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Abstract: The urban heat island (UHI) effect is among the most critical issues caused by human
activities and high building density. UHI has severe impacts on the urban and natural environment
as well as on human health and wellbeing. The research presented here aims at evaluating the effects
of nature-based solutions (NBS) in improving the livability of a district in the city of Genoa, which is
heavily cemented and a major example of the heat island phenomenon. This study focuses on the
microclimatic benefits of urban heat island mitigation as well as on psychological and perceptual
aspects. A preliminary analysis of the district through CFD simulations using Envi-met software
allowed for selection of the most suitable areas for a system of punctual interventions in urban
regeneration using nature-based solutions. For each area identified, we simulated the effects of
different design scenarios on microclimate mitigation and thermal comfort improvement. In addition,
to evaluate the perceptual benefits of the most well-performing design scenarios, we set up a web-
based survey that was administered to a convenience sample of Genoa residents. In terms of aesthetic
satisfaction and perception of improved conditions of physical and psychological well-being, the
preferred design outcomes were those which emphasized a freer and more natural environment.
This study shows that nature-based solutions can improve the overall conditions of dense urban
areas; microclimate performance and psychological effects should be both considered in the design
process in order to improve the wellbeing of urban citizens.

Keywords: nature-based solutions; urban heat island (UHI); human wellbeing; thermal comfort;
urban regeneration; citizens’ perception

1. Introduction

Rapid urbanization, anthropic activities and land use changes (artificial vs. vegetated
and natural areas) affect the quality of life of citizens [1,2]. Among all the consequences,
the ‘urban heat island’ (UHI) is one of the most relevant [3]. This phenomenon occurs
particularly during the summer, due to many artificial surfaces with a very low albedo [4],
as well as road traffic, industrial activities, and conditioning [5,6], but also due to the
increase in the Bowen ratio, i.e., the gap between the flow of sensible heat and the latent
flow [7].

Related consequences of urbanization include water management and runoff, air qual-
ity, ecosystem balance, and biodiversity [8,9]. Poor environmental quality can also cause
different kinds of pathological conditions that involve public health for citizens [10–12],
occurring especially in weaker categories of citizens such as the elderly [10].

Regenerative design aims at finding solutions to mitigate such negative effects [13];
these solutions can be nature-based and may or may not include artificial materials. Con-
cerning nature-based solutions, these are now widely studied and prove that the integration
of green areas in urban environment can be effective at different scales according to needs,
availability, and opportunities. Integrating plants in an urban context as a tool for urban
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regeneration can be based on more traditional solutions, such as the planting of trees, the
introduction of areas with grass and flowerbeds with hedges and turf [14–16], and the
use of solutions which include artificial materials for performance optimization. Among
these solutions, different kinds of extensive, light intensive, or heavy intensive types of
green roofs can be mentioned; such systems provide microclimatic benefits along with
water regulation [17–19] and energy performance improvements [20–23]. Secondly, green
façades with possible application through direct or simple indirect greening systems, such
as planter boxes or living wall systems [24–26], can locally reduce the surface tempera-
tures where they are applied, and consequently have an influence on relative humidity,
ultimately improving local comfort [27–29].

The mentioned nature-based solutions can limit the effects of the progressive exclusion
of vegetation in cities [30]. Lack of greening not only has environmental and ecological
consequences but may also have social and psychological consequences on city dwellers,
who turn out to be less and less connected with nature [31].

Bringing people closer to nature and its elements enables them to take advantage of a
wide range of benefits and connect with it again, supporting the natural tension towards
what is vital [32,33].

Therefore, the integration of nature-based solutions in highly built-up contexts can
mitigate both environmental and ecological issues caused by human activities and climate
change, such as surface runoff [32,33], the heat island phenomenon [34], air pollution [35]
and loss of biodiversity [36,37], while also influencing the social conditions of these areas
and contributing to the improvement of microclimatic conditions and the psychological
well-being of citizen [1,15,36].

Research on the benefits of vegetation to date has mainly focused on aspects of regula-
tion ecosystem services concerning physical conditions [7,38] or on aspects of psychological
comfort improvement [1]. This study aims to simultaneously investigate both issues, par-
ticularly in relation to the design process of urban regeneration, and to relate them to assess
the points of contact between objective and subjective benefits.

Therefore, the main objective is to define the relation between the physical and psy-
chological benefits of nature-based solutions (NBS), in particular, microclimatic benefits in
relation to thermal comfort [7,39,40] and perceptual benefits [41–45]. This is because the
improvement of peoples’ well-being is linked to both areas.

To do this, we aim to identify possible combinations of nature-based solutions with
enhancing effects both in terms of improving microclimate comfort and psychological
comfort for the potential users of the retrained areas.

In brief, the main goals of the research are:

• To define which combinations of NBS work better in terms of thermal comfort im-
provement and local UHI mitigation.

• To evaluate the influence of urban morphonology and environmental conditions on
NBS microclimatic performances.

• To evaluate how microclimatic and psychological and social aspects can be part of the
urban design process, by a) assessing the value attributed by citizens to the presence
of green spaces in cities and in highly built-up environments in terms of their ability to
improve mood and well-being, and b) understanding which kind of design solutions
with vegetation are most preferred by citizens in relation to the improvement of their
quality of life.

2. Methodology

To study both the microclimatic and perceptual effects of nature-based solutions in
the urban environment, a case study was identified within the Municipality of Genoa.

The case study was selected within the Climactions project—Adaptation to and Mit-
igation of Climate Change—Urban Interventions for Health Promotion [46], funded by
Comitato Collaborazione Medica (CCM). This project involves the main Italian cities and
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promotes design intervention using nature-based solutions in densely built-up contexts, in
order to mitigate the negative effects of climate change on human health.

The research was developed in three phases (Figure 1):

1. Selecting suitable sites and relative analysis of the microclimatic conditions at the
current state.

2. Assessing NBS performances for the selected sites in terms of microclimate regulation
and UHI mitigation, drafting of design scenarios and analyzing of thermal comfort.

3. Carrying out a web survey to assess the preferences of citizens regarding the different
scenarios and the perceptual and psychological benefits they may favor.
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Figure 1. Methodology structure.

To effectively correlate the environmental aspects of NBS with the psychological
and social ones, the assessment of well-being improvement was addressed by keeping
the variable related to microclimatic control performance fixed (through the formulation
of different design scenarios with the same output) and analyzing the variation of the
parameter related to the improvement of subjective psychological wellbeing.

2.1. Site Selection

Site selection was based on a literature review, onsite surveys, and simulations of
microclimatic conditions. Morabito et al. [47] mapped the main Italian cities, with HERI
(Heat-related Elderly Risk Index) distribution highlighted for the summer period (from
May till September). In addition, thanks to collaboration with the Municipality of Genoa,
specific suitable areas were identified within the district of Cornigliano, an area with a very
high risk index related to heatwaves [47] and well known by citizens for the poor quality
of public spaces and lack of maintenance, as confirmed by onsite surveys. The coexistence
of all the criticalities mentioned above confirmed the need to select some specific urban
regeneration interventions not only to improve the microclimatic conditions of the area but
also local livability (Figure 2).

Site selection was supported by a preliminary analysis of climatic conditions during
the summer period of the year 2020, in order to identify the days with the greatest criticality
from the point of view of thermal comfort, and to proceed with the computational fluid
dynamics (CFD) simulations using Envi-met Science software (Version 4.4.5). Reference was
made to the data on the Ministry of Health portal [48] regarding the days with heatwave
alerts issued for the Municipality of Genoa, which allowed identifying the day of 1 August
2020 as particularly critical, with air temperature peaks of 32 ◦C. This analysis was mainly
carried out in order to check the conditions of the pre-selected areas and to define the most
critical areas from a thermal comfort point of view.
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Figure 2. Orthophoto of the area of Genova Cornigliano.

For the simulations, a suitable area was identified considering all the relevant natural
and artificial elements (e.g., railways, waterways and green areas). This choice was condi-
tioned by the fact that the software processes output data and relative maps based on all
the main microclimatic parameters (air temperature, relative humidity, wind speed, and
direction, mean radiant temperature), but also on the physical (e.g., urban morphology)
and geographical characteristics of the site. Simulations were run on a 24-h range in relation
to the day of 1 August 2020. All the climatic data in relation to the defined date used for
the simulations were taken from the local ARPAL web database (Regional Environmental
Protection Agency). In particular, the main parameters considered for the simulations were
air temperature, wind direction, wind speed and relative humidity (RH), Figure 3, Table 1).
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Figure 3. Data used for the CFD simulations with Envi-met Science (Version 4.4.5).

Table 1. Input data for simulations: August (hot summer day), June (standard summer day) and January (standard
winter day).

Max Min Mean

01/08/2020
Air Temperature (◦C) 32.00 (4 P.M.) 25.50 (4 A.M.)
Relative Humidity (%)

Main Wind Direction (◦)
Medium Wind Speed at 10 m height (m/s)

100 (12 P.M.) 50 (11 P.M.) 135
2.90

19/06/2020
Air Temperature (◦C) 24.10 (4 P.M.) 19.40 (11 P.M.)
Relative Humidity (%)

Main Wind Direction (◦)
Medium Wind Speed at 10 m height (m/s)

88 (11 P.M.) 70 (5 P.M.) 135
4.50
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Table 1. Cont.

Max Min Mean

22/01/2020
Air Temperature (◦C) 17.50 (2 P.M.) 7.60 (1 A.M.)
Relative Humidity (%)

Main Wind Direction (◦)
Medium Wind Speed at 10 m height (m/s)

69 (11 P.M.) 30 (8 A.M.) 90
9.20

The site selection phase and preliminary simulations allowed identification of three
sites within the selected macro area (Genoa Cornigliano), named “Site A, B, and C”, in
which the improvement of microclimatic and psychological comfort has been assessed
through the formulation of project scenarios.

2.2. Thermal Comfort and Microclimate

The second phase of the study aimed at defining possible design strategies for urban
regeneration with nature-based solutions for the selected sites.

The possible solutions identified were paving with a high albedo, grass, trees, green
façades, shrubs, water mirrors, green roofs, and shelters with climbing plants (Figure 4).
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Figure 4. Collection of NBS selected for the three sites of the case study.

NBS were located in the three sites according to building morphology and considering
the space available to ensure the correct development of the plants (trees and shrubs) and
the creation of shaded areas for citizens.

Eight simulations with ENVI-met allowed quantification of the microclimatic benefits
of all the possible solutions for each site, and comparison of the results for the selection of
the most efficient configurations.

Several researchers have shown that CFD software can simulate the microclimatic
conditions of a specific site by modelling different urban elements such as buildings and
vegetation [49]. It is worth specifying that for all the simulations we used the same climatic
data in order to allow a comparison with the current, non-green situation. Following
analysis of the results, the proposed nature-based solutions were combined with each other
to obtain two very different design scenarios for each site that had a similar performance
in terms of increasing the level of thermal comfort.

Since all of the simulations launched up to this stage were always carried out concern-
ing the most critical thermal conditions which the city went through in the year 2020, other
simulations were also carried out in two other periods characterized by different climatic
conditions in order to verify the effectiveness of NBS; i.e., in June 2020 for the summer, to
compare the maximum level of thermal stress with the level in more ordinary summer
conditions, and in January 2020, to verify that the design made for the summer comfort
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improvement did not cause thermal discomfort during winter. We focused initially on
summer conditions, due to the high risk of heat waves in the area [47]. At the same time,
the site within the Municipality of Genoa (Liguria) is in Mediterranean area, and does not
present great criticality in the winter period.

Concerning the design configurations, even if the CFD simulation results considerably
limited the range of solutions to be adopted, an attempt was still made to vary as much as
possible the arrangement of the elements according to the peculiarities of each site. The
scenarios were conceived in order to offer residents and users not only the same conditions
of thermal comfort as highlighted above, but also the same services (e.g., number of parking
spaces) and the same ratios between road and pedestrian areas (more/less green); this
peculiarity was imposed to avoid imbalance between the two scenarios.

2.3. Evaluation of Perceptive Benefits

Finally, in the third part of the research, an online survey was carried out to evalu-
ate individual preferences toward the different NBS design scenarios. This survey was
administered using social network platforms to a convenience sample of citizens living
in the nine Municipalities of Genoa. In particular, numerous neighborhood associations
on Facebook were involved, with the aim of delivering the questionnaire to citizens re-
siding in different municipalities within the City of Genoa. Overall, the fieldwork led
to the collection of 859 interviews in 14 days of administration (8/02/2021–22/02/2021).
Because the survey was carried out during the COVID-19 pandemic, it was not possible to
conduct the interviews face-to-face and, as most surveys were carried out entirely online
during the pandemic, the final sample is not representative of the population. Nonetheless,
it represents a novel and unique tool to gain preliminary insights on the evaluation of
individual preferences toward the different NBS design scenarios.

To assess the subjective benefits that vegetation can have on potential users and
evaluate subjective preferences regarding the alternative design proposals for the three
intervention sites, the survey covered various topics, including basic socio-demographic
information on the interviewees, attitudes towards the benefits of natural elements on
human life, opinions about use of vegetation in the urban environment, and evaluation
of possible NBS project scenarios for urban areas. For this study, we restricted the focus
to two main dependent variables. The first gauged the subjective benefits of urban green
areas by asking: “When walking in the city center/green areas your mood improves”.
Possible answers range from 1, “Completely disagree” to 5, “Completely agree”. The
second main dependent variable captured the respondents’ preferences across the different
project scenarios. Preferences were assessed using three different items, the exact wording
of which is presented in Table 2.

Table 2. List of items for design scenarios evaluation and relative answers.

Questions Possible Answers N

Which of the following two urban regeneration project scenarios for the same place do
you prefer? Scenario A Scenario B 612

Which of the two scenarios do you think would offer you the greatest psychophysical
benefit? Scenario C Scenario D 724

If you could have a shaded gathering space near your house where you could spend time
in summer, which of the following two scenarios would you prefer? Scenario E Scenario F 718

To achieve the two main objectives described above, we first explored whether the
subjects in our sample did indeed benefit from spending time in urban green areas, as
found in previous studies [38,42]; second, we investigated whether respondents displayed a
preference for the different proposed scenarios described above. It is important to recall that
the scenarios subject to comparison were equivalent in terms of thermal output, while they
differed aesthetically and in terms of architectural structure. Therefore, our analysis aimed
to assess whether, ceteris paribus in terms of thermal improvement, greener scenarios were



Sustainability 2021, 13, 11638 7 of 18

preferred to more artificial ones. Moreover, we explored whether there were differences
between subjects in terms of basic socio-demographic characteristics, namely age (18–25,
26–40, 41–65, over 66), gender, and educational level (<higher education, higher education)
both in terms of perceived benefits from exposure to green areas and in terms of preferences
toward a given scenario. Throughout the analysis, subjects with missing values on the
variables of interest and those who answered “don’t know” or “neither scenario” were
dropped. Summary statistics of all variables used in the analysis are presented in Table 3.

Table 3. Summary statistics of the sample.

N %

Gender
Women 609 71

Men 249 29

Age
18–25 107 13
26–40 227 27
41–65 461 54
≥66 61 7

Education
<Higher education 432 50
Higher education 427 50

3. Results and Discussion
3.1. Site Selection

Site selection relied on microclimatic analysis of the area, implemented by means
of ENVI-met simulations. The results allow for preliminary evaluation of the thermal
comfort conditions of citizens during the summer. Consequently, it was possible to define
which were the most critical areas during both the day and the night. The results showed
that during the day the most critical areas were in the south; during the night this part of
the district seems to be a little bit more livable. In the northern area, the conditions are
completely opposite, that is, more livable during the day and less so during the night. This
configuration is consistent with the land use map identifying the southern part of the area
as the less vegetated one (Figure 5).

The 24-h first simulation completed for the whole area highlighted that the lower
residential area of the district (located between Via Cornigliano from the North and the
railway line from the South) is the one with the worst thermal comfort.

An in-depth analysis of the simulation results allowed the identification of three
specific intervention sites: A (Piazza Moisello), B (Piazza Battelli), and C (Via Giovanni
d’Acri). In order to define the three intervention sites, the outdoor comfort level was
evaluated through the UTCI parameter (Universal Thermal Comfort Index) as suggested
by EU COST Action 730; this parameter considers the relationship between air temperature,
mean radiant temperature, relative air humidity, air speed and water vapor pressure [50].

The UTCI for 2:00 p.m. on the day of 1 August 2020 showed values ranging from a
minimum of 28.67 ◦C to a maximum of 42.19 ◦C (Figures 6 and 7).

The three sites identified are named, respectively:

• Site A (Piazza Moisello);
• Site B (Piazza Battelli);
• Site C (AMT parking lot).
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In their current state, the UTCI parameters for the three specific named sites reached
the following respective values: 40.410 ◦C; 39.271 ◦C; and 38.167 ◦C, defining a very marked
level of thermal discomfort (Table 4).
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Table 4. Microclimatic output values for the three points of the case study.

Date Time UTCI (◦C) Mean Radiant Temperature (◦C)

Point A 01.08.2020 12.00.00 39,097 62,294
01.08.2020 14.00.00 40,410 65,304
01.08.2020
01.08.2020

17.00.00
21.00.00

33,558
28,104

35,669
21,983

Point B 01.08.2020 12.00.00 37,890 62,222
01.08.2020 14.00.00 39,271 65,236
01.08.2020
01.08.2020

17.00.00
21.00.00

32,552
26,861

35,627
21,941

Point C 01.08.2020 12.00.00 35,664 61,983
01.08.2020 14.00.00 38,167 65,005
01.08.2020
01.08.2020

17.00.00
21.00.00

36,430
24.894

62,639
21.810

3.2. Thermal Comfort and Microclimate

Following site selection, simulations were carried out for all the nature-based solutions
listed above (Figure 4), in order to identify the best-performing ones in terms of microcli-
mate regulation and thermal comfort improvement (potential air temperature distribution
and UTCI) during summer and then formulate the two design scenarios for each site. The
results of the ENVI-met simulation outputs showed that the most effective NBS for thermal
comfort improvement and microclimate regulation during a hot summer day include the
use of trees or shelters with climbing plants (due to their shading effect), with a change in
UTCI of more than 5 ◦C in the hottest hours (Tables 5–7, Figures 8–10).

Table 5. Data from CFD simulation for all the NBS listed for Site A (with the most relevant results
highlighted in grey) for a hot summer day at 2:00 P.M.

Potential Air Temperature
(◦C) UTCI (◦C)

1. Current state 31,524 41,207
2. Ponds 31,358 41,073
3. Trees 31,055 36,200
4. Shrubs 31,133 37,574
5. Green roofs 31,352 38,294
6. Green facades 31,530 40,615
7. Paving 30,571 40,505
8. Shelter with climbing plants 31,035 36,386
9. Grass 31,489 40,891

Table 6. Data from CFD simulation for all listed NBS for Site B (with the most relevant results
highlighted in grey) for a hot summer day at 2:00 P.M.

Potential Air Temperature
(◦C) UTCI (◦C)

1. Current state 30,777 40,915
2. Ponds 30,691 40,264
3. Trees 30,544 34,033
4. Shrubs 30,670 37,354
5. Green roofs 30,375 40,272
6. Green facades 30,464 40,282
7. Paving 30,475 38,378
8. Shelter with climbing plants 30,585 35,004
9. Grass 30,752 40,114
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Table 7. Data from CFD simulation for all listed NBS for Site C (with the most relevant results
highlighted in grey) for a hot summer day at 2:00 P.M.

Potential Air Temperature
(◦C) UTCI (◦C)

1. Current state 31,472 40,147
2. Ponds 30,971 39,725
3. Trees 31,100 34,914
4. Shrubs 31,101 37,444
5. Green roofs 31,159 40,029
6. Green facades 31,157 40,031
7. Paving 30,655 39,451
8. Shelter with climbing plants 30,724 34,437
9. Grass 30,560 39,306
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Regarding the other solutions assumed (ponds, shrubs, green roofs and facades,
paving with high albedo, and grass) we observed small variations of performance in terms
of improvement of comfort conditions (UTCI level) between the different sites, as shown
in Tables 5–7. These results may be related to the proximity of the sites analyzed, which
had minor differences in terms of urban morphology, the building and natural context
surrounding them (e.g., airspeed and direction), and the limited shading effects that ensure
thermal comfort increase.

Starting from the simulation outputs, the most effective design scenarios were drafted.
These were the ones integrating trees and canopies with climbing plants as main elements,
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combined with other solutions depending on the peculiarities of each site and following the
urban constraints posed by the three different locations such as, for example, the presence
of public services and road passage (Figures 11–14).
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In the assumed design scenarios, the UTCI decrease (and relative comfort rise) calcu-
lated for each site at the specific points where the solutions were applied were as follow
(Figures 15–17):

• Site A: from 41.60 ◦C to 35.85 ◦C for scenario 1A (trees) and 35.91 ◦C for scenario 2A
(shelters).

• Site B: from 40.59 ◦C to 35.49 ◦C for scenario 1B (trees) and 35.08 ◦C for scenario 2B
(shelters).

• Site C: from 40.14 ◦C to 34.43 ◦C for scenario 1C (trees) and 33.57 ◦C for scenario 2C
(shelters).
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The comparison between the current state and the design scenarios for the three
sites (A, B, C, for a hot summer day) shows that the assumed combinations of NBS has a
consistent improving effect in terms of increased microclimatic comfort. Specifically, this
improvement turns out to always be not less than 5 ◦C compared to the starting UTCI for
both scenarios in all three sites.

Finally, other simulations for standard summer and winter conditions were run. Simu-
lations for standard summer conditions showed that the thermal comfort improvement for
the two design scenarios were similar to hot summer conditions; for example, for Point A,
the UTCI at 2:00 p.m. for Scenario 1A was 26.95 ◦C, and for Scenario 2A 26.85 ◦C, compared
to 29.2 ◦C for the current state. In parallel, the results of the simulations related to the
winter condition showed that NBS introduction does not imply an increase in thermal
discomfort (which in some cases can be caused by the shading of buildings); for example,
for Point C the UTCI values were 16.98 ◦C for the current state, 17.02 ◦C for Scenario 1C
and 17, 35 ◦C for Scenario 2C.

3.3. Perceptive Benefits Evaluation

Our data agreed with previous studies [45] showing that subjects reacted very pos-
itively in terms of mood improvement when walking in green areas. Indeed, on a scale
from 1 to 5, we found an average score of 4.65 across the sample; the considerable skew
of the variable towards higher values indicates that many subjects found that this activity
improved their mood. Thus, it appears that green areas have positive repercussions for
psychological well-being. Moreover, the data showed that the result is robust across differ-
ent socio-economic backgrounds. As can be seen from Table 8, the average values of the
variable of interest are high regardless of age, gender, or level of education. Women seem
to appreciate green areas somewhat more than men, while in terms of age it appears that
the group that most benefits from green areas are those between 41 and 65 years old, while
younger individuals between 18 and 25 years old benefit the least. Moreover, subjects with
less than higher education express slightly greater mood improvement compared to more
highly-educated subjects. However, for all three variables the differences among groups
are quite small and suggest a generalized positive association between walking in a green
area and mood improvement.

If subjects find that walking in a green area leads to mood improvement, it is plausible
that among the different design scenarios they will prefer the one portraying a more natural
environment. Our data support this expectation, as the design scenario evaluations showed
that the interviewees preferred scenarios with trees as opposed to canopies with climbing
plants. Specifically, for all three comparisons the overall preference for the scenarios with
trees ranged from 72% to 84%. Thus, most subjects in the sample clearly preferred scenarios
with trees (1A, 1B and 1C) compared to the more artificial alternatives (2A, 2B and 2C).
It is critical to point out that all paired scenarios have the same characteristics in term of
thermal comfort improvement, and would all increase the objective physical well-being of
the subjects who were to visit them. However, the analysis presented here seems to suggest
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that it is possible to achieve a further improvement in subjective well-being by choosing
scenarios that people find more pleasing.

Table 8. Average mood improvement when walking in green areas, by gender, age group and level
of education (min. 1; max. 5).

Mean SD

Gender
Women 4.73 0.57

Men 4.55 0.65

Age
18–25 4.55 0.71
26–40 4.64 0.61
41–65 4.75 0.55
≥66 4.65 0.62

Education
<Higher education 4.85 0.58
Higher education 4.64 0.63

Table 9 shows that this result is consistently found among both women and men and
among subjects with lower and higher education, with only minor differences. In contrast,
we observe somewhat larger differences in preferences among subjects in different age
groups. As can be seen in Figure 18, which shows the preference of subjects for the different
scenarios by age group (%), while all groups clearly favor the more natural solution, among
the younger age group the gap between the two scenarios is smaller compared to the other
groups, as the 18 to 25 age category has a slightly higher preference for the shelter scenario.
This peculiarity occurs in all three cases and can offer food for thought on the greater
preference on the part of young people (18–25 years) for scenarios with green solutions
more integrated into artificial elements compared to the older age groups. A further
interesting finding occurs among the over-66 age category, for whom a clear preference
for the more natural scenarios can be observed in cases 1B–2B and 1C–2C, with a less
marked preference in the case of scenarios 1A–2A. One of the possible explanations for this
“anomaly” is that scenario A was characterized by the inclusion of a stretch of water, which
is more attractive for younger people but which, for older people, may possibly be cause
for safety concerns.

Table 9. Preference for paired scenarios by gender and level of education (%).

1A 2A 1B 2B 1C 2C

Gender
Women 79 21 86 14 86 14

Men 77 23 89 11 91 9

Education
<Higher education 78 22 86 14 90 10
Higher education 79 21 88 12 86 14
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4. Conclusions

The study adopted an analytical approach to examine the current conditions of a
dense urban area on a district scale, to select hotspots for urban regeneration, and to
evaluate the performances of different design scenarios. The results demonstrate that
although plant and natural elements in an urban context entail an overall improvement in
the site’s conditions (e.g., an increase in biodiversity and air quality improvement [7]), the
adopted approach can play a key role in solving specific issues such as UHI and discomfort
conditions. At the same time, the study deepens the interaction between the more technical
and compositional/aesthetic aspects of urban design, highlighting that these two aspects
must be considered in parallel in order to improve the wellbeing and livability of urban
areas.

The following conclusions can be drawn:

• Simulations for the three specific sites showed that the best performing (NB) solutions
in mitigating local UHI and improving thermal comfort during the summer are those
that introduce shaded areas, such as trees and shelters with climbing plants;

• For the case study analyzed, urban morphology partly influences the performances of
the NBS in terms of improving thermal comfort;

• Survey results showed that the sample population highly preferred scenarios with
a high component of natural elements concerning urban regeneration intervention
(even if the sample is not representative);

• The perception of people about the role of vegetation in improving mood and well-
being is very positive;

• What emerges from the analysis of the variables defining microclimatic and perceptual
wellbeing is that even though design scenarios entail the same (or very similar)
physical performance (e.g., microclimate regulation), users can have a clear preference
toward one. Therefore, the study highlights the effectiveness of considering different
kinds of variables to define human wellbeing in urban design.

It is worth mentioning that the survey used for this study to evaluate perceptive
benefits of NBS could be even better exploited by considering a higher number of design
cases. This would allow deepening respondents’ preferences and relative reasons and
achieving more reliable results through a more elaborate analysis on a larger scale. Further
research could also focus on defining and parametrizing the performances of the NBS
in terms of thermal comfort and UHI reduction. In this perspective, further research
could lead to defining general criteria for urban greenery intervention or guidelines for
participation of citizens in urban design processes, also considering the socio-demographic
context.
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The results of this research are relevant for architects and designers as well as for
sociologists and urban planners in relation to the identification of strategies for urban
regeneration with a focus on citizen wellbeing and UHI mitigation.

In addition, the methodology proposed may also be considered as a starting point
for new transdisciplinary research on the assessment of the various benefits of NBS on
the environment and human health (as in the present research, developed thanks to the
collaboration between architectural technology and sociology).
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