materials. The experimental tests on small-scale homogeneous and composite
specimens, reported by the authors in [11] and summarized in Section 2.2, are used to
calibrate the mechanical properties as performed in Section 3.1. Then, in Section 3.2, other
selected tests from Sandoval et al. [18,19], on a different scale of homogeneous walls, are
used to validate numerical models capable of capturing the stability behavior. The latter
simulations are extended to composite wall models using the calibrated material input and
combining other parameters (i.e., boundary conditions, stiffness). The numerical results
in terms of average stress-lateral deformation curves and strain contour plots are used
in Section 4 to assess the influence of thermal elements in combination with the other
parameters on the stability and resistance of masonry walls at a global level. The finite
element simulations are conducted using a mesoscopic approach using DIANA FEA [35],
as described in Section 2.

2. Materials and Methods

Four stages of numerical simulations are carried out in this study, which is summarized
in Table 1. The first two stages are only considering the strength (or resistance) behavior,



Sustainability 2021, 13, 11647 3 of 24

whereas the latter two stages are also considering instability (buckling) behavior. In the first
stage, using a selection of experimentally tested homogeneous and composite wallets, as
reported by the authors in [11] and summarized below, the constitutive model parameters
are calibrated for centric (axial) loading conditions. In a second stage, these models are
used in a validation study in which eccentric loading conditions are now considered, again
using the aforementioned experiments. Then, in a third modeling stage, model validation
is performed using the larger-scale eccentrically loaded wall tests executed by Sandoval
et al. [18,19] in order to establish validated reference models capable of capturing the
buckling behavior for multiple wall slendernesses. Finally, a parametric study is performed
as a fourth modeling stage. It incorporates a set of medium and large-scale composite
wall models with slenderness ratios ranging between 5 and 25, in combination with other
parameters, i.e., load eccentricity, masonry stiffness, and boundary conditions. The latter
models are built using, on the one hand, the calibrated material parameters obtained in
the first two stages, and, on the other hand, the adapted numerical approach by means of
loading conditions, analysis type, boundary conditions, and interface material model using
the validated Sandoval models in the third stage.

Table 1. Overview of the models and their respective objectives.

Model Objective Scale Material Model Constraints Loading
Conditions

Stage 1: Calibration of
constitutive behavior and

verification of the ability of the
model to capture the

experimental behavior
(Section 3.1)

Medium-scale walls

Unit: total strain crack
model;

Interface: combined shear-
tension-compression

Fixed at the
bottom;

partially fixed at the top

Centric
compression

Stage 2: Verification of the ability
of the model to capture the
reduction in strength due to

eccentricity
using the experiments

(Section 3.1)

Medium-scale walls

Unit: total strain crack
model;

Interface: combined shear-
tension-compression

Fixed at the
bottom;

partially fixed at the top

Compression with
eccentricity

Stage 3: Validation of the
numerical model using

Sandoval’s experiments [18]
(Section 3.2)

Medium to large-scale
walls

Unit: total strain crack
model;

Interface: combined shear-
tension-compression

Pinned at both ends Compression with
eccentricity

Stage 4: Parametric study
(Section 4)

Medium to large-scale
walls

Unit: total strain crack
model;

Interface: combined shear-
tension-compression

Pinned or fixed or
partially fixed at both ends

Compression with
or without
eccentricity

The geometry of the simulated wallets and walls is represented in the height-thickness-
plane, assuming the wall to behave uniformly on their length, in view of applying a physical
eccentricity using a 2D “slice” model. This approach has been successfully used by other
authors, such as Sandoval et al. [18,19], to capture the compressive strength reduction due
to eccentricity.

2.1. Summary of the Experimental Tests and Corresponding Model Configurations
2.1.1. Experiments on Wallets by Deyazada et al.

In the experimental campaign on wallets, as reported by the authors in [11], both
homogeneous AAC and composite AAC–clay specimens were tested under centric (e = 0)
and eccentric compression (e = t/3 and e = t/6 with t the thickness of the wallet and e the
distance between the applied load and the centerline of the wall). An overview of the
tested specimens is presented in Table 2.
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Table 2. Overview of the tested specimens.

Specimen Symbol eP−R

Homogeneous AAC wallets with thin
mortar layer under centric compression W-HATLM 0

Composite AAC–clay wallets with thin
mortar layer under centric compression W-CCTLM 0

Homogeneous AAC wallets with thin
mortar layer under eccentricity e = t/6 W-HATLM-et/6 t/6

Homogeneous AAC wallets with thin
mortar layer under eccentricity e = t/3 W-HATLM-et/3 t/3

Composite AAC–clay wallets with thin
mortar layer under eccentricity e = t/6 W-CCTLM-et/6 t/6

Composite AAC–clay wallets with thin
mortar layer under eccentricity e = t/3 W-CCTLM-et/3 t/3

The corresponding model configuration as used in Section 3.1 is presented in Figure
2. As can be seen from the figure, the bottom nodes of the wallets are restrained in both
horizontal and vertical directions, and the top nodes are only restrained in the horizontal
direction. The vertical compressive loads are applied under displacement control at a rate of
0.1 mm per increment. For the finite element masonry models in this paper, a mesoscopic
approach [36] is used, in which the masonry units are simulated using 16 × 16 2D plane
stress isoperimetric continuum elements and mortar joints are modeled by zero-thickness
interface elements. The material models of the units and joints are described in Section 2.2.
The eccentricity of the reaction is controlled according to the real experiments by including a
rigid plate at the bottom of the wall, with an adjustable width based on the amplitude of the
desired eccentricity (see Figure 2b).
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2.1.2. Buckling Experiments by Sandoval et al.

Sandoval and coworkers have conducted experimental tests and numerical simulations
for a set of homogeneous clay walls under critical compressive loads in combination with
different slenderness ratios and axial load eccentricities [18]. The walls were supported between
two hinges at the top and the bottom, where they were placed in such a way that an eccentricity
of the same magnitude was imposed at both ends of the wall. The walls had a variable height
h whereas their lengths L = 300 mm and thickness t = 36 mm.
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The modeling strategy used in Section 3.2 (i.e., material input, boundary conditions,
analysis approach, mesh size) is similar to one of the numerical simulations performed by
Sandoval [18]. The respective eccentricities and slendernesses of the benchmark models are
presented in Table 3. The boundary conditions are simulated with a rigid triangle in which
the end vertex varies to allow for different load eccentricities. The geometric non-linear
behavior is taken into account to capture the stability behavior (using a total Lagrange
definition of the strains). The non-linear material behavior of the masonry is, in this case,
lumped into the bed mortar joints (see also Section 2.2), as failure usually occurs there for
the current loading conditions, i.e., joint opening at the mid-height of the wall.

Table 3. Benchmark models of homogeneous clay walls.

Model No. Eccentricity Slenderness

1 t/6 18.7
2 t/6 25.6
3 t/3 18.7
4 t/3 25.6

2.2. Material Models

The material model used to simulate the behavior of the masonry units is based
on the total strain crack model proposed by Vecchio and Collins [37]. It has been used
successfully by several authors [28,38,39] to describe the compressive and tensile behavior
of the units, with stress-strain laws proposed for uniaxial compression and tension as
presented in Figure 3. The compressive behavior of the units is represented by an equivalent
parabolic stress-strain curve (Figure 3a) and the post-peak tensile behavior by an equivalent
exponential stress-strain curve [4,30,32] (Figure 3b). This indicates that the model is
essentially governed by crushing or cracking of the material.
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The compressive behavior is governed by

f =
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1
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(
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)
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)
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(1)

in which the material parameters

kc/3 = −1
3
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E
, (2)

kc = −
5
3

kj

kc/3
, and (3)



Sustainability 2021, 13, 11647 6 of 24

ku = kc −
3
2

Gc

h fc
, (4)

where fc is the compressive strength; kc is the strain at which the maximum compressive
strength fc is reached; ku is the strain at which the material is entirely softened; E is the
Young’s modulus; Gc is fracture energy in compression; and h is the crack band width,
which is equal to

√
2Aelem for linear two-dimensional elements and

√
Aelem for higher-

order two-dimensional elements [40]; Aelem is the area of the respective finite element. The
tensile behavior of the bricks is, after the linear elastic phase, governed by

f = ft exp
[
−h ft

Gfi
Kt

]
(5)

where ft is the tensile strength; Gfi is the fracture energy in tension; kt is the strain at which
the material is entirely softened [36].

To model the mortar joints’ constitutive behavior, a combined interface model is
used [36,39]. It is a rate-independent interface model based on a multi-surface plasticity
model defined by a convex composite yield criterion, including a tension cut-off f 1(σ, κ1), a
Coulomb friction model f 2(σ, κ2), and an elliptical compression cap f 3(σ, κ3), as presented
in Figure 4. This model is capable of modeling basic types of failure mechanisms that
characterize masonry behavior, such as sliding along the mortar joints, cracking of the joints
due to direct tension, combined shear, compression load, and masonry crushing, by means
of splitting of units in tension due to mortar dilatancy at peak values of normal stress.
For other interface aspects in masonry, including material determination and practical
applications, the reader is referred to Lourenço, Rots and Van Zijl [36,41,42].
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The tension cut-off mode f1(σ, κ1) = σ1(κ1) is governed by an exponential softening
regime expressed as

σ1 = ft exp
(
− ft

Gf
I κ1

)
(6)

where ft is the tensile strength of the masonry mortar; Gf
I is the mode I fracture energy;

and κ1 is the plastic relative displacement (i.e., jump).
The yield function of the Coulomb friction mode is expressed by

f2(σ, κ2) = |τ|+ σ tanϕ(κ2)− σ2(κ2) (7)

where

σ2 = c exp
(
− c

Gf
I I κ2

)
(8)
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in which c is the cohesion of the unit–mortar interface, Gf
I I is the mode II fracture energy,

ϕ is the friction angle, and κ2 is the shear plastic relative displacement. Finally, the yield
function for the compression cap mode is governed by

f3(σ, κ3) = cnnσ2 + cssτ2 + cnσ− (σ3(κ3))
2 (9)

where cnn and cn are a set of material parameters to control the center of the cap and its
intersection with the tensile part of the normal stress axis, cnn is a material parameter that
controls the contribution of the shear stress to failure, and σ3 is the yield value.

The material parameters used in the unit model are either extracted from experiments
by the authors (discussed previously in [11]) through inverse numerical analysis of the
compressive stress-strain curve, i.e., Young’s modulus E, compressive strength fc, fracture
energy in compression Gfc, or from relevant other recent experiments [3,43,44]. The material
properties for the interface are either taken directly from the experiments presented in [11]
or indirectly using data or formulas from the literature [4,18,37]. For example, the normal
stiffness kn and tangential stiffness ks of the interface of the models are, respectively,
calculated according to [36].

kn =
EuEm

hm(Eu − Em)
and (10)

ks =
GuGm

hm(Gu − Gm)
, (11)

where Eu is the Young’s modulus of the masonry unit, Em is the Young’s modulus of the
mortar joint, hm is the mortar thickness, Gu is the shear modulus the masonry unit, and
Gm is the shear modulus of the masonry unit.

3. Numerical Simulations
3.1. Calibration and Validation of the Wallets’ Strength Using the Experiments by Deyazada et al.

The calibration starts with the modeling of homogeneous AAC wallets with a thin
layer mortar. At the initial stage (simulation ‘Num1’ in Table 4), material properties for
the AAC units and the masonry interface are assumed based on relevant experimental
data from literature [3,43,44]: the Young’s modulus Ey of the AAC unit is initially assumed
to be 980 MPa, whereas the compressive strength fc of the AAC unit has a starting value
of 3.37 MPa. Next, the results of this simulation are compared with a selection of some
representative individual specimens from the experiment conducted by Deyazada et al. [11]
in terms of the stress-strain curves. An adjustment of the relevant material parameters is
then carried out to obtain an agreement between the numerical and experimental results in
terms of stiffness, ultimate strength, and softening of the stress-strain curve. For instance,
it is found from the comparison between the experiments and the models with the initial
values that the stiffness and ultimate compressive strength are overestimated because of
the physical difference between the reality and the simplified 2D “slice” model (i.e., the
model consists of four units on top of each other without considering the presence of head
joints as in the test specimens). Therefore, to adapt the numerical model to the reality, the
parameters affecting the stiffness and strength, namely Ey and fc, respectively, are varied
until a satisfactory estimation is found. The fittest Ey and fc values after calibration are 490
MPa and 1.73 MPa, respectively, i.e., 50% reduction on both parameters, see parameter set
‘Num15’ in Table 4.

After the selection of the most suitable material parameters on the basis of a limited
sub-set of experimental results, the numerical model is validated against all specimens
of the experiment conducted by Deyazada et al. [11]. The numerical validation of the
homogeneous AAC wallet is presented in terms of average compressive stress-strain curves,
as presented in Figure 5. The numerical results fall within the range of the experimental
results in both elastic and inelastic stages up to the maximum load. The post-peak behavior
is not perfectly captured due to limitations in the regularization and solver capabilities of
the modeling software (DIANA FEA). However, these limitations have no influence on the
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obtained peak load: this was shown by a sensitive study, including masonry models with
different meshes and convergence norms. Therefore, it can be concluded that the calibrated
material inputs used to simulate the units and interface of homogeneous AAC wallets is
satisfactory to predict the behavior of wallets under compression.

Table 4. Employed material parameters used throughout the numerical calibration process of a
homogeneous AAC wallet model under centric compression. ‘Num15’ is the final, best-fitting
parameter set (highlighted in grey).

Model Ey fc Gfc

Num1 980 3.37 1.5
Num2 980 3.03 1.5
Num3 980 2.76 1.5
Num4 980 2.54 1.5
Num5 980 2.35 1.5
Num6 980 2.19 1.5
Num7 980 2.05 1.5
Num8 980 1.93 1.5
Num9 980 1.82 1.5

Num10 980 1.73 1.5
Num11 882 1.73 1.5
Num12 784 1.73 1.5
Num13 686 1.73 1.5
Num14 588 1.73 1.5
Num15 490 1.73 1.5
Num16 490 1.73 3.5
Num17 490 1.73 5

Sustainability 2021, 13, x FOR PEER REVIEW 10 of 24 
 

 Next, the models are extended, including homogeneous AAC and composite AAC–

clay wallets subjected to three amplitudes of axial load eccentricities imposed from the 

bottom, as presented in Figure 2b. The accuracy of the wallet models under eccentricity is 

highlighted through a comparison between the numerical and experimental results in 

terms of the reduction in the failure load due to the eccentricity. On the other hand, the 

model has been compared with a simple theoretical reduction formula based on a rectan-

gular stress block for homogeneous masonry, as adopted in EN 1996 [45,46]. 

The validation of the homogeneous and composite masonry models under eccen-

tricity is depicted in Figure 8 in terms of strength reduction due to eccentricity (ratio of 

eccentric to concentric failure load). Numerical results show a logical trend, i.e., a reducing 

strength when increasing the eccentricity, for both homogeneous and composite wallets. 

However, there is a slight difference between the experimental and numerical results, in 

which the numerical results present more conservative values. For example, the numerical 

wallets exhibit a larger reduction in strength than the experimental ones, with a maximum 

difference of 24%. On the other hand, the comparison between the numerical results and 

the Eurocode formulation for both homogeneous and composite walls show that they are 

mostly in line with each other, illustrating a linear degradation of the bearing strength due 

to the application of the eccentricity. In other words, the models of the wallets under ec-

centricity seem sufficiently reliable to capture the reduction in strength due to eccentricity. 

With regard to the failure mechanism, the predicted numerical failure agrees with 

the experimental observations for both homogeneous and composite wallets. For instance, 

the failure of the homogeneous AAC wallets with a non-centered base reaction is charac-

terized by the initiation and development of vertical cracks firstly at the bottom from the 

end of the supported zone, then propagating towards the top of the wallet, as shown in 

Figure 9. In addition, the initiation and the development of cracks of the composite wallets 

are mainly observed in the supported zone of the bottom layer (Figure 10).  

 

Figure 5. Obtained stress-strain curves throughout the numerical calibration process of a homoge-

neous AAC wallet model under centric compression. 

 

Figure 6. Obtained stress-strain curves throughout the numerical calibration process of a composite 

AAC–clay wallet model under centric compression. 

Figure 5. Obtained stress-strain curves throughout the numerical calibration process of a homoge-
neous AAC wallet model under centric compression.

Next, simulations of AAC–clay composite wallets are executed. The material prop-
erties of the AAC units and interface are initially assumed identical to the final material
parameters of the homogeneous AAC wallet (parameter set ‘Num1’ in Table 5). Material
properties of clay units are extracted from experiments and literature. The effect of the head
joints is managed in a similar way for the clay part of the wall, as previously described
for the AAC layer, i.e., a reduction of 50% has also been applied on Young’s modulus and
compressive strength of clay units, so Ey = 2000 MPa and fc = 5 MPa. Then the results of
this simulation are compared with the experimental results, and further calibration of the
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relevant material properties is performed to obtain an agreement between the numerical
and experimental results, as can be seen in Figure 6. For example, from the comparison
between the numerical and experimental results, it is noticed that the global compressive
strength of the composite masonry should be increased to take into account the constrain-
ing effect of the clay units, which are stiffer and stronger, on the AAC units. Hence the
compressive strength fc of the AAC unit is adapted. The most suitable fc value is found
equal to 2.38 MPa, namely an increase with 40% (parameter set ‘Num6’ in Table 5).

Table 5. Employed material parameters used throughout the numerical calibration process of a
composite AAC–clay wallet model under centric compression. ‘Num6’ is the final, best-fitting
parameter set (highlighted in grey).

Model Ey-AAC Ey-Clay fc-AAC

Num1 490 2000 1.73
Num2 490 2000 1.87
Num3 490 2000 2.04
Num4 490 2000 2.21
Num5 490 2000 2.38
Num6 490 4000 2.38
Num7 490 6000 2.04
Num8 490 1000 2.04
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Figure 6. Obtained stress-strain curves throughout the numerical calibration process of a composite
AAC–clay wallet model under centric compression.

After that, the numerical model with the calibrated material parameters is again
validated against the full set of experimental results. The numerical validation of wallets is
presented in terms of average compressive stress-strain curves. As it can be noticed from
Figure 7, the numerical results of both wallets fall within the range of the experimental
results in terms of the wall’s stiffness and resistance for the composite wallets up to the
ultimate failure. Therefore, it can be concluded that the calibrated material parameters,
as summarized in Tables 6 and 7, are reliable to predict the behavior of the units under
compression, and therefore they could be used for the modeling of the larger masonry
specimens in the subsequent sections.
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Figure 7. Numerical (in red color) and experimental (in black color) average stress-strain curves of: (a) homogenous AAC
masonry wallets; (b) composite AAC–clay wallets under centric compression.

Table 6. Calibrated material properties assumed for AAC and clay units used for modeling the units and wallets with and
without eccentricity.

Parameter Symbol AAC Clay Unit

Young’s modulus Ey 490 4000 N/mm2

Poisson’s ratio v 0.30 0.15 -
Compressive strength

of unit (layer) fc 1.73 (2.38) * 5 MPa

Fracture energy in
compression GFc 1.50 5 Nmm/mm2

Tensile strength ft 0.37 0.5 MPa
Fracture energy in

tension Gfi 0.005 0.02 Nmm/mm2

* Values between brackets represent the compressive strength of the AAC units in composite walls.

Table 7. Material properties of the joint interface.

Interface Parameter Symbol Value Unit

Normal stiffness AAC+AAC kn 1000 N/mm3

Shear stiffness AAC+AAC ks 400 N/mm3

Normal stiffness AAC+clay kn 5000 N/mm3

Shear stiffness AAC+clay ks 1000 N/mm3

Compressive strength fc 20 MPa
Fracture energy in

compression Gfc 15 Nmm/mm2

Tensile strength ft 0.37 MPa
Fracture energy in tension Gfi 0.019 Nmm/mm2

The calibration process shows that the behavior of the masonry wall is mainly gov-
erned by the properties of the masonry units, where the interface parameters did not
show any influence. This is because the AAC material is characterized with the lowest
strength and stiffness (e.g., the mortar’s compressive strength >15 MPa whereas the AAC’s
compressive strength <4 MPa).

Next, the models are extended, including homogeneous AAC and composite AAC–
clay wallets subjected to three amplitudes of axial load eccentricities imposed from the
bottom, as presented in Figure 2b. The accuracy of the wallet models under eccentricity
is highlighted through a comparison between the numerical and experimental results
in terms of the reduction in the failure load due to the eccentricity. On the other hand,
the model has been compared with a simple theoretical reduction formula based on a
rectangular stress block for homogeneous masonry, as adopted in EN 1996 [45,46].
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The validation of the homogeneous and composite masonry models under eccentricity
is depicted in Figure 8 in terms of strength reduction due to eccentricity (ratio of eccentric
to concentric failure load). Numerical results show a logical trend, i.e., a reducing strength
when increasing the eccentricity, for both homogeneous and composite wallets. However,
there is a slight difference between the experimental and numerical results, in which
the numerical results present more conservative values. For example, the numerical
wallets exhibit a larger reduction in strength than the experimental ones, with a maximum
difference of 24%. On the other hand, the comparison between the numerical results and
the Eurocode formulation for both homogeneous and composite walls show that they are
mostly in line with each other, illustrating a linear degradation of the bearing strength
due to the application of the eccentricity. In other words, the models of the wallets under
eccentricity seem sufficiently reliable to capture the reduction in strength due to eccentricity.
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Figure 8. Numerical vs. experimental results in terms of strength reduction due to eccentricity:
(a) homogeneous walls; (b) composite walls.

With regard to the failure mechanism, the predicted numerical failure agrees with the
experimental observations for both homogeneous and composite wallets. For instance, the
failure of the homogeneous AAC wallets with a non-centered base reaction is characterized
by the initiation and development of vertical cracks firstly at the bottom from the end of the
supported zone, then propagating towards the top of the wallet, as shown in Figure 9. In
addition, the initiation and the development of cracks of the composite wallets are mainly
observed in the supported zone of the bottom layer (Figure 10).

3.2. Validation of the Walls’ Strength and Stability Using the Experiments of Sandoval et al.

A geometrically non-linear model using the material parameters listed in Table 8 is
subsequently validated against the work of Sandoval et al. [18] in terms of effective average
stress-lateral deformation curves and failure mechanism, including out-of-plane stability
behavior of the walls, see Figure 11. The average stress is defined as the maximum load
divided by the total cross-sectional area of the wallets (i.e., L × t, t is the total thickness).
The deformation parameter used in the curve represents the maximum lateral deflection in
the wall at mid-height. The numerical model results indicate a good agreement with the
experimental data. This includes the stress deformation curve and the collapse behavior,
including horizontal joint opening at the wall mid-height. This means that the current
model is capable of capturing the stability behavior and could be extended for simulating
large composite walls, as conducted in Section 4.
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Figure 9. Numerical vs. experimental results of the homogeneous specimens in terms of failure
behavior at elastic stage (on the left side), ultimate load (in the center) and after failure (on the right
side). For the numerical results, the contours of the horizontal normal strain are shown. Note that
each subfigure has a separate color bar.
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failure (on the right side). For the numerical results, the contours of the horizontal normal strain are
shown. Note that each subfigure has a separate color bar.
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Table 8. Material properties of Sandoval’s model.

Parameter Symbol Value Unit

Young’s modulus of units Ey 7500 N/mm2

Poisson’s ratio v 0.15 -
Normal stiffness of the interface kn 2380 N/mm3

Shear stiffness of the interface ks 1035 N/mm3

Compressive strength masonry fc 14.2 MPa
Fracture energy in compression Gfc 20.38 Nmm/mm2

Tensile strength ft 0.55 MPa
Fracture energy in tension Gfi 0.008 Nmm/mm2
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Figure 11. Validation of the model using Sandoval’s experimental tests [18]: (a) effective aver-
age stress-lateral deformation curve with a slenderness of 18.7; (b) effective average stress-lateral
deformation curve with a slenderness of 25.6; (c) failure pattern.

4. Parametric Study
4.1. Parameters

The parameters listed in Tables 9 and 10 define the scope of the numerical parameter
study. The considered parameters are as follows:

• Axial load eccentricity and slenderness

Three values of axial load eccentricities: e = 0, t/6 and t/3, combined with four levels
of slenderness hef/t = 5, 15, 21 and 26, are considered. In the case of walls under centric
loading conditions, a minimum eccentricity of 0.05t is applied in accordance with EN
1996 [47] to account for uncertainties on the load positioning, also useful in this numerical
study to trigger the geometric non-linear response (similarly to the model developed by
Sandoval et al.). The model scheme is presented in Figure 12.
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Table 9. Case studies for homogeneous and composite masonry walls simulations (wall length L = 750 mm, wall thickness t
= 150 mm, compressive strength of AAC unit f c,AAC = 2.38 MPa, compressive strength of clay unit f c,CL = 5 MPa, Young’s
modulus Ey = 2000 MPa). e refers to the eccentricity of the load.

No. Model Name Unit Combination e
Slenderness

Ratio/Wall Height
(m)

B.C.

1 g-HA-e0-sl5
AAC+AAC

0
5/0.8 Pinned-pinned2 g-HA-et6-sl5 t/6

3 g-HA-et3-sl5 t/3
4 g-HC-e0-sl5

Clay+clay 0

5/0.8

Pinned-pinned5 g-HC-e0-sl15 15/2.2
6 g-HC-e0-sl21 21/3.2
7 g-HC-e0-sl26 26/4.0
8 g-HC-et6-sl5

Clay+clay t/6

5/0.8

Pinned-pinned9 g-HC-et6-sl15 15/2.2
10 g-HC-et6-sl21 21/3.2
11 g-HC-et6-sl26 26/4.0
12 g-HC-et3-sl5

Clay+clay t/3

5/0.8

Pinned-pinned13 g-HC-et3-sl15 15/2.2
14 g-HC-et3-sl21 21/3.2
15 g-HC-et3-sl26 26/4.0
16 g-CC-e0-sl5

AAC+clay 0

5/0.8

Pinned-pinned17 g-CC-e0-sl15 15/2.2
18 g-CC-e0-sl21 21/3.2
19 g-CC-e0-SL26 26/3.2
20 g-CC-et6-sl5

AAC+clay t/6

5/0.8

Pinned-pinned21 g-CC-et6-sl15 15/2.2
22 g-CC-et6-sl21 21/3.2
23 g-CC-et6-sl26 26/4.0
24 g-CC-et3-sl5

AAC+clay t/3

5/0.8

Pinned-pinned25 g-CC-et3-sl15 15/2.2
26 g-CC-et3-sl21 21/3.2
27 g-CC-et3-sl26 26/4.0
28 g-CC-eg0-sl21-pp AAC+clay 0

21/3.2 Pinned-pinned
29 g-CC-eg0-sl26-pp 26/4.0
30 g-CC-eg0-sl21-pfpf AAC+clay 0

21/4.2 Partial
fixed-partial fixed31 g-CC-eg0-sl21-pfpf 26/5.4

32 g-CC-eg0-sl21-ff AAC+clay 0
21/6.4

Fixed-fixed33 g-CC-eg0-sl21-ff 26/8

Table 10. Case studies for homogeneous and composite masonry walls simulations (wall length L = 750 mm, wall thickness
t = 150 mm, compressive strength of AAC unit f C,AAC = 2.38 MPa, compressive strength of clay unit f C,CL = 5 MPa, Young’s
modulus Ey = 4000 MPa). e refers to the eccentricity of the load.

No. Model Name Unit Combination e
Slenderness

Ratio/Wall Height
(m)

B.C.

34 g-CC-e0-sl21 AAC+clay 0
21/3.2 Pinned-pinned

35 g-CC-e0-sl26 26/4.0
36 g-CC-et6-sl21 AAC+clay t/6

15/2.2 Pinned-pinned
37 g-CC-et6-sl26 21/3.2
38 g-CC-eg0-sl21 AAC+clay 0

21/3.2 Pinned-pinned
39 g-CC-eg0-sl26 26/4.0
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• Geometrical imperfection, slenderness, and boundary conditions

The behavior of homogeneous and composite walls with geometrical imperfections eg
is investigated in combination with two levels of slenderness hef/t = 21 and 26 and three
types of boundary conditions, namely pinned-pinned conditions, fixed-fixed conditions
and semi-fixed conditions, as presented in Figure 12b–d. The geometrical imperfection eg
is accounting for a possible irregularity of the wall geometry. The imperfection has been
applied by adjusting the geometry of the wall with a deviation at mid-height equal to
hef/450, as specified by EN 1996 [45,46]. The effective height hef is equal to ρn × h, where
h is the wall height, ρn equals to 1 for a pinned-pinned support, 0.75 for partially fixed
support conditions at both ends, and 0.5 for a fixed-fixed support. The pinned supports
are simulated with a rectangular rigid plate, restrained in the middle in the vertical and
horizontal directions, as depicted in Figure 12b, whereas the fixed supports are simulated
with a fully restrained rectangular rigid plate (Figure 12c). The partially fixed supports
have been modeled resorting to rotational springs (Figure 12d). The stiffness of the springs
is calibrated based on a linear stability analysis, in such a way that the Euler buckling load
is equal to Pcr = π2EI

(ρnL)2 with ρn = 0.75, where Pcr is the ultimate buckling load, E is the

Young’s modulus of wall, and I is the moment of inertia.

• Masonry stiffness

The influence of a variation of the stiffness of the upper clay layers in composite walls
is investigated. Two different values of the Young’s modulus Ey of the main clay masonry
are assumed, namely 2000 and 4000 Mpa. Concerning the homogeneous masonry walls,
design codes, including EN 1996 [45,46], and other studies [19,32,47–54] suggest a crucial
relationship between the stiffness of the wall and the compressive strength of masonry
walls, i.e., the ultimate strength increases when the stiffness of the wall increases.

• Homogeneous vs. composite specimens

A comparison between homogeneous and composite specimens with different ma-
terial combinations is illustrated to determine whether the AAC or clay in a composite
context behaves differently than when they are used separately in homogeneous walls. The
simulated models encompass three types: homogeneous clay walls, composite AAC–clay
walls and short homogeneous AAC walls (the slenderness of the AAC wall is kept the
same with a ratio equal to five).

The material model for these models includes material non-linearity for both units
and interfaces as the composite walls are expected to fail either by the crushing of the
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AAC material or due to the opening of the bed joint in the middle. This is different
from Sandoval’s models (Section 3.2), where material non-linearity is only assumed in the
interface since failure is mainly expected to occur there.

4.2. Results and Discussion

The resulting stress-deformation curves and failure patterns will be used to illustrate the
influence of the different parameters. Effective stress is defined as the total load divided by the
gross area of the wallets (i.e., L × t with t is the overall wall thickness) (Tables 9 and 10).

• Slenderness and eccentricity

As it can be noticed in Figure 13, the homogeneous clay specimens experience a con-
sistent strength reduction in the bearing resistance when the slenderness or the eccentricity
increase. The composite walls exhibit a similar consistent reduction due to the increase
of eccentricity, while the influence of the slenderness on the behavior of composite walls
is only evidenced for the walls with large slenderness ratios, i.e., hef/t = 21 and 26. The
reason is that when composite walls have low slenderness, the failure will occur through
a local failure of the AAC layer, for which the global slenderness does not play any role.
In addition, there is a consistent increase in the lateral deformation at the failure of the
composite walls when the level of slenderness is increased (see Figure 13d–f).
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Figure 13. Average stress-lateral deformation curves for homogeneous (“H”) and composite (“C”)
walls under different amplitudes of load eccentricities and slenderness: (a) homogeneous clay wall
specimens with slenderness ratio (“sl”) hef/t = 15; (b) composite wall specimens with slenderness ratio
hef/t = 15; (c) homogeneous clay wall specimens with slenderness ratio hef/t = 21; (d) composite wall
specimens with slenderness ratio hef/t = 21; (e) homogeneous clay wall specimens with slenderness
ratio hef/t = 26; (f) composite wall specimens with slenderness ratio hef/t = 26. “e” refers to the
amplitude of eccentricity.
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• Boundary conditions

A comparison between walls with the same slenderness, eccentricity and material
parameters but with different boundary conditions is illustrated in terms of resistance
and failure behavior. The aim is to investigate the influence of modifying the boundary
conditions on the behavior of composite walls. As it can be noticed in Table 11, the
resistance and failure behavior of composite walls is indeed influenced by a modification of
the boundary conditions. The failure behavior of the very slender wall (i.e., the slenderness
ratio equals 26) with pinned-pinned conditions experienced stability failure, while the walls
with other boundary conditions experienced material failure in the AAC layer, leading to
lower resistance for the walls with fixed-fixed boundary conditions. The reason for that is
related to the bending moment distribution in the wall. The moment for walls with fixed
boundary conditions is larger at the level where AAC units are present, in contrast to a
wall with pinned-pinned conditions, where the maximum moment is expected to be at the
mid-height of the wall.

Table 11. Results for the masonry walls with different boundary conditions in terms of verti-
cal stresses.

Specimen Stress (MPa) Failure Mode

g-CC-eg0-sl21-pp 2.10 Strength failure of AAC layer
g-CC-eg0-sl21-pfpf 2.19 Strength failure of AAC layer

g-CC-eg0-sl21-ff 1.88 Strength failure of AAC layer

g-CC-eg0-sl26-pp 1.49 Stability failure of main clay
masonry

g-CC-eg0-sl26-pfpf 1.61 Strength failure of AAC layer
g-CC-eg0-sl26-ff 1.08 Strength failure of AAC layer

• Masonry stiffness

The influence of a varying Young’s modulus of the clay units on the resistance and
stability of composite masonry walls is illustrated in Table 12. The results show that
increasing the stiffness of the clay units generally leads to an increase in the resistance
of composite walls and, in many cases, also affects the failure pattern. For example, the
resistance of the composite wall g-CC-e0-sl26 increased from 1.53 to 1.95 MPa. The failure
mode is shifting from stability failure in the clay part of the masonry to a material failure
in the AAC units. In other cases, the resistance of composite wall g-CC-e0-sl21 increases
slightly from 1.98 to 2.06 MPa, where the main failure occurs again in the AAC layer.
This tends to agree with the stability formula in EN 1996 for homogeneous specimens, i.e.,
improving the stiffness of the unit has a positive effect on the ultimate compressive strength.

Table 12. Results for the masonry walls with different masonry stiffness in terms of vertical stresses. Group 1: f c = 5 MPa,
Ey = 2000 MPa; Group 2: f c = 5 MPa, Ey = 4000 MPa.

Specimen Stress (Group 1)
(MPa) Failure Mode Stress (Group 2)

(MPa) Failure Mode

g-CC-e0-sl21 1.98 Material failure of AAC
layer 2.06 Material failure of AAC

layer

g-CC-e0-sl26 1.53 Stability failure of main
clay masonry 1.95 Material failure of AAC

layer

g-CC-et6-sl21 1.12 Stability failure of main
clay masonry 1.30 Material failure of AAC

layer

g-CC-et6-sl26 0.82 Stability failure of main
clay masonry 1.28 Stability failure of main

clay masonry

g-CC-eg0-sl21-pp 2.10 Material failure of AAC
layer 2.23 Material failure of AAC

layer

g-CC-eg0-sl26-pp 1.49 Stability failure of main
clay masonry 2.20 Material failure of AAC

layer
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• Failure mechanism

The typical failure patterns of composite specimens are presented in Table 13 and
displayed in Figures 14 and 15 in terms of vertical strain contour plots. Two types of failure
are observed according to the level of slenderness or eccentricity, as already mentioned
above. One is characterized by the collapse of the AAC layer only. This failure is likely
to happen for walls with small slenderness ratios and/or subjected to a low level of
eccentricity (see Figure 14 for model g-CC-e0-sl21). The other type of failure is characterized
by a stability failure of the clay masonry layers in the middle of the wall and is expected for
walls with a higher slenderness ratio and/or characterized by a large loading eccentricity
(see Figure 14 for g-cc-et3-sl26). For walls with a geometrical imperfection, whatever
the boundary conditions, failure is governed by the collapse of the AAC layer except
for model g-cc-eg0-pp, which exhibited stability failure (see Figure 15). In case of AAC
material failure, a large lateral strain is experienced, particularly at the AAC layer. In case
of stability failure, large strains are experienced at mid-height of the wall (where large
lateral deflections are observed).

Table 13. Failure mechanism of the executed composite masonry models.

Specimen Failure Mode

g-CC-e0-sl5 Material failure of AAC layer
g-CC-et6-sl5 Material failure of AAC layer
g-CC-et3-sl5 Material failure of AAC layer
g-CC-e0-sl15 Material failure of AAC layer
g-CC-et6-sl15 Material failure of AAC layer
g-CC-et3-sl15 Material failure of AAC layer
g-CC-e0-sl21 Material failure of AAC layer
g-CC-et6-sl21 Material failure of AAC layer
g-CC-et3-sl21 Stability failure of main clay masonry
g-CC-e0-sl26 Stability failure of main clay masonry
g-CC-et6-sl26 Stability failure of main clay masonry
g-CC-et3-sl26 Stability failure of main clay masonry

• Composite vs. homogeneous specimens

To improve the understanding of the structural behavior of a thermal layer and
the main clay masonry in a composite wall and to investigate whether both components
behave rather as two homogeneous walls above each other or really with a global composite
behavior, the compressive resistance of both homogeneous and composite specimens is
summarized in Figure 16. It appears that the thermal layer in a composite wall can be
assumed as behaving as a short AAC wall (namely an AAC wall with a slenderness ratio
hef/t < 6), while the clay part behaves as a homogeneous clay wall having its actual height,
but whose resistance would be the resistance of the weakest layer. This is obvious, for
instance, from a comparison between a composite wall with given eccentricity and limited
slenderness, i.e., hef/t = 15, and a homogeneous AAC wallet with the same eccentricity. For
example, both a homogeneous AAC wall with e = 0 and hef/t = 5 and a composite wall
with e = 0 and hef/t = 15 experience crushing of the AAC units, with their resistance being
equal to 1.66 and 2.30 MPa, respectively, while the resistance of a composite wall with e =
t/3 and hef/t = 26 and the resistance of a homogeneous clay wall with e = t/3 and hef/t =
26 is for both cases equal to 0.36 MPa, with a failure due to instability.
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Figure 14. Horizontal normal strain contours for walls under pinned-pinned conditions at the elastic,
ultimate load and failure stage under different amplitudes of load eccentricities and slenderness: (a)
homogeneous clay wall with eccentricity e = t/3 and slenderness ratio hef/t = 26; (b) composite wall
with eccentricity e = 0 and slenderness ratio hef/t = 21; (c) composite wall with eccentricity e = t/3
and slenderness ratio hef/t = 26.
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Figure 15. Horizontal normal strain contours for walls under different boundary conditions at the
elastic, ultimate load and failure stage (eccentricity e = 0 and slenderness ratio 26): (a) composite wall
under pinned-pinned conditions; (b) composite wall under partially fixed-partially fixed conditions;
(c) composite wall under fixed-fixed conditions.
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Figure 16. Comparison between the numerical results for homogeneous and composite walls with
(a) eccentricity e = 0; (b) eccentricity = e = t/6; (c) eccentricity e = t/3. “HA” refers to homogeneous
AAC walls; “HC” refers to homogeneous clay walls; “CC” refers to composite AAC–clay walls.

5. Summary and Conclusions

Numerical models of a set of homogeneous AAC and composite AAC–clay wallets
are calibrated against experimental results from the authors complemented by additional
tests from literature in order to derive suitable material properties. The numerical models
show a satisfactory prediction capacity of the experimental behavior in terms of ultimate
strength and deformation behavior. The models are then used for a parametric study to
assess the behavior of homogeneous and composite walls with various slenderness ratios,
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loading eccentricity, stiffness and boundary conditions and to evaluate their resistance and
overall stability.

The results confirm that the resistance of composite walls is governed by the masonry
layer with the lowest resistance value, except for walls with very large slenderness and
loaded eccentrically: composite walls with low slenderness (up to a slenderness ratio of 15)
or loaded by a vertical load with limited eccentricities are failing due to the crushing of
the AAC layer, which is characterized by the lower strength, while the walls characterized
by large slenderness ratios (e.g., hef/t ≥ 21) and loaded eccentrically tend to experience
buckling failure in the main clay masonry layer.

The results show that using stiffer clay units considerably affects the resistance and
failure mechanism of composite walls. The higher the stiffness of the clay unit, the better
the stability behavior of the main clay masonry part of the wall and, consequently, of the
global composite wall.
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